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Abstract: Trunk borers are among the most destructive forest pests. The larvae of some species living
and feeding in the trunk, relying solely on the tree’s appearance to judge infestation is challenging.
Currently, one of the most effective methods to detect the larvae of some trunk-boring beetles is
by analyzing the vibration signals generated by the larvae while they feed inside the tree trunk.
However, this method faces a problem: the field environment is filled with various noises that get
collected alongside the vibration signals, thus affecting the accuracy of pest detection. To address this
issue, vibration signal enhancement is necessary. Moreover, deploying sophisticated technology in
the wild is restricted due to limited hardware resources. In this study, a lightweight vibration signal
enhancement was developed using EAB (Emerald Ash Borer) and SCM (Small Carpenter Moth) as
insect example. Our model combines CRN (Convolutional Recurrent Network) and Transformer. We
use a multi-head mechanism instead of RNN (Recurrent Neural Network) for intra-block processing
and retain inter-block RNN. Furthermore, we utilize a dynamic pruning algorithm based on sparsity
to further compress the model. As a result, our model achieves excellent enhancement with just
0.34M parameters. We significantly improve the accuracy rate by utilizing the vibration signals
enhanced by our model for pest detection. Our results demonstrate that our method achieves
superior enhancement performance using fewer computing and storage resources, facilitating more
effective use of vibration signals for pest detection.

Keywords: pest detection; vibration signal; denoising; signal enhancement; convolutional recurrent
neural network; transformer; model compression; pruning

1. Introduction

The use of intelligent systems has gradually replaced traditional manual labor in
modern agriculture and forestry as a result of technological advancements. This has greatly
increased production efficiency and aided in the economic development of human society.
However, pest detection still poses significant challenges [1]. Especially in forestry, due to
the complexity of the forest environment, many technologies cannot be deployed smoothly
in it. Forests are a crucial component of the Earth’s ecosystem and play a vital role in
maintaining biodiversity, producing oxygen, storing carbon, mitigating climate change,
regulating water cycles, preserving water resources, conserving soil, and supporting socio-
economic development in human societies [2]. However, various forest disasters, such
as forest fires and pests, pose significant threats to the health of forest ecosystems. Pest
infestations are particularly difficult to avoid and control for artificially planted trees in
cities because pests frequently burrow into the bark layer of trees, making it challenging
to see visual indicators on the surface of the trees. The infestation is only obvious when
plants or certain plant sections start to die or display exterior damage. Therefore, detecting
pest activity inside tree trunks has become a critical issue.
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Thermo Sanace proposes that field X-ray monitoring of vital activity of wood-boring
insects is very robust and ineffective compared to the acoustic method, which seems like
a much better solution [3]. Analyzing the vibration signals produced by insects feeding
within tree trunk to differentiate whether the tree is infested or not is a highly effec-
tive acoustic detection method. The general procedure typically involves the following
steps: sensor installation, data acquisition, data analysis, and result interpretation. The
development of acoustic detection methods for wood-boring insects started decades ago.
Acoustic/vibrational methods of detecting wood-boring larvae have been investigated over
the last three decades and are reviewed in many publications [4]. Many practical ways have
been developed. Farr and Chesmore use signal features in the time domain (durations of
pulse segments between zero-crossings) with neural network processing [5]. Mankin et al.
attempted to utilize both spectral and temporal features simultaneously [6]. Bilski et al. pro-
posed a method that uses time-domain-defined features for classification. They employed
support vector machines (SVMs) as binary classifiers to evaluate the effectiveness of termite
detection through acoustical analysis enhanced by artificial intelligence algorithms [7].
However, vibration signals are typically low and subjected to masking by incidental noise
of a biotic and abiotic origin [8], which will significantly reduce the detection accuracy.
Therefore, in order to enhance the accuracy of data analysis and achieve rapid localization
of pest infestation, we will employ machine learning techniques to enhance the vibration
signals. Our research focuses on achieving a lightweight enhancement model. The pur-
pose of lightweight is to enable the model to be deployed in complex and harsh outdoor
environments. This approach allows us to leverage the power of data-driven techniques
to improve the performance and reliability of our vibration signal enhancement process.
In addition, another focus of our research is to apply pruning techniques to the vibration
signal enhancement model. By reducing the number of parameters while maintaining
the model’s performance, we aim to improve the model’s inference speed and suitability
for deployment on edge devices in harsh forest environments. Our research lays a solid
foundation for future model deployment in such edge devices.

Sound signals and vibration signals are closely related concepts at the physical level,
as they both involve the vibration of objects or mediums, and they can all be described
by frequency and amplitude. The difference is that the sound signal is acceptable and
interpretable by the human auditory system, while the vibration signal is not necessarily
related to human hearing. The vibration signals used in this study are generated by insects
feeding in the tree trunk, it is essentially a sound signal, which is collected by a sensor
and saved as audio data, reaching a level that the human auditory system can hear. Many
researchers have held the same view and applied sound signals processing methods to
vibration signals in their research. For example, Sun et al. [9] applied keyword spotting of
speech recognition technology to the vibration signal recognition of two pests, Semanotus
bifasciatus and Eucryptorrhynchus brandti. Speech enhancement techniques aim to improve
the quality of speech signals by reducing noise, echoes, and other factors, making the speech
clearer and more intelligible. Given the analysis provided, it is plausible that vibration
signals could also benefit from similar speech enhancement techniques. Applying such
techniques to vibration signals could enhance their quality and reduce unwanted noise,
which will help us get more information from vibration signals.

