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Abstract: The MYB transcription factor family is one of the largest families of plant transcription
factors (TFs), and it plays a vital role in the entire process of a plant’s growth and development.
Well known in China, Eucommia ulmoides (E. ulmoides) produces a form of natural rubber called
Eucommia ulmoides gum (EUG). Nevertheless, there is little research on the evolutionary history and
expression patterns of its MYBs, as well as on the regulation of EUG by MYB TFs. This research
provides a comprehensive description, classification, and potential functional analysis of the EuMYB
gene family. A total of 119 MYB members of E. ulmoides were identified based on the whole genome
sequencing data, and their gene structure, phylogenetics, chromosome location, conserved motifs,
etc., were analyzed. Based on the phylogenetic tree results, EuMYBs could be divided into 35 sub-
groups. In addition, chromosomal localization and collinearity analysis revealed the heterogeneous
distribution of the MYB family in the E. ulmoides’ genome, indicating the expansion of its gene
family. Moreover, promoter cis-acting elements showed that the promoter contained abundant
light-responsive elements, anaerobic-induction-responsive elements, and abscisic-acid-responsive
elements. A co-expression regulatory network between the EUG biosynthesis genes and the EuMYBs
was built. Meanwhile, regarding the six EuMYBs with high expression in the gum-forming tissues
selected that correlated with the farnesyl diphosphate synthase (FPS1) structural gene, RT-qPCR
experiments showed a possible regulatory relationship between EuMYBs and FPS1, which played
an important role in EUG biosynthesis. In conclusion, this paper defines a research gap and lays a
foundation for further studies on the biological functions of EuMYBs.

Keywords: Eucommia ulmoides (E. ulmoides); MYB transcription factors (MYB TF); gene expression;
Eucommia ulmoides gum (EUG); bioinformatics

1. Introduction

The plant transcription factor MYB (v-myb avian myeloblastosis viral oncogene ho-
molog), being one of the largest families of plant TFs, is associated with the regulation
of a plant’s growth, development, and physiological metabolic processes [1]. MYB TFs
are characterized by the presence of a highly conserved DNA-binding structural domain
(MYB DNA binding) at the N-terminus, which contains 1–4 semi-conserved motifs (R),
each consisting of approximately 50 to 53 amino acid residues and spacer sequences. These
amino acid residues allow the MYB’s structural domain to fold into a helix-turn-helix
(HTH) structure [2]. Based on the number of R residues in the structural domain, MYB TFs
can be divided into four subfamilies: 1R-MYB, R2R3-MYB, 3R-MYB, and 4R-MYB [3].

The first MYB gene in plants was cloned from Zea mays by Paz–Ares in 1987, when
the researchers found that the gene was associated with pigment synthesis [1]. Since then,
a large number of MYB TFs have been isolated and identified in plants. Studies have
shown that members of the R2R3-MYB TF family anchored by the endoplasmic reticulum
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in Arabidopsis are closely associated with root hair development [4–6]. AtMYB16, AtMYB17,
and AtMYB106 are, respectively, involved in the regulation of trichome branching, petal
epidermal cell morphogenesis, and early inflorescence development [7–9]. A group of
researchers transformed the Arabidopsis MYB TF pap1 into a petunia and found that it
resulted in darker flowers, a stronger fragrance, and significantly higher content of various
volatile hydrocarbon complexes [10]. The MYB7 gene in kiwifruit regulates carotenoid and
chlorophyll biosynthesis [11]. The over-expression of AtMYB75 in Arabidopsis increases
secondary metabolites, such as anthocyanins and flavonols, to protect against pests [12].
The HblMYB44 within the rubber tree is involved in the regulation of the natural rubber
biosynthesis process [13]. The MYB TFs in E. ulmoides leaves regulate the accumulation
of secondary metabolites such as chlorogenic acid [14]. They are also involved in the
expression of genes related to biosynthesis, such as anthocyanins and flavonoids [15].
Based on the findings above, the MYB TF family is widely involved in plants’ biological
development processes, hormone signaling, and primary and secondary metabolism [16–19].

Eucommia ulmoides Oliv. is a well-known traditional Chinese medicine species, as
well as an important rubber source, with Eucommia ulmoides gum (EUG) contained in its
peel and leaves [20–22]. As a new polymer material, EUG has excellent thermoelasticity,
low-temperature plasticity, and functions of wear and corrosion resistance [23,24]. EUG is
known to be synthesized from isoprenyl diphosphate through two pathways, namely the
mevalonate (MVA) pathway and the methylerythritol-phosphate (MEP) pathway [25–28].
Candidate genes involved in the EUG biosynthesis pathway were identified in the genome
by researchers, including 13 genes involved in six reactions of the MVA pathway, 11 genes
involved in seven reactions of the MEP pathway, and 12 genes involved in the initial
reactions for the production of initiators or precursors, which include geranyl diphosphate
synthases (GPSs), geranylgeranyl diphosphate synthases (GGPSs), farnesyl diphosphate
synthases (FPSs), and so on [29]. Among them, FPS1 is the key rate-limiting enzyme for
rubber biosynthesis [29]. This was also confirmed by studies conducted on Brazilian rubber
trees [30]. Researchers found that the MYB transcription factor regulates the expression of
key enzymes in rubber synthesis [31]. Studies on Hevea brasiliensis suggested that the MYB
transcription factors may have important regulatory roles in the response to trauma, as well
as to ethylene and jasmonic acid, further affecting the process of rubber production [32].
However, to date, systematic studies on the MYB gene family of E. ulmoides have not been
reported, and studies on the possible potential regulatory role of EuMYB in the biosynthesis
of EUG have not been seen.

