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Abstract: This study aims to characterize forest cover transitions in North Korea and identify de-
forested areas that are degraded or at risk of degradation. We used phenological information and
random forest classifiers to perform a deforestation classification. We then extracted the two main
forest cover loss patterns, sloping farmland (farmland with slope greater than 6 degrees) and un-
stocked forest (crown cover less than 20%), for the years of 2000, 2010, and 2020. Based on the
deforestation map of each year, we analyzed the deforestation dynamics from 1990 to 2020. Forests
showed decreases in cover by 27% over the 30-year study period and accounted for 41.5% of the
total land area in 2020. Deforestation spread into the core area, which led to severe shrinkage and
fragmentation of forests. Unstocked forest and sloping farmland experienced the highest rates of loss
among the forestland uses and accounted for 48.9% and 39.3% of the total loss over the study period,
respectively. During the study period, 25,128 km2, 5346 km2, and 6728 km2 of forestland was cleared,
degraded, and was at risk of degradation or barrenness by artificial repeated fires, respectively. This
methodological framework provides a valuable template for areas that are difficult to access, and the
deforestation dynamics results can provide a basis for conservation and sustainable management of
forest resources.

Keywords: deforestation; forest degradation; reforestation; sloping farmland; unstocked forest;
random forest classifier; MOD13Q1

1. Introduction

Deforestation has become an important issue in terms of climate change mitigation
and ecosystem services, and its main adverse effects are increased aridity, biodiversity
decline, climate change, and erosion damage [1]. With the growing demand for agricultural
expansion and development in developing countries, deforestation has become the greatest
threat to sustainable development, especially in mountainous areas and developing coun-
tries [2,3]. Moreover, repeated deforestation and forest land use, along with abandonment,
negatively affect the environment and lead to extreme forest degradation [4].

In North Korea, deforestation is a major threat to current and future ecological security.
Ecosystem services from forests in North Korea have decreased dramatically due to severe
deforestation [5]. Unstocked forests and sloping farmland are the two main types of forest
cover loss transitions. Sloping farmland in North Korea is defined as forest with slopes
greater than 6 degrees that have been transformed into farmland to produce crops, while
unstocked forest is defined as forest that has been denuded or presents crown cover less
than 20% caused by logging or artificial forest fires [6]. The two main transitions are caused
by recurring man-made fire disturbances, crop production, and fuel logging. Large areas of
sloping farmland are observed when large tracts of forestland are converted to farmland.
Moreover, continuous cultivation and lack of sustainable farming practices lead to a decline
in soil fertility and productivity and a subsequent loss of vegetation cover. Instead of
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implementing sustainable farming techniques or land regeneration, farmers often choose to
abandon degraded plots and cultivate new areas, and by repeating this process they ignore
the ecological capacity of the land to recover. As a result, sloping farmland in North Korea
that was created by sacrificing forest ecosystems is unsustainable. Furthermore, soils in
once-forested areas have lost their ecological function and resilience, resulting in widely
distributed denuded slopes [7].

Due to its mountainous terrain, North Korea is already highly vulnerable to natural
disasters, and its depleted forests show exacerbated soil erosion and poor water retention.
These factors have significantly increased the risk of extreme weather events, such as flash
floods and landslides [8,9]. Deforestation has played a major role in the environmental
degradation of North Korea. The combination of natural disasters, extreme weather events,
and deforestation, and the resulting soil loss have created an unsustainable environment.
In addition, North Korea is an important location in the ecological network of Northeast
Asia and plays a vital connecting role on the Korean Peninsula. To systematically prioritize
restoration and planning efforts, the regional forestland use characteristics and spatial and
temporal deforestation changes must be better understood [10].

Deforestation has been a major global concern due to its significant impact on bio-
diversity, climate change, and ecosystem services [11]. Remote-sensing (RS) techniques
have emerged as valuable tools for monitoring and characterizing deforestation patterns at
various scales. Several remote-sensing-based techniques have been explored to map and
monitor deforestation. These include supervised and unsupervised classification meth-
ods [12], object-based image analysis (OBIA) [13], and machine learning algorithms [14,15].
These approaches utilize spectral, spatial, and textural information to identify deforestation
patterns, distinguish forest cover types, and detect changes over time. Additionally, the
use of Synthetic Aperture Radar (SAR) data has shown promising results in overcoming
limitations related to cloud cover and illumination conditions [16,17]. Beyond deforestation
detection, RS techniques have contributed to assessing forest degradation. This includes
the estimation of canopy cover loss [18], biomass reduction [19], and fragmentation anal-
ysis using RS-derived metrics [20]. Through the integration of RS with field data and
ground-based measurements, researchers have been able to quantify the ecological impacts
of deforestation and highlight areas at high risk of degradation.