Speech enhancement technology has developed rapidly in recent years. Inspired by
the concept of time-frequency masking in computational auditory scene analysis, speech
enhancement has been defined as a supervised learning task [10,11]. With the advancement
of deep learning, numerous data-driven algorithms have been developed, greatly benefiting
supervised speech enhancement techniques [12]. Currently, various network models
have been applied in the field of speech enhancement, including deep neural networks
(DNNs), recurrent neural networks (RNNs), convolutional neural networks (CNNs), and
U-Net neural networks. Wang et al. pioneered the application of deep learning to speech
enhancement tasks. They utilized DNN to estimate the ideal binary mask (IBM), which
directly maps the noisy speech signal to the clean speech signal [13,14]. However, DNNs
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suffer from challenges such as a large number of parameters and the inability to utilize
contextual information effectively. Weninger et al. addressed the limitations of DNNs by
using RNNs to model contextual information [15]. They further employed Long Short-Term
Memory (LSTM) artificial neural networks to approximate the speech signal [16]. However,
RNNs have drawbacks such as long training times, large network sizes, and difficulties
in parallelization for efficient processing. Park et al. proposed an enhancement model
based on CNNs, which effectively utilizes temporal correlations by inputting preceding
frames of noisy speech signals to predict the current clean speech signal [17]. To address
the limitations of traditional CNN models, such as limited receptive fields and weak
contextual modeling capabilities, Rethage et al. introduced dilated convolutional neural
networks (DCNNs) to improve the performance of speech enhancement [18]. After Google
first proposed Transformer in 2017 [19], Transformer has achieved great success in image
segmentation [20], natural language processing [21], and speech recognition [22]. These
studies and applications show that Transformer has powerful capablities of parallelization,
generalization, and capturing long-term dependencies. Recently, Transformer has been
widely used in speech enhancement [23–25]. We can expect further advancements and
refinements in utilizing the Transformer for speech enhancement tasks. It further inspired
us to apply Transformer to the vibration signal enhancement model.

On the other hand, the compression and optimization of the model are also mean-
ingful. With the advancement of deep learning technologies, the scale of neural networks
has significantly increased. For instance, LeNet-5 contains approximately 60,000 parame-
ters [26], and GPT-3 has 175 billion parameters [27]. A larger number of parameters means
that the model requires more computing and storage resources. Several research areas have
emerged to address the above issues. Quantization methods employ various techniques
to reduce the number of bits required to represent CNN parameters and reduce the total
computational bandwidth [28–30]. Factorization methods are used with different encoding
techniques to obtain simplified models without loss of accuracy [31]. Hinton et al. proposed
knowledge distillation in 2015 [32]. Among them, pruning is one of the most popular and
effective model compression methods, the weight with the smallest saliency will be pruned,
and the remaining weights are fine-tuned to regain the lost accuracy. Through the pruning
method, parameters, computation and memory consumption can be reduced. Furthermore,
pruning has the advantage of increasing the speed of the training and inference stages
in both GPU and CPU [33,34]. Therefore, pruning is our first choice for compressing the
lightweight vibration signal enhancement model.

In this work, the object of our study are the emerald ash borer (EAB) and the small car-
penter moth (SCM). The emerald ash borer, Agrilus planipennis Fairmaire, 1888 (Coleoptera:
Buprestidae), is a major pest of ash, distributed in Heilongjiang, Jilin, Liaoning, Tianjin,
Hebei, Shandong Provinces and Inner Mongolia, Xinjiang Autonomous regions in China.
The small carpenter moth, Holcocerus insularis Staudinger (Lepidoptera: Cossidae), is a
important boring pest that damages many tree species in China. In the larvae stage, EAB
and SCM have similar behavioral characteristics,they bore into the trunk to feed and cause
damage to the trees, the difference is that EAB mainly feed on the phloem of trees, but SCM
mainly feed on the xylem. There are no apparent symptoms from the outside, and when the
larvae drill into the bark, conventional control measures are difficult to be effective [35,36].