The completion of the whole genome sequencing of E. ulmoides has laid a strong
foundation for the systematic study of the role of the MYB TF family in E. ulmoides [33]. In
this work, we carried out the identification of MYB gene family members and bioinformatics
analysis based on the whole genome sequencing of E. ulmoides and the transcriptome
sequencing data of different tissues. The results suggest that MYB members may have
a wide range of regulatory potential for E. ulmoides. Meanwhile, we established a co-
expression network of EuMYB members with EUG biosynthesis genes, and we screened
six EuMYB members with potential regulatory functions for FPS1, which is the key rate-
limiting enzyme for gum formation. Combined with RT-qPCR experiments, we hypothesize
that MYB TFs may have regulatory potential for EUG biosynthesis. This study lays the
foundation for further studies on the biological functions of the EuMYB family and the
genetic improvement of Eucommia ulmoides plants.

2. Materials and Methods
2.1. Plant Materials

Various 10-year-old healthy pest-free tissue samples (leaf, xylem, seed, and peel) of
the diploid E. ulmoides were selected from the forest tree seed breeding base in Wei County,
Hebei Province, China.
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2.2. Data Source

The genome sequence, protein sequences, and annotation files of Eucommia ulmoides
were downloaded from the Genome Warehouse (https://ngdc.cncb.ac.cn/gwh/Assembly/
25206/show, accessed on 1 March 2023). The RNA-seq data of different tissues have
been reported, as described in detail in our previous work, and they can be accessed with
accession number PRJNA599775 (uploaded 15 January 2021) [29].

Different tissues, including the mature leaf, peel, xylem, and seed, of the 10-year-
old diploid E. ulmoides trees were used for the extraction of RNA to perform RNA-seq
experiments. Three biological replicates were used for each tissue. A total of 3 µg RNA
per sample was used as input material for the RNA sample preparation. Sequencing
libraries were generated using the NEBNext® Ultra™ Directional RNA Library Prep Kit
for Illumina® (Illumina, San Diego, CA, USA) following the manufacturer’s recommen-
dations, and indexing sequences were added to attribute sequences to each sample. The
clustering of the index-coded samples was performed on a cBot Cluster Generation System
using the TruSeq PE Cluster Kit v3-cBot-HS (Illumina) according to the manufacturer’s
instructions. After the cluster generation, the library preparations were sequenced on
an Illumina HiSeq platform, and 125 bp/150 bp paired-end reads were generated. Raw
data in fastq format were first processed through in-house Perl scripts. In this step, clean
reads were obtained by removing reads containing adapter sequences, reads contain-
ing poly-N sequences, and low-quality reads from the raw data. Additionally, the Q20,
Q30, and GC content and the clean data were calculated. All downstream analyses were
based on clean data with high quality. The index of the reference genome was built using
Bowtie [34], and paired-end clean reads were aligned to the reference genome using TopHat
(http://ccb.jhu.edu/software/tophat/index.shtml, accessed on 1 November 2020). HTSeq
v0.6.1 was used to count the read numbers mapped to each gene [35]. Then, the FPKM of
each gene was calculated based on the length of the gene, and the read count mapped to this
gene. RNA-seq data derived from different tissue types were assembled with Trinity [36],
and the assembled sequences were aligned against the E. ulmoides genome by PASA [37].

2.3. Identification and Characterization of the EuMYB Family

The hidden Markov model profile of MYBs with accession number PF00249 was down-
loaded from the Pfam database [38]. The file produced was used to build the hidden Markov
model profile of the MYB domains by HMMER (http://hmmer.org/,
accessed on 4 March 2023). Using the MYB domain and protein sequence of Arabidopsis thaliana
as templates, the protein database derived from genome sequencing data was subjected to
Blastp comparison (TBtools v1.09876, E-value 1 × 10−5) [39], and the assumed EuMYB pro-
teins were preliminarily screened out. Using SMART (http://smart.embl-heidelberg.de/,
accessed on 8 March 2023) to identify the conserved sequence of these proteins [40], we deleted
the members that did not contain the MYB protein characteristic domain or had low confi-
dence in the characteristic domain, checked the redundancy of candidate proteins, and named
them according to the NCBI Blast result (https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on
14 March 2023). The ExPASY server was used to analyze the characteristics and basic physical
and chemical properties of EuMYB family proteins (https://web.expasy.org/protparam/,
accessed on 20 March 2023) [41].

2.4. Phylogenetic Analysis of the EuMYB Family

To study the phylogenetic relationship of the EuMYB gene family, based on the selected
MYB protein sequences of E. ulmoides and Arabidopsis thaliana, we aligned all protein sequences
using ClustalW with the default parameters. Then, a phylogenetic tree (1000 bootstrap
replicates) was constructed by using the maximum likelihood method (ML) of the MEGA-X
software (v10.0.5, https://www.megasoftware.net/, accessed on 26 March 2023) [42]. The
parameters were all defaulted, and the phylogenetic tree was visualized using iTOL (https:
//itol.embl.de/tree/1257557242207601633839596, accessed on 18 April 2023) [43].