At present, some commonly used methods to control EAB include:creating mixed
stands of ash and other tree species to reduce the diffusion rate of EAB, protecting natural
enemies of EAB, such as woodpeckers, etc., and cutting down infested dead trees. As
for SCM, removing infested trees remains the most practical control measure. But these
methods have limited effectiveness in controlling EAB larvae and SCM larvae. Therefore,
collecting the borer vibration signal of their larvae is a more effective method for detection.
In this paper, we draw on speech enhancement technology and propose a lightweight
vibration signal enhancement model to enhance the vibration signal of EAB larvae and
SCM larvae when they are feeding on trees to improve detection efficiency. This lightweight
model is based on a convolutional recurrent network (CRN) and has the benefits of the
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Transformer model. The core content of CRN is using CNN for feature extraction and
then passing the extracted features to RNN for sequence modeling, which allows CRN to
process various spatiotemporal sequence data. Transformer is a neural network architecture
based on the encoder-decoder structure. Its core is the self-attention mechanism, which
can capture long-distance dependencies in sequence data. The introduction of multiple
self-attention mechanisms helps to improve the representation of the model, which makes
Transformer have excellent performance in processing sequence data. Compared with tra-
ditional RNN, Transformer has better generalization ability. We use a multi-head attention
mechanism to replace a part of RNN for intra-block processing with fewer parameters,
less computation, and better vibration signal enhancement. In addition, we use a dynamic
pruning algorithm based on sparsity to compress the model, reducing the number of pa-
rameters while keeping the model performance unchanged, making it more streamlined
and effective. Model compression is significant for further deploying the model in edge
devices in the forest for real-time detection of trunk borers.

2. Materials and Methods
2.1. Struct of Lightweight Vibration Signal Enhancement Model

The lightweight vibration signal enhancement model is a type of Transformer model
based on convolutional recurrent network (CRN), which consists of an encoder, a decoder,
and a processing block. Before the input data is fed into the model, it undergoes a short-
time Fourier transform (STFT), which plays a crucial role in enhancement models as it
provides a representation of the signal in the time-frequency domain. It enables operations
such as spectral processing, feature extraction, and time-domain reconstruction, leading to
improved quality and clarity of the signal [37]. The inverse short-time Fourier Transform
(iSTFT) is applied to the model’s output data to restore the original time-domain signal.
Figure 1 shows the overall structure of the model.

Figure 1. The overall structure of the model. S is the original vibration signal with noise. Ŝ is the
signal enhanced by model. Use a skip connection between the corresponding encoder and decoder.
The real-part decoder and imaginary-part decoder are used to reconstruct the real and imaginary
parts of the spectrum, respectively.

The intra-block RNN is used to compute the relevance between frequencies, in contrast,
the inter-block RNN is used to model the temporal dependencies of specific frequencies [38].
A multi-head attention (MHA) mechanism [19] replaces RNN for intra-block processing in
CRN to achieve a more iterpretable model.At the same time, time domain information is of
little significance for enhancement, so we still use inter-block RNNs. Because pure attention
modules cannot capture the order of the input sequence, the inclusion of positional encod-
ing is essential in the context of Transformer models. Researchers have developed multiple
methods of positional encoding, such as absolute positional encoding [39], triangular po-
sitional encoding [19], recursive positional encoding [40], XLNET-position encoding [21],
complex-number positional encoding [41]. Among them, triangular positional encoding
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has an explicit generation pattern and some extrapolation properties. We add triangular po-
sitional encoding in the intra-frame multi-head attention to encode positional information.
Figure 2 shows the detailed of the intra and inter block.

Figure 2. The detailed structure of the processing block. C dimensional local features are extracted by
the encoder for every bin in the signal spectrogram. F′ denotes the frequency dimension compressed
by the convolutional encoder. T denotes the time domain.

After each MHA block is a fully-connected (FC) layer and an instance normaliza-
tion (IN) layer, the MHA blocks are permuted and placed in the inter-block. Use a long
short-term memory (LSTM) in the inter-RNN block. To facilitate information flow, skip
connections are established between multi-head attention mechanism block, as well as the
inter-block.

The core of the MHA block is the self-attention mechanism. In the implementation
of the self-attention mechanism, a set of key-value pairs (K and V) is used to record the
learned information and get the attention output through querying Q. Figure 3a shows
the implementation process of self-attention mechanism. Firstly, calculate the similarity of
Q and K to obtain the weight, and divide it by dk (k represents dimension) in the scaling
layer to adjust the scaling, control the inner product not to be too large, and use the softmax
function to normalize the similarity weight, in the end, the V and corresponding normalized
weight are weighted and summed to obtain the final output. The self-attention mechanism
is defined as:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V, (1)

the self-attention mechanism can dynamically generate different continuous weights to
process variable-length information sequences.

The MHA block is shown in Figure 3b, it is essentially a collection of H self-attention
mechanisms and a feed-forward network (FNN). All of them focus on the same Q, K, and V,
but each module only corresponds to a subspace of the final output sequence. The output
sequences are independent of each other, which enables the multi-head attention mecha-
nism to simultaneously focus on different information in different position representation
subspaces. When implementing the MHA, the weight parameters W of each group of Q, K,
and V are different, as shown in Formula (2), by introducing different weights, the MHA
can learn more information in the representation subspace. Then calculate the self-attention
mechanism for each group of Q, K and V, connect the output results, and multiply by a
weight vector WO (as shown in Formula (3)) to get the output of the multi-head attention.

Headi = Attention(QWQ
i , KWK

i , VWV
i ) (2)
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Multihead(Q, K, V) = concat(head1, head2, ..., headH)WO (3)

The feed forward network is used to enhance the nonlinear ability of the model:

FFN(x) = max(0, xW1 + b1)W2 + b2 (4)

Figure 3. Schematic diagram of attention mechanism. (a) Self-attention mechanism. (b) The multi-
head attention block.

2.2. Loss Function

The loss function we used in the model training process refers to the loss function
used in [42]: scale-invariant source-to-noise ratio (SI-SNR), which is often used instead of
the mean square error as the evaluation index. Different from traditional source-to-noise
(SNR). SI-SNR considers the scaling invariance of the signal, and it is insensitive to the
amplitude scaling of the signal. This is very important for the speech signal separation task
since the enhanced signal may have different amplitudes compared to the original signal.
SI-SNR is defined as: 

St arg et =

〈
Ŝ, S
〉
S

‖S‖2 ,

enoise = Ŝ− St arg et,

SI-SNR = 10log10

∥∥St arg et
∥∥2

‖enoise‖2 .

(5)

where Ŝ is the signal that enhanced by model, S is the clean signal, and ‖S‖2 indicates
the calculation of its l-2 norm.

〈
Ŝ, S
〉

indicates that the elements are multiplied and then
summed. Since the larger the value of SI-SNR, the better the signal quality, and the gradient
descent is used to train the model during the training process, so the definition of the actual
loss function loss takes the reciprocal of SI-SNR.

2.3. Pruning Algorithm
2.3.1. Sparsity Measure

We incorporated pruning techniques into the training process of the vibration signal
enhancement model. The purpose of pruning is to reduce the number of model parame-
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ters and improve inference speed while maintaining the model’s performance relatively
unchanged. Research in recent years has concluded that if the model is over-pruned, it
will lead to a significant decline in model performance and even lead to performance
collapse [43]. Another widely accepted theory is that neurons with small weights in neural
networks are considered redundant or have no influence. Therefore, how to measure the
compressibility of the model has become a topic of concern. To put it simply, how to find a
sub-network in a large network that has the same performance as the original network?
We need a sparsity measure of neural networks to guide the pruning.

The l-0 norm is often used as a hard indicator to measure the sparsity of a tensor.
However, in practical applications, there are many elements with small values but not
zero in the tensor, so it has limitations if this shard indicator is applied to pruning. Zhou
et al. used the norm ratio as a sparsity measure in [44]. So we choose the ratio of the l-p
norm and l-q norm (0 < p < q) to measure the sparsity of a tensor. They both have a
sparsity-promoting effect. On the other hand, for the l-a norm (a > 0) of the same tensor,
they are homogeneous, so the ratio is also invariant to the scale of the sparsity measure
of the tensor. In addition, inspired by the root mean square error (RMSE) [45], a constant
is introduced before the ratio. With reference to two norms and Hölder’s inequality, we

chose the constant d
1
q−

1
p (d is the dimension of the tensor). This additional scaling constant

can make the sparsity measure independent of the length of the vector. Introducing this
coefficient can make this sparsity measurement method applicable to neural network
models with different parameters, facilitating iterative pruning.

So according to the above, for a tensor T, T = [t1, t2, t3, . . . , td], ‖T‖p = (∑d
i=1 |ti|p)

1
p is

the l-p norm of T, we define a sparsity measure S(T), which the larger the value, the higher
the sparsity. S(T) is defined as:

S(T) = 1− d
1
q−

1
p
‖T‖p

‖T‖q
. (6)

Here are some simple validations of Formula (6): assume a dense tensor T, for any
d (d > 0), td = c, and c is a non-zero constant, obviously we can calculate that S(T) = 0.
The opposite case is that only one element is a non-zero constant c and all other ele-

ments are 0. We can calculate that S(T) = 1− d
1
q−

1
p . Then it can easily bu deduced that

0 < S(T) < 1− d
1
q−

1
p , and larger S(T) indicates a sparser tensor.

Then, based on the sparsity measure S(T), we can derive a lower bound on how
tensors can be compressed by pruning. Assume that Mr is the set of the r elements with
the larger weight in the tensor T, and k is a constant that satisfies the following conditions:

∑i/∈Mr
|ti|p ≤ k ∑i∈Mr

|ti|p, (7)

According to Hölder’s inequality (0 < p < q) we can get:

‖T‖q ≤ ‖T‖p ≤ d
1
p−

1
q ‖T‖q (8)

Combining inequalities (7) and (8) we can get the following derivation process:

‖T‖p = (∑d
i=1 |ti|p)

1
p
= ( ∑

i∈Mr

|ti|p + ∑
i/∈Mr

|ti|p)
1
p

≤ ( ∑
i∈Mr

|ti|p + k ∑
i∈Mr

|ti|p)
1
p = (1 + k)

1
p ( ∑

i∈Mr

|ti|p)
1
p

≤ r
1
p−

1
q (1 + k)

1
p ( ∑

i∈Mr

|ti|p)
1
p ≤ r

1
p−

1
q (1 + k)

1
p ‖T‖q

(9)
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Substituting S(T) into the inequality (9) and rearranging the inequality gives:

r ≥ d(1 + k)
−q

q−p [1− S(T)]
qp

q−p , (10)

The lower bound of pruning can be obtained according to the S(T) and the constant k.