https://ngdc.cncb.ac.cn/gwh/Assembly/25206/show
https://ngdc.cncb.ac.cn/gwh/Assembly/25206/show
http://ccb.jhu.edu/software/tophat/index.shtml
http://hmmer.org/
http://smart.embl-heidelberg.de/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://web.expasy.org/protparam/
https://www.megasoftware.net/
https://itol.embl.de/tree/1257557242207601633839596
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2.5. Chromosome Location and Collinearity Analysis of the EuMYB Family

Map Gene 2 Chromosome (MG2C, v2.1, http://MG2C.iask.in/MG2C_v2.1/, accessed
on 28 March 2023) was used to map the chromosome distribution of the MYB genes in E.
ulmoides [44]. Files relevant to the E. ulmoides genome were downloaded from the Genome
Warehouse (https://ngdc.cncb.ac.cn/gwh/Assembly/25206/show, accessed on 1 March
2023), and TBtools was used to perform self-alignment of the E. ulmoides genome sequence
and copy analysis and display of the EuMYB gene family [39]. The genome-relevant files
of Arabidopsis thaliana, Vitis vinifera, Sorghum bicolor, and Coffea canephora were downloaded
from the Plant TFDB database (http://planttfdb.gao-lab.org/, accessed on 22 April 2023),
and the whole genome sequence of E. ulmoides was compared with that of Arabidopsis
thaliana (model plant), Vitis vinifera (dicotyledon), Sorghum bicolor (monocotyledon), and
Coffea canephora (dicotyledon), using TBtools (v1.09876) to analyze the collinearity of genes
and display the results [39].

2.6. Analysis of Conserved Motifs, Gene Structures, and Domains of the EuMYB Family

Multiple Expectation Maximization for Motif Elicitation (MEME, v5.5.1, http://meme-
suite.org/tools/meme, accessed on 1 May 2023) was used to analyze the conserved motifs
of the MYB protein family in E. ulmoides [45]. The motif parameter was set to 10. The
motif width was between 6 and 50 (inclusive), which further clustered the obtained results.
Finally, the conserved motifs, gene structures, and domains obtained were combined with
phylogenetic trees for display.

2.7. Analysis of Cis-Acting Elements of EuMYB Family Promoters

The 2000-bp sequence upstream of the initiation codon of each EuMYB family gene was
extracted, and cis-acting element prediction analysis of the promoter was conducted on the
PlantCARE website (http://BioInformatics.psb.ugent.be/webtools/PlantCare/html/, ac-
cessed on 15 May 2023) [46]. The results were displayed visually by TBtools (v1.09876) [39].

2.8. Gene Expression of the EuMYB Family in Different Tissues

To survey the expression patterns of EuMYB genes in different tissues, the transcrip-
tome data of E. ulmoides in various tissues (leaf, xylem, seed, and peel) were obtained
from the NCBI sequence read archive (SRX7525252-54, SRX7532003-05, SRX7531725-27,
and SRX7533248-50) [29]. The transcript abundance of E. ulmoides genes was calculated as
fragments per kilobase of the exon model per million mapped reads (FPKM). The expression
values of all EuMYB family members (FPKM values) were selected (Supplementary Table S5),
the values were logarithmically (Log2) analyzed statistically, and the EuMYB members were
clustered to reflect EuMYB gene expression.

2.9. EuMYB and EUG Biosynthesis Gene Co-Expression Network Construction

It has been reported that at least 52 structural genes in E. ulmoides are involved
in the biosynthetic pathway of EUG [29]. To study the relationship between EuMYB
genes and EUG biosynthesis structural genes in E. ulmoides, we used the FPKM of these
genes (Supplementary Table S6) to construct the network in OmicStudio (https://www.
omicstudio.cn/tool/62, accessed on 18 May 2023). Genes with a Pearson’s correlation
coefficient within the appropriate range (|r| ≥ 0.60 and p < 1) were selected to generate
a co-expression network using Cytoscape (v3.9.0). The connectivity degree of genes was
calculated using the Cytoscape software.

2.10. EUG Synthesis-Related EuMYB Expression Analysis by RT-qPCR

An RT-qPCR experiment was designed for EuMYBs related to FPS1 in gum-containing
(leaf, peel) and non-gum-containing tissue (xylem, seed). Total RNA extracted from dif-
ferent E. ulmoides tissues was reverse-transcribed into cDNA using a cDNA Synthesis Kit
(Tiangen, Beijing, China, Cat KR106). Quantitative real-time polymerase chain reaction (RT-
qPCR) assays were performed using TransStart Top Green qPCR SuperMix (TRANSGEN,

http://MG2C.iask.in/MG2C_v2.1/
https://ngdc.cncb.ac.cn/gwh/Assembly/25206/show
http://planttfdb.gao-lab.org/
http://meme-suite.org/tools/meme
http://meme-suite.org/tools/meme
http://BioInformatics.psb.ugent.be/webtools/PlantCare/html/
https://www.omicstudio.cn/tool/62
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Beijing, China, cat AQ132-22) on the Applied Biosystems 7500 real-time PCR system according
to the manufacturer’s manual. Three biological replicates were performed for each tissue sam-
ple. UBC E2 was used as a reference gene [47]. All primers used in this study were designed
by Primer3plus (http://www.primer3plus.com/cgi-bin/dev/primer3plus.cgi, accessed on
18 July 2023). The 2−∆∆Ct method was used to calculate relative gene expression levels.

3. Results
3.1. EuMYB Family Identification and Characterization

By using the MYB domain and the MYB protein sequence of Arabidopsis thaliana as
templates, the protein database of E. ulmoides was compared by Blast, and 137 EuMYB
family proteins were preliminarily identified. The screened proteins were identified using
SMART to identify their conserved sequences, and sequences without the characteristic
structural domain of MYB proteins and those with low confidence in the characteristic
structural domain were deleted to obtain 119 final EuMYB family gene sequences, which
were renamed EuMYB1–EuMYB119 (Supplementary Table S1). Then, we analyzed the chro-
mosome number, amino acid number (aa), molecular weight (MW), theoretical isoelectric
point (pI), instability index, aliphatic index, and grand average of hydropathicity (GRAVY)
of each family member based on the protein sequences.

Our study found that the number of amino acids in EuMYB family proteins ranges from
76 (EuMYB56) to 1641 (EuMYB76), with an average length of 428.4 and a large variation
interval. The molecular weight ranges from 8.99 KDa (EuMYB56) to 178.92 KDa (EuMYB76),
the theoretical isoelectric point ranges from 5.01 (EuMYB39) to 10.75 (EuMYB56), the instability
index ranges from 20.81 (EuMYB43) to 78.70 (EuMYB85), and the aliphatic index ranges from
48.63 (EuMYB97) to 82.45 (EuMYB69). In addition, combining the theoretical PI and instability
index, we found that the EuMYB family contains three acidic stable proteins (2.5%), seven
acidic unstable proteins (64.77%), 38 basic unstable proteins (31.93%), and one neutral unstable
protein (EuMYB3, 0.8%).

3.2. Phylogenetic Analysis of the EuMYB Family

To investigate the phylogenetic relationships of the EuMYB gene family, a phylogenetic
tree was generated based on the EuMYB protein sequences (Supplementary Table S2) and
Arabidopsis MYB protein sequences (Supplementary Table S3). Based on the classification
principles of the MYB subfamilies and the model plant Arabidopsis thaliana, they could be
divided into 35 subfamilies (Figure 1). Among them, the MYB family members of E. ulmoides
were distributed in 34 of the 35 subfamilies in the evolutionary tree, with no EuMYB family
members in the S12 subfamily. The S6, S10, S17, S19, S27, and S29 subfamilies contained
only one EuMYB member, while the S24 subfamily contained nine EuMYB members. These
findings indicated that the MYB genes of E. ulmoides and Arabidopsis thaliana had undergone
specific expansion and differentiation during evolution.

3.3. Chromosome Location and Collinearity Analysis of the EuMYB Family

Analysis of MYB gene locations on the E. ulmoides chromosomes revealed that
115 EuMYB genes were unevenly distributed on the 17 chromosomes of E. ulmoides, while
four genes (EuMYB41, EuMYB46, EuMYB50, and EuMYB80) were localized to unattributed
scaffolds (Figure 2). Among them, eleven EuMYB members (EuMYB18, EuMYB22, Eu-
MYB23, EuMYB25, EuMYB55, EuMYB59, EuMYB67, EuMYB69, EuMYB75, EuMYB113,
and EuMYB115) were on chromosome 14, which contained the most EuMYB members,
followed by chromosome 10 containing ten EuMYB members, and, in contrast, chromo-
some 7 contained four EuMYB members. In addition, EuMYB genes belonging to the same
subfamily in the phylogenetic tree were distributed on different chromosomes or scattered
at different positions on the same chromosome. For example, the eight EuMYB members
of S14 were scattered on chromosomes 8, 11, 15, and 16. Among them, EuMYB36 and
EuMYB111 were at different positions on chromosome 11.

http://www.primer3plus.com/cgi-bin/dev/primer3plus.cgi
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To reveal the evolutionary mechanisms of the EuMYB gene family, tandem repeats and
fragment repeats were further analyzed (Figure 2). Altogether, three pairs of tandem repeat
genes were identified in the EuMYB family, including one pair of tandem repeat genes in
each of chromosome 2 (EuMYB4–EuMYB31), chromosome 10 (EuMYB3–EuMYB26), and
chromosome 13 (EuMYB45–EuMYB47). In addition to the tandem repeat genes, a total of
12 pairs of fragment duplication events that occurred in the EuMYB gene family within the
E. ulmoides genome were identified (Figure 3). Among them, three fragment duplication
genes were located on chromosomes 3 and 5, which were the chromosomes containing the
most fragment duplication genes. To further analyze the phylogenetic relations of the MYB
gene family in E. ulmoides, a collinearity map was constructed between E. ulmoides and the
model plant Arabidopsis, Vitis vinifera (dicotyledon), Sorghum bicolor (monocotyledon), and
Coffea canephora (dicotyledon). Among the homologous genes of EuMYBs in other species,
the most homologous genes were found in Vitis vinifera (89 pairs), followed by Arabidopsis
(82 pairs), Coffea canephora (75 pairs), and Sorghum bicolor (30 pairs), which had the fewest
homologous genes (Figure 4).
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3.4. Analysis of Conserved Motifs, Gene Structures, and Domains of the EuMYB Family

Members of the same gene family usually have a conserved motif composition. To
analyze the structural diversity and evolutionary relationships of EuMYB family genes, the
119 conserved structural domains of the EuMYB family proteins were analyzed (Figure 5).
EuMYB family proteins consisted of 1–10 motifs (Table 1), which varied widely in length
from 8 to 50 amino acids. There were differences in the motif compositions of different
subfamilies of EuMYB, and members within each subfamily of EuMYB were composed
of similar numbers and types of motifs. Most MYB proteins contained motif 3, motif 5,
motif 1, and motif 2. The EuMYB56 protein only contained two conserved motifs, while
five EuMYB family proteins, EuMYB42, EuMYB45, EuMYB47, EuMYB106, and EuMYB91,
each contained a total of eight conserved motifs. Some motifs were only present in specific
subfamilies, which may be related to the different functions of different subfamilies.