2.3.2. Dynamic Pruning Algorithm Based on Sparsity

Frankle and Cabin proposed the famous lottery ticket pruning algorithm [46]. They ar-
gue that when a model possesses a certain degree of sparsity, over-parameterized networks
can be effectively pruned, reinitialized, and retrained. They also propose that training
from a randomly initialized set of parameters yields a network with superior performance
compared to training from scratch. The dynamic pruning algorithm based on sparsity is
inspired by these two points of view proposed by the lottery ticket pruning algorithm. The
following is a description of the algorithm flow. Before the pruning starts, the parameters
of the network model are randomly initialized, and at each iteration, we start training the
network from the initialized parameters. We represent it using Winit. At the same time,
before the iteration starts, a pruning mask m0 is initialized with all ones, which means
that on the first iteration, we will keep all the parameters for the full training of the model.
The advantage of using the mask to perform multiple iterations of pruning is that it will
not cause too much damage to the performance of the network, pruned parameters may
be freed in subsequent iterations until the end of the final iteration to produce the most
suitable mask. For each iteration i = 0, 1, 2, 3, ...I, we can get model parameters W̃i and the
number of parameters Ni, they can be computed as follows:

W̃i = Winit �mi, Ni = |mi| (11)

in each iteration, we use mi to freeze the gradient and train the model from W̃i, after training
for E epochs we obtain the model parameters Wi. Now it’s the time to prune the model, but
a fixed pruning rate may result in under-pruned or over-pruned, an under-pruned model
requires more iterations and more computing resources to obtain a better small neural
network, while an over-pruned model cannot maintain the expected performance. So we
computed S(Wi) then calculate the lower bound ri of the parameter size of the pruned
model according to Formula (10):

ri = d(1 + k)
−q

q−p [1− S(T)]
qp

q−p , (12)

then we compute the number of pruned model parameters ni:

ni = Ni ·min(1− ri
Ni

, α) (13)

where α is the maximum pruning ratio, we set α = 0.9 to prevent over-pruned. Finally,
we use these computations to prune the model and create a new mask mi+1 for the next
pruning iteration. Model parameters Wi and mask mi are saved in each iteration. Figure 4
is the schematic diagram of the complete flow of the algorithm.
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Figure 4. The schematic diagram of the complete flow of the algorithm.

3. Collection and Preprocessing of Dataset

The collection of EAB larvae’s boring vibration signals started on 23 July 2021 and
ended on 27 July 2021. Firstly, under the guidance of professional foresters, we selected
several trees infested with EAB larvae from a forest farm in Tongzhou, Beijing, and then
cut the trunks into equal-length segments. To ensure data diversity we selected trees in
different conditions, including living, dying, and dead. Finally we got 6 trunk segments
from living trees, 4 trunk segments from dying trees, and 2 from dead trees. We use self-
developed vibration signal acquisition equipment for data collection, which was jointly
developed by Beijing Forestry University and Beihang University. The specific method
of operation is to insert the equipment’s probe into the tree trunk to record the vibration
signals produced by EAB larvae. For each trunk segment, before the collection started, we
monitored the larvae activity using headphones to confirm it was active. The entire data
collection process took place in a quiet experimental environment to ensure the purity of
the original vibration signals.

The collection of SCM larvae’s boring vibration signals started on 29 July 2023 and
ended on 14 August 2023. We selected several trees infested with SCM larvae from a forest
farm in Wangzhuang Village, Shunyi, Beijing, and we got 2 trunk segments from living
trees, 2 from dying trees, and 1 from dead trees. We used the same equipment and methods
similar to the collection process of EAB dataset. The difference is that when collecting SCM
data, the probe is inserted deeper, because SCM larvae mainly feed on the xylem of trees.

To ensure the accuracy of the data, we took several measures throughout the data
collection process:

• We carefully calibrated and tested our vibration signal collector to ensure its reliability
and accuracy in capturing the signals. We also followed strict protocols during the
data collection, ensuring consistent placement of the probes and maintaining stable
recording conditions.

• We cross-validated the collected data by conducting multiple rounds of data collection
for each tree segment. This helped to minimize any potential variability or outliers in
the dataset.

• The visual inspection of the larvae inside the tree trunks served as an additional
validation step, which means after data collection, we peeled off the bark under the
guidance of the forestry personnel and directly observed EAB larvae and SCM larvae
inside the trunk.
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Overall, by implementing rigorous procedures, we took the necessary steps to ensure
the accuracy and reliability of the dataset. The data of EAB and SCM are independent of
each other and form their own data sets. Figure 5 shows some photos taken during the
dataset collection process.

Figure 5. Some photos taken during the dataset collection process. (a) Collection of EAB dataset.
(b) After the collection was completed, the bark was peeled off to see the active EAB larvae, which
was marked with a red circle in the figure. (c) Collection of SCM dataset. (d) Same as figure (b), we
can clearly see the SCM larvae inside the trunk. (e) Insert the probe of the equipment into the tree
trunk during data collection in a real forest environment. (f) The researchers monitored the larvae
activity using headphones to confirm it was active.