Analysis of the EuMYB gene structure revealed that the number of CDS (exons) of
EuMYBs ranged from 1 to 11, while six genes did not contain introns. The EuMYB family
genes in the same subfamily had similar structures, with a similar size and distribution
of exon segments, while EuMYB family genes in different subfamilies had significantly
different exon and intron structures. Additionally, all EuMYB families contained MYB
conserved structural domains.
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Table 1. Conserved motif distribution of EuMYB proteins (quantity from largest to smallest).

Name E Value Sites Width Best Match

Motif 3 2.9 × 10−1218 116 21 KKGPWTPEEDQKLLAYIEEHG

Motif 5 1.1 × 10−237 118 8 GCWSSVPK

Motif 1 2.9 × 10−3712 104 50 AGLLRCGKSCRLRWINYLRPDIKRGNFTQEEEDTIIKLHAILGNRWSAIA

Motif 2 2.2 × 10−1592 103 21 HLPGRTDNEIKNYWNTHLRKK

Motif 4 6.2 × 10−341 60 11 MGRSPCCDKVG

Motif 6 1.5 × 10−201 33 16 LTKMGIDPVTHKPKSS

Motif 7 7.8 × 10−155 8 50 NFVITRTPTQVASHAQKYFIRQLSGGKDKRRASIHDITTVNLNDNQTPSP

Motif 10 5.2 × 10−102 8 30 ANLSHMAQWESARLEAEARLVRESKLLSNA

Motif 9 1.2 × 10−109 4 50 QRFINNVSIKAHNYDVENPMQFRDVAYPIDPTLNMEPWKLPNFVEGFTDV

Motif 8 1.3 × 10−151 9 50 WTAEENKLFENALAMIDKDMPDRWQRVAAMVPGKTVMDVIKQYKELEDDV

3.5. Analysis of Cis-Acting Elements of EuMYB Family Promoters

To explore the functions and regulation patterns of EuMYB family genes, cis-acting
elements were analyzed in the 2000 bp upstream of the EuMYB family start codon.
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A total of 24 cis-regulatory elements were identified in the promoter region of the EuMYB
gene (Supplementary Table S4), and these elements can be classified into five categories, in-
cluding cell development, phytohormones, environmental stress, physiological regulatory
elements, and MYB gene-binding site elements (Figure 6).
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were associated with environmental stresses: light-responsive elements, low-temperature-
responsive elements, wound-responsive elements, defense- and stress-responsive elements,
enhancer-like elements involved in anoxic-specific inducibility, and anaerobic-induction-
responsive elements. Four cis-acting elements were related to MYB binding sites: the
MYBHv1 binding site, the MYB binding site involved in flavonoid biosynthetic gene regu-
lation, the MYB binding site involved in drought inducibility, and the MYB binding site
involved in light responsiveness. Seven cis-acting elements were related to cell develop-
ment: the cell cycle regulation element, the circadian control element, the differentiation
of the palisade mesophyll cells element, the endosperm expression element, the meristem
expression element, the root-specific element, and the seed-specific regulation element. In
addition, it also contained the binding site of AT-rich DNA-binding protein (ATBP-1), the
element for maximal elicitor-mediated activation and zein metabolism regulation.

Further studies revealed that light-responsive elements were the most common in
the EuMYB gene promoter, followed by abscisic-acid-responsive elements and anaerobic-
sensing elements. Among the cis-acting elements associated with MYB binding sites,
52 EuMYBs contained MYB binding sites involved in drought inducibility elements,
44 EuMYBs contained MYBHv1 binding site elements, 44 EuMYBs contained MYBHv1
binding site elements, and 9 EuMYBs contained MYB binding site elements involved in
flavonoid biosynthetic gene regulation. These results suggested that the MYB genes were
widely involved in a variety of life activities, such as plant growth and development and
stress responses.

3.6. Analysis of Gene Expression of EuMYB in Different Tissues

The analysis of gene expression patterns can provide clues for the study of gene
functions. Based on the RNA-seq database, the expression of all the EuMYB genes in
the leaf, xylem, peel, and seed was extracted (Supplementary Table S5). EuMYB family
expression showed that 113 EuMYB members were expressed in all four tissues. More than
50% of EuMYB members had extremely low expression (0 < FPKM < 1) in all four tissues
of E. ulmoides, and some of these members were not expressed (Figure 7).

Further analysis found that there were 93 EuMYB members expressed in E. ulmoides
leaves. Among them, 43 members had extremely low expression (FPKM < 1). The highest
expression, that of EuMYB96, was 53.46. The expression of EuMYB29, EuMYB43, EuMYB60,
and EuMYB91 was high only in leaves, while it was low or not expressed in other tissues.
EuMYB18 was expressed only in leaves, but it was expressed at low levels.

There were 87 EuMYB family members expressed in the E. ulmoides xylem. Among
them, 35 members had extremely low expression (FPKM < 1). The highest expression, that
of EuMYB109, was 313.44. EuMYB49, EuMYB109, and EuMYB119 were less expressed
or not expressed in other tissues. EuMYB39, EuMYB48, EuMYB83, EuMYB86, and Eu-
MYB117 members were highly expressed in the xylem only, and their expression was
low or not detected in other tissues. Two EuMYB family members were expressed in the
xylem only. These included EuMYB23 and EuMYB49, but the expression of EuMYB23 was
extremely low.

There were 94 EuMYB family members expressed in the E. ulmoides peel. Among
them, 41 members had extremely low expression (FPKM < 1). The highest expression, that
of EuMYB28, was 40.85. The EuMYB36 was expressed only in the peel, but the expression
was extremely low.

There were 78 EuMYB family members expressed in E. ulmoides seeds. Among them,
38 members had extremely low expression (FPKM < 1). The highest expression, that of
EuMYB73, was 55.77. There were three EuMYB family members expressed only in the seeds,
including EuMYB19, EuMYB88, and EuMYB113, but their expression was extremely low.
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3.7. EuMYBs and EUG Biosynthesis Gene Co-Expression Network

To research the possible regulating function between EuMYB and EUG biosynthesis
genes, we constructed a co-expression network (Supplementary Table S7). The results
showed that it had 510 pairs positively correlated between 45 EUG biosynthesis genes
and 66 EuMYB genes (Figures 8 and 9). Among them, EuMYB112 had the highest de-
gree of connection, which was positively correlated with 20 EUG biosynthesis genes,
followed by EuMYB12 (19), EuMYB51 (18), EuMYB60 (18), EuMYB77 (18), EuMYB82 (18),
and EuMYB103 (18). At the same time, it had 198 pairs negatively correlated between
41 EUG biosynthesis genes and 57 EuMYB genes. Among them, EuMYB110 had the highest
degree of connection, which was negatively correlated with 14 EUG biosynthesis genes,
followed by EuMYB32 (13), EuMYB33 (13), EuMYB76 (12), EuMYB116 (12), and EuMYB101
(10). These genes may play a crucial role in regulating EUG biosynthesis. Additionally,
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a previous study indicated that farnesyl diphosphate synthases (FPS1) may be the key
rate-limiting enzymes for EUG synthesis. Through our analysis, we found that there were
sixteen EuMYBs that were positively correlated with the FPS1 structural gene, and two
EuMYBs were negatively correlated with the FPS1 structural gene. We predicted that these
EuMYBs may have a possible regulatory relationship with the FPS1 structural gene.
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3.8. Expression Patterns of EuMYBs in Different Tissues by qRT-PCR

Combined with the gene expression of EuMYB in different tissues and the gene co-
expression network, we conducted gene expression validation using RT-qPCR as a means
to investigate the EuMYB functions of EUG biosynthesis (Figure 10). Six EuMYB members
were selected that were correlated with FPS1 and highly expressed in gum-forming tissues
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(leaf and peel). We used the designed primers to experiment (Supplementary Table S8).
The bar chart visually showed that all of the selected EuMYB genes exhibited expression
patterns that agreed with the transcriptome expression profile (Figure 7). These genes
were all expressed in gum-forming tissues (leaf and peel). Among them, the expression
of EuMYB53, EuMYB74, and EuMYB112 was significantly different between the tissues
containing EUG (leaf and peel) and other tissues not containing EUG (xylem and seed),
suggesting that they may have potential regulatory roles in the gum synthesis of E. ulmoides.
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Figure 10. Expression levels of key rate-limiting enzyme FPS1 and six EuMYB genes in different
tissues, as indicated by RT-qPCR. Error bars represent the standard deviations of three biological
replicates. Gum-containing tissues (leaf and peel) and non-gum-containing tissues (xylem and
seed) were used for the significance analysis. Different numbers of asterisks in the bars indicate
significant differences in EuMYB expression levels of different tissues (ns: no significant difference,
* 0.01 < p ≤ 0.05, ** 0.001 < p ≤ 0.01, *** 0.0001 < p ≤ 0.001, **** p ≤ 0.0001).

4. Discussion
4.1. Analysis of Basic Characteristics of EuMYB Family Members

The MYB gene family varied in number and structure in different plants. In terms
of MYB family member identification and characteristics, a total of 119 EuMYB family
members were identified based on the whole genome data of E. ulmoides, which was
close to the number of Panax notoginseng (123 MYB), Cymbidium ensifolium (136 MYB), the
monocotyledonous plant Oryza sativa (131 MYB), and Chinese pear (Pyrus bretschneideri,
129 MYB) [48–50]. The number was less than the 244 of the largest known plant MYB family
of soybean, 235 of chili pepper (Capsicum spp.), 177 of sweet orange, 198 of Arabidopsis
thaliana, and 141 of the Brazilian rubber tree (R2R3-MYB). The number of EuMYB members
was only more than that of a few plants, such as Curcuma wenyujin (88) and Beta vulgaris
(70), which possess a relatively small number of MYB family members [13,51–54]. The
reason for the quantitative differences may be due to the genome size and replication
events, which also reflect the diversity of MYB families during plant evolution.

By comparison, it was found that the characteristics of the MYB family of E. ulmoides
were more similar to those of other plants such as rubber tree, Cymbidium ensifolium, chili
pepper, and sweet orange [30,48,54,55]. However, some differences existed [13,54,55].
For example, the minimum molecular weight of rubber tree MYB proteins is 2.7 KDa
and that of Jianlan is 5.82 KDa, while the maximum molecular weight of chili pepper is
183.5 KDa. The molecular weight range of E. ulmoides MYB proteins was 8.99–178.92 KDa,
which was different from several other plants. The maximum theoretical pI of rubber tree
MYB members was 9.44, that of chili pepper members was 9.36, and the range of E. ulmoides
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members was from 5.01 to 10.75, similar to the range of Cymbidium ensifolium and other
plants. These differences in the characteristics of MYB members are also the biological basis
for the distinctions between E. ulmoides and other plants.