After obtaining the raw dataset, we performed basic preprocessing using manual
methods. Due to the need for staff to start and shut down the equipment during the collec-
tion process, some environmental noise will inevitably occur, especially at the beginning
and end of the audio. And the larvae won’t always eat the tree, so there will be some
noticeable blank periods. These audio segments and other obviously noisy segments will
be removed during dataset preprocessing.

In addition, we collected a series of different environmental noises to generate noisy
vibration signals. This is a commonly used method in the field of speech enhancement,
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which combines ambient noise with clean voice, and the datasets of EAB and SCM use
the same environmental noise. This approach creates a dataset that mimics real-world
scenarios. In order to do this, we chose some places similar to the forest environment,
four of the selected locations are at Beijing Forestry University and one is at the Beijing
Olympic Park. We use the same equipment and measures as for collecting vibration signals.
We preprocess these noise signals similarly to pure vibration signals, discarding blank
segments that do not contain noise, which can ensure efficient model training.

After completing the preprocessing, we divide the vibration signal and environmental
noise into small segments of 3 s. In order to generate the vibration signal with noise in the
training set, we divide 90 percent of the pure vibration signal segments and environmental
noise segments according to different signal-to-noise ratio is mixed, and the remaining
10 percent of the vibration signal and environmental noise are also mixed according to
same SNR as a test set. And during the training process, we use 5 percent of the training
set data for verification. The total duration of the EAB training set is about 22 h, and the
total duration of the EAB test set is about 2.5 h. As for the SCM dataset, they are 27 h and
3 h respectively.

4. Experiment
4.1. Experimental Setup

For vibration signal enhancement model, we choose Hanning window in the STFT,
and the window length is 25 ms, which leads to the dimension of the frequency feature of
the input network being 601, so the size of the model input is (1, 601, 161, 2). Regarding the
pruning algorithm, we set up four different experiments to verify the feasibility and effec-
tiveness of combining the pruning algorithm and lightweight vibration signal enhancement
model. We use three pruning algorithms, the first is the one-shot (OS) pruning, the specific
content is after the model training is completed, the model will be pruned according to
the importance of neurons and then fine-tuned to obtain the final compressed model. The
second is the lottery ticket pruning algorithm (LTP), and the third is the dynamic pruning
algorithm based on sparsity (DPAS) introduced above. Among them, the lottery ticket
pruning algorithm is used as the baseline in terms of the pruning effect. We set a fixed
pruning ratio of 0.1 in LTP. We set p = 0.5 and q = 1 in DPAS, and we chose k = 0. We
do 15 iterations of pruning on both LTP and DPAS. The processor of the hardware used to
train the model in our experiments is 11th Gen Intel Core i7-11700 with 16 GB memory, and
the graphics card is NVIDIA TITAN RTX. In addition, we use another platform to test the
model’s performance. The processor of this platform is AMD Ryzen 5 5600U with Radeon
Graphics with 16 GB memory.

4.2. Evaluation Metrics

Our model is used to enhance vibration signals and does not involve human auditory
perception, therefore, evaluation indicators such as perceptual evaluation of speech quality
(PESQ) are not suitable for this model. We use signal-to-noise ratio (SNR) and log-likelihood
ratio (LLR) when evaluating model performance. SNR is an indicator used to measure the
relative strength between signal and noise. A higher SNR means that the signal has higher
clarity and higher quality. The LLR represents the ratio of the energies of the prediction
residuals of the enhanced and clean signals, a higher LLR generally indicates a clearer
signal For assessing the effect of the pruning algorithm, we mainly compare the parameters
of the model after pruning and the inference time on the CPU. The number of parameters
can intuitively reflect the model’s size, and small models are easier to deploy on embedded
edge devices in the forest. The inference time can reflect the performance and efficiency of
the model, a model with a shorter inference time consumes fewer computing resources and
is conducive to the real-time enhancement of the vibration signal to detect the pests more
quickly. The computational methods of SNR and LLR are shown as following formulas:
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SNR = 10log10
∑N−1

n=0 v2(n)

∑N−1
n=0 (v2(n)− v̂2(n))

(14)

LLR(sx, sx̂) = log
s̄T

x̂ Rx s̄x̂

sT
x Rxsx

(15)

In the formula of SNR, v represents the clean vibration signal, and v̂ is the enhanced
vibration signal. N is the number of samples. In the formula of LLR, sT

x is the LPC (Linear
Predictive Coding) coefficients of the clean signal, s̄T

x̂ is the LPC coefficients of the enhanced
signal, and Rx is the auto-correlation matrix of the clean signal. We use some library
functions in Python to obtain the number of parameters and record them in each pruning
method and each iteration. The timestamp is used to calculate the inference time of the
model when the inference program is executed.

4.3. Details of Experiments
4.3.1. Experiment I

In the experiment I, we fully trained the lightweight vibration signal enhancement
model using the EAB dataset and the SCM dataset respectively. We tested the performance
of the model under different SNR conditions according to the above evaluation metrics.
We use this model as a baseline and original model in terms of model performance.

4.3.2. Experiment II

In the experiment II, we use DPAS, LTP, and One-Shot to compress our models
respectively and compare the results of different pruning algorithms. The lottery ticket
pruning function will judge whether to continue pruning at the end of each iteration, to
make it possible to complete 15 iterations, we expand the constraint range of performance
degradation a little. Otherwise, it will end the iteration early. Then we will compare the
compressed model with the original model.

4.3.3. Experiment III

To futher demonstarte the advantages of our method, we compare this method with
the results of similar previous studies, including Dual-Vibration Enhancement Network
(DVEN) [47], VibDenoiser [48], and the Time-domain Conformer-based Enhancement
Network for Vibration (T-CENV) [49]. We use the EAB dataset to compare our method with
these three models according to three metrics, including parameters of model, infertime
and enhancement performance.

4.3.4. Experiment IV

In this experiment, we compare the detection accuracy of noisy vibration signals
and vibration signals enhanced by our model on two well-known classification models:
EcapaTDNN [50] and ResNetSE. We use the same dataset source as the vibration signal
enhancement model to train the classification model, which contains 2995 signals from
infested trees and 1426 from uninfested trees. The classification labels are infested and
uninfested. We use the non-enhanced noise vibration signal and the enhanced vibration
signal for classification under different signal-to-noise ratios.

5. Results
5.1. Results and Analysis of Experiment I

Table 1 shows the specific test results of EAB dataset, and Table 2 shows the results of
SCM dataset.

From Tables 1 and 2, we can see that the performance of the models using the EAB
dataset and the SCM dataset is almost same. We believe this is because the boring vibration
signals of different trunk borers are similar, which also illustrates the general applicability
of our method to the detection of different trunk borers. In the subsequent discussion of
results, we mainly focus on the model trained using the EAB dataset. The number of model
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parameters without pruning is only 0.88 M. We have achieved a good enhancement effect
on vibration signals with very few parameters.

Table 1. The enhancement performance of lightweight vibration enhancement model using EAB
dataset under different SNR conditions.

Metrics 0 dB −2.5 dB −5 dB −7.5 dB −10 dB Average

SNR 16.8637 15.1525 13.5645 11.7643 10.3246 13.5339
LLR 0.0658 0.0762 0.1467 0.2485 0.3478 0.1769

InferTime (s) 1 144.89 148.05 144.26 144.26 146.58 145.61
1 The total duration of the noisy vibration signal used for testing is 1800s. The data in the table shows the time it
takes for all these vibration signals to be enhanced by the model.

Table 2. The enhancement performance of lightweight vibration enhancement model using SCM
dataset under different SNR conditions.

Metrics 0 dB −2.5 dB −5 dB −7.5 dB −10 dB Average

SNR 17.0834 15.4113 13.5786 12.1928 10.3559 13.7244
LLR 0.0681 0.0787 0.1476 0.2550 0.3446 0.1788

InferTime (s) 141.39 149.28 148.44 139.60 147.57 145.25

5.2. Results and Analysis of Experiment II

Form the Figure 6, it can be clearly seen that the DPAS pruning is slow but highly
precise, with almost no decrease in model performance. The LTP shows a clear performance
degradation from the 9th iteration onwards. If the constraint on the allowed decrease in
performance is narrowed down, the LTP will terminate prematurely. The one-shot pruning
reduces the model’s parameters by 40.9%, but further compressing will be very difficult
because it cannot precisely assess the importance of neurons, further compressing may
lead to performance collapse. The results indicate that the LTP is suitable for networks
with higher redundancy, and DPAS is suitable for achieving further and more refined mode
compression. The results also show that our lightweight vibration signal enhancement
model has reached a relatively compact level before it is compressed. The variation curve
of the sparsity in Figure 7 also proves this point.

We selected the model after 15 iterations of DPAS and the model pruned after
8 iterations of LTP, and compared them with the original model. Table 3 is the detailed data.

Figure 6. Comparison of three pruning algorithms. (a) Variation curve of the number of parameters
for each iteration. (b) Variation curve of the value of loss function for each iteration. One-shot pruning
only prunes once, so it is represented as a point in the graph.
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Figure 7. The variation curve of the sparsity S(W) for each iteration of DPAS.

Table 3. Comparison of the model pruned by DPAS and LTP respectively with the original model.

Parameters InferTime (s) Average SNR (dB) Average LLR

Original 884,928 145.61 13.5339 0.1769

DPAS 337,038 113.35 13.1144 0.2899
percentage change 1 −62% −22% −3% +63%

LTP 423,257 119.77 12.1589 0.2978
percentage change −52% −17% −10% +68%

1 Percentage change indicates the change in each evaluation metrics of the model pruned by two pruning
algorithms (DPAS and LTP) compare with the original network.

From Table 3, we can draw a very obvious conclusion: the model pruned by the DPAS
is better, in the case of pruning 62% of the parameters, 22% reduction in inference time,
the SNR only dropped by 3%. So the lightweight vibration enhancement model that com-
pressed by DPAS is our final best choice, we named it as VibEnh-DPAS. Figure 8 shows the
spectrogram and waveform diagram of the vibration signal before and after enhancement.