The phylogenetic analysis showed that EuMYB members were divided into 34 sub-
families, each containing 1–9 members, similar to the results of Brazilian rubber trees and
much fewer than the 47 subfamilies of the largest plant MYB family, that of soybean, each
containing 2–28 members [52,54]. The MYB members in Chinese pear MYB and Cymbidium
ensifolium MYB, which were similar in number to the EuMYB family, were divided into
31 and 32 subfamilies, which contained 2–8 and 2–24 members, respectively [48,49]. The
variability among MYB families also demonstrates the diversity of the MYB genes that
have evolved in different plants.

Chromosome analysis showed that EuMYB family members were unevenly dis-
tributed on the 17 chromosomes of E. ulmoides, and most EuMYB members were con-
centrated at both ends or one end of a chromosome, which was similar to the results of
MYB chromosome studies in plants such as chili pepper and soybean [52,55] The expansion
of gene families and plant genomes is thought to be associated with gene duplication
events [56]. Replication events are important in the expansion and evolution of gene fami-
lies; gene duplication culminates in the production of proteins with sub-functionalization,
neo-functionalization, or non-functionalization [57,58]. The EuMYB family contained three
pairs of tandem repeat genes and 12 pairs of fragment repeat genes, indicating the phe-
nomenon of EuMYB family expansion, which may have led to changes in the function of
some evolved novel members and thus enhanced plant adaptation [59]. This result was
different from the soybean MYB family, which used tandem repeats as the main driver
of amplification, while the Chinese pear MYB family used whole genome repeats and
fragment repeats as the main drivers of amplification [49,52]. The different amplification
patterns of gene family members in different species also underlie the diversity of MYB
families in plants.

Analysis of the conserved structural domains and motifs of EuMYB showed that differ-
ent phylogenetic tree subclades had different structural domains and motif compositions,
which may be related to the MYB TF function and regulatory mode of action. Among the
EuMYB family subclades, the S5 subclade contained only one AtMYB member, and its
members were mainly EuMYB, which may be due to the distant kinship between EuMYB
and Arabidopsis MYB or the evolution of the EuMYB family. Similar clustering has been
found in chili pepper, sweet orange, rubber tree, and Chinese pear plants [49,54,55,60].
Analysis of the gene structure of the EuMYB family revealed that, with a few exceptions,
such as EuMYB42 and EuMYB116, the exon and intron structures of EuMYB family genes
located in the same subfamily were consistent. However, there were six EuMYB members
that did not contain introns [61], which was similar to the results of studies in Chinese pear
and Cymbidium ensifolium [48]. This finding suggested the existence of highly conserved
structures within EuMYB subfamilies and a high degree of sequence diversity among
different EuMYB subfamilies, in strong agreement with the results of the analysis of other
plant MYB families.

Cis-acting elements are the DNA-binding sites of TFs and are responsible for reg-
ulating target genes at the transcriptional level [62]. In response to stress, plants have
promoters and TFs that regulate stress gene expression and thus initiate protective mecha-
nisms. Therefore, the analysis of promoter cis-acting elements is important for the study
of gene function [63]. In this study, we found that light-responsive elements were the
most common in the EuMYB gene promoter, followed by abscisic-acid-responsive elements
and anaerobic-sensing elements. The development process and morphogenesis of leaves,
stems, fruits, and flowers are usually highly light-dependent [64]. This finding suggests
that EuMYB family members may have potential regulatory roles in plant photosynthesis,
shoot dormancy, leaf abscission, the inhibition of cell growth, and anaerobic induction.
Members of subgroups S11, S18, and S35 all contained auxin-responsive elements. S16 and
S35 all contained defense- and stress-responsive elements. S16, S26, and S35 all contained
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gibberellin-responsive elements. The S5, S26, and S34 subgroups contained abundant
zein metabolism regulation elements. This suggests that members within these subgroups
may regulate the corresponding biological processes in E. ulmoides. Furthermore, both
EuMYB91 and EuMYB97 showed differentiation of the palisade mesophyll cells element,
and they were highly expressed in leaves. EuMYB38, EuMYB44, EuMYB50, EuMYB73, and
EuMYB76 contained light-responsive elements, and they were highly expressed in leaves
and seeds. This suggests that they may have important regulatory functions. Meanwhile,
some PbMYB genes were also found in Chinese pear to contain BOXP and BOXL elements,
which may be involved in lignin biosynthesis [49].

4.2. Analysis of Expression Patterns of EuMYB Family Members

In this research, we analyzed the expression levels of the EuMYB family based on
transcriptome data from different tissues of E. ulmoides, including the leaf, xylem, peel, and
seed (Supplementary Table S5). We found that the EuMYB members that were specifically
highly expressed in E. ulmoides leaves included EuMYB29, EuMYB43, EuMYB60, and
EuMYB91, while they had extremely low or no expression in other tissues. EuMYB18 and
EuMYB84 were only expressed in leaf tissues, but their expression was extremely low.
The EuMYB members that were specifically highly expressed in the xylem of E. ulmoides
were EuMYB39, EuMYB48, EuMYB49, EuMYB83, EuMYB86, EuMYB109, EuMYB117, and
EuMYB119, and they had very low or no expression in other tissues. EuMYB23 and
EuMYB49 were only expressed in the xylem, but EuMYB23 expression was extremely
low. EuMYB19 and EuMYB88 were only expressed in the seed, but their expression was
extremely low. The EuMYB member that was specifically highly expressed in the seed of E.
ulmoides was EuMYB32, and it had very low or no expression in other tissues. EuMYB19,
EuMYB88, and EuMYB113 were only expressed in the seed, but their expression levels
were extremely low. Thus, the EuMYB gene family members may play a key role in the
development of different tissues. Only EuMYB44, EuMYB50, and EuMYB76 were expressed
to some extent in all five different tissues of E. ulmoides and may play an important role as
a regulatory factor in all five.

The composition of motifs in proteins reflects the evolution of function. Accord-
ing to the phylogenetic relationships, the 119 MYB family members were divided into
35 subgroups. The gene structures and motif arrangement of the genes within each sub-
group were similar (Figure 5), and the genes within a subgroup may have similar biological
activities and functions (Figure 1). Based on the functions of Arabidopsis homologues, we
can predict the functions of EuMYB genes, which may also be used for further functional
studies. We analyzed the related functions and the results were as follows (Table 2).

In addition, research showed that R2R3-MYBs of Arabidopsis in the subclades of S3, S4,
S5, S6, and S7 regulated phenylpropanoid biosynthesis [3], which is an important synthetic
pathway of chlorogenic acid in E. ulmoides [75]. Therefore, we speculated that EuMYB28
that was highly expressed in leaves had similar functions. Flavonoids are proposed to
act as reactive oxygen species (ROS) scavengers to maintain normal plant growth and
development in response to abiotic stresses [76]. Research shows that the S7 subgroup
of Arabidopsis can participate in the regulation of flavonoid synthesis [77]. At the same
time, we also found that EuMYB12 located in the S7 subgroup contained an MYB binding
site involved in flavonoid biosynthetic gene regulation (Supplementary Table S4). We
predicted that EuMYB12 may have similar functions. Furthermore, the S5 subgroup plays
a regulatory role in the synthesis of proanthocyanidins [78], the S6 subgroup regulates
anthocyanin synthesis [79,80], and the S24 subgroup regulates suberin biosynthesis [81].
Therefore, EuMYB in the corresponding subgroup may also play a similar role. These
candidate genes and their putative functions will be further validated in the future, which
will provide a new insight for further studies on the functions of EuMYB genes.

EUG is an important industrial raw material in the world today. It is found that
52 key genes are involved in the biosynthesis of EUG, among which FPS1 may be the
key rate-limiting enzyme for EUG synthesis [29]. This is also confirmed by studies in
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Brazilian rubber trees [30]. Some studies have reported that MYB TFs play important
regulatory roles in plant natural rubber biosynthesis. For instance, it was found that
HblMYB19 and HblMYB44 are involved in the regulation of FDPS1, SRPP, and HRT1 in
the natural rubber synthetic pathway [69]. With treatment involving MeJA induction, the
expression of MYB, bHLH, and WRKY genes encoding TFs such as HMGCR, FPPS, IDI, and
GGPPS in Taraxacum koksaghyz showed a positive correlation, which can affect the synthesis
of natural rubber [82]. In view of this, to research the possible relationship between
EuMYB genes and EUG biosynthesis pathway genes, we constructed a co-expression
network containing EUG biosynthesis genes and EuMYBs (Figures 8 and 9). The results
showed that EuMYB family members had strong correlations with structural genes of
EUG synthesis. Furthermore, we selected six EuMYBs (EuMYB28, EuMYB53, EuMYB60,
EuMYB74, EuMYB96, EuMYB112) associated with FPS1, a key rate-limiting enzyme in gum
formation, for qRT-PCR experiments, and the results were consistent with the transcriptome
data; all of them were highly expressed in gum-forming tissues. These results imply that
EuMYBs may have an important regulatory role in EUG synthesis.

Table 2. Prediction of EuMYB functions by phylogenetic tree.

Arabidopsis E. ulmoides Regulation Function

MYB2/7 MYB7/28 seed germination, pollen formation, abscisic acid, drought stress [65]

MYB4 MYB7/28/117 inhibits the production of UV protective shade [66]

MYB20/80 MYB32/39/44/73/109 regulates drought stress and salt stress [67,68]

MYB60 MYB38/60 regulates guard cells, stomatal, anthocyanin biosynthesis, ABA [69,70]

MYB73/80 MYB32/73/74 salt stress, pollen development [71–73]

MYB85 MYB56/119 plant secondary cell wall biosynthesis [74]

5. Conclusions

In summary, 119 MYB family members were identified in E. ulmoides, which were
classified into 35 subgroups based on phylogenetic relationships. The gene structure,
motif composition, chromosome distribution, gene duplication, phylogenetics, cis-acting
elements, and collinearity among the family members were comprehensively analyzed.
The results showed that the EuMYB family members differed in gene length, molecular
weight, and PI, while the gene structure and motifs were relatively conserved and also
indicated the phenomenon of EuMYB family expansion. The results of promoter cis-acting
elements suggested that the EuMYB family may regulate various physiological metabolic
processes, such as stomatal opening, anther formation, secondary cell wall synthesis, and
biotic and abiotic stresses, in E. ulmoides. In addition, the expression of EuMYB genes
in different tissues and co-expression network analysis implied that EuMYB genes may
participate in multiple physiological processes and EUG biosynthesis. These results lay the
foundation for in-depth studies on the biological functions of EuMYB.
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