5.3. Results and Analysis of Experiment III

From Table 4, we can intuitively see that in terms of the number of parameters, our
method reduced by 74.2%, 96.8% and 91.9% respectively compared with these three models.
Regarding inference time, they are reduced by 31.5%, 58.5% and 42.1% respectively. And
the enhancement performance only reduced a little bit, which has almost no impact on
subsequent pest detection accuracy. These data demonstrate that our method is highly
beneficial for model deployment in natural forest environments.

5.4. Results and Analysis of Experiment IV

Figure 9 shows the accuracy of classification based on different data.
It is obvious that the higher the signal-to-noise ratio, the higher the classification

accuracy. The accuracy ofclassification using the enhanced vibration signal is significantly
improved. And similar to the previous comparison results, the model pruned by DPAS
shows minimal reduction in performance when compared to the original model.
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Table 4. Comparison of VibEnh-DPAS with DVEN, VibDenoiser and T-CENV.

Model Param. (M) %∆1 InferTime (s) %∆2 SNR (dB) %∆3

DVEN 1.32 −74.2% 165.6 −31.5% 18.73 −12.3%
VibDenoiser 10.75 −96.8% 273.6 −58.5% 18.57 −11.6%

T-CENV 4.23 −91.9% 195.8 −42.1% 17.84 −7.96%

VibEnh-DPAS 0.34 - 113.4 - 16.42 -
%∆1 is the percentage change of the parameters of VibEnh-DPAS compared to DVEN, VibDenoiser, and T-CENV
respectively. %∆2 and %∆3 are the percentage changes of inference time and SNR respectively.

Figure 8. The spectrogram and waveform diagram of the vibration signal. (a–c) are the spectro-
gram and waveform diagram of the vibration signal before enhancement. (d–f) are the spectro-
gram and waveform diagram of the vibration signal after enhancement. Where (a) corresponds to
(b,d) corresponds to (c,e) corresponds to (f).
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Figure 9. Comparison of classification accuracy on noisy vibration signal, enhanced vibration signal.
The signal was enhanced by the original model, the model pruned by DPAS and the model pruned
by LTP respectively. (a) Classify using ResNetSE. (b) Classify using EcapaTDNN.

6. Discussion

Accurate and timely detection of trunk borers remains a challenging task. A effective
method is to detect trunk borer larvae through the wood-boring vibration signal produced
by the larvae feeding in the trunk. As state in a previous study, environment noise can
be significant and cover the feeble vibrations of wood-boring insects [51], thus having a
negative impact on the detection accuracy. And it is difficult to deploy technology with high
hardware resource requirements in the wild environment. Previous studies have proven
that machine learning-based techniques can be applied to the processing of boring vibration
signals [52]. We propose a lightweight vibration signal enhancement model and use a
dynamic pruning algorithm based on sparsity to compress it to achieve the goal of being
small and compact. We combine the features of convolutional recurrent neural network
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and Transformer, use multi-head mechanism instead of RNN for intra-block processing,
and retain inter-block RNN. To conduct our research, We use self-developed equipment to
collect vibration signals of EAB and SCM larvae while they are feeding in the trees.

To prove the effectiveness and reliability of our method, we conducted some experi-
ments and analyzed the experimental results. Through the comparison of models using
different data sets in Experiment I, we conclude that our model achieves good signal
enhancement effects and has good generalization. In Experiment II, we compared different
pruning algorithms and proved that the DPAS we proposed is more effective. We name
the model compressed using the pruning algorithm VibEnh-DPAS. Our method is char-
acterized by being lightweight and having a small number of parameters, Experiment III
proves this point. Compared with the three methods DVEN, VibDenoiser, and T-CENV, our
method achieves almost the same performance using fewer parameters and faster inference
speed. We tested the effect of the vibration signal enhanced by our method on the detection
accuracy in Experiment IV, results show that our method has significantly improved the
detection accuracy. All these experimental results prove that our method to the problem of
difficulty in early detection of trunk borers is effective and practical.

Our work provides an idea for future real-time detection of trunk borer larvae. For
example, deploying our model onto an enbeded FPGA board (Field Programmable Gate
Array), which is cost-effective, fast in computation, and low in power consumption, but
has limited storage and computational resources [53], and we will also further develop
optimization solutions tailored for FPGA platforms in future. The biggest limitation of
our study is that we only have two datasets. So, the first step in subsequent research is
to enrich our dataset. In this paper, the dataset we used only consists of vibration signals
produced by EAB larvae and SCM larvae feeding in trees because there are scarce datasets
available in the field of pest control that are similar to the one used in this study. Therefore,
expanding our dataset to train a universally applicable model is the top priority. On the
other hand, optimizing the model is also very important. Future models should aim at
fewer parameters, faster inference, and less computing resource consumption, which is of
great significance to the deployment of the model, and will promote the establishment of an
all-round early warning system to protect forest areas everywhere. It is worth mentioning
that this technology can also be used for other types of vibration signal enhancement, such
as pest detection in buildings [54], moth detection inside wooden furniture, etc. With the
continuous development of technology and the improvement of hardware performance,
we believe that our method will be further applied to solve more problems.
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