Remote-sensing technology has revolutionized the field of environmental monitoring,
particularly in land use and deforestation analysis. However, when it comes to North
Korea, remote-sensing-based classification of land use or deforestation encounters specific
limitations due to limited ground truth information. Previous studies have explored the
use of remote-sensing techniques to map land use in North Korea. This involves analyzing
satellite imagery to classify and identify different land cover types [21,22], such as forests,
agricultural lands, urban areas, and water bodies [23]. Researchers have utilized time-series
remote-sensing data to detect and monitor land use changes in North Korea. By comparing
multiple images acquired over different time periods, identify areas where land cover
has transformed, providing insights into patterns of urbanization, deforestation [24], and
agricultural expansion [25]. However, they only examining forest area dynamics did not
account for the different categories of forest cover, low level types.

Confusing data on vegetation cover types represent a major problem when working
with single remotely sensed datasets in North Korea. Thus, limitations arise because a
single image can only provide limited information and may not capture the full complexity
and variability of vegetation types. In addition, different vegetation types may have similar
spectral responses, which increase the difficulty of accurately classifying such vegetation
based on a single image. Additionally, classification accuracy may be affected by various
factors, such as cloud cover, image acquisition time, and vegetation phenology variations.
In the case of North Korea [5,22], land cover maps can classify broad categories, such as
built-up land, forestland, farmland, and open water. However, more detailed and specific
land classifications, such as sloping farmland and unstocked forestland, require higher-
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resolution or multitemporal images as well as supportive in situ data for validation to
determine the types of deforestation or degradation.

Since 2001, North Korea has attempted to restore forests with continuous reforestation
plans; however, the restoration efforts have been inefficient [26]. Understanding the spatial
and temporal changes in deforestation is a key requirement for managing ecosystem
services and forest restoration [10,27]. The objectives of this study are to (1) propose a
strategy for effectively extracting the two main types of forest cover loss, namely sloping
farmland and unstocked forest, through the utilization of remote-sensing data; this strategy
will provide a valuable tool for accurately quantifying and monitoring the extent of forest
cover losses; (2) clarify the spatial and temporal distribution of the two types of forest cover
loss; by analyzing these patterns, we can enable more targeted and informed conservation
and management efforts; and (3) identify areas currently experiencing degradation as
well as those at risk of degradation. By identifying these vulnerable regions, appropriate
interventions and strategies can be developed and implemented to mitigate further forest
cover loss and promote sustainable practices. In summary, the overarching purpose
of this study is to provide insights and tools that contribute to the conservation and
sustainable management of forest resources through accurate identification, understanding,
and prevention of forest cover loss and degradation.

2. Materials and Methods
2.1. Study Area

North Korea is located in the north of the Korean Peninsula in East Asia, bordered
by China and Russia to the north and South Korea to the south. North Korea covers an
area of 123,354 km2 (Figure 1). In total, 64% of the land area is sloping land with a slope
greater than 6 degrees. Owing to the long-standing tectonic movements, erosion, and
sedimentation, the topography is characterized by mountain areas, plains, valleys, coasts,
and plateaus. Mountains with high elevations are concentrated in the north and east,
whereas flat fields are mainly distributed on the west and south coasts. In North Korea,
forestland and pasture areas have generally decreased and agricultural land, especially
farmland on slopes, has increased in most areas. These changes are part of North Korea’s
policies, and the proportion of agricultural land is expected to increase until the 2030s.
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Two main types of forest cover transitions are observed in North Korea: sloping
farmland and unstocked forest. Sloping farmland is forestland with slopes greater than
6 degrees that was transformed into fields for cultivation. Once these sloping farmlands
lose their productivity, they are left unmanaged and abandoned to form unstocked forest.
Unstocked forest is a category of suitable forest land that has been cleared by logging or
other causes and has not grown trees for a long time. Unstocked forest in North Korea
usually occurs when sloping farmland is abandoned or after repeated artificial forest fires
or logging. Therefore, the primary vegetation cover in forest land in North Korea is sloping
farmland, unstocked forests, natural forests, and plateau areas.

2.2. Data Collection
2.2.1. Satellite Imagery

A reference forest cover map was required to identify sloping farmland and unstocked
forests. Forests during the 1990s were selected as the reference and classified because the
forests in North Korea exhibited a noticeable decreasing trend beginning in this period
because of the local policy [28]. All images from the early 1990s with cloud cover less than
5% for 12 Landsat scene tiles covering North Korea were selected. All Landsat images were
atmospherically corrected (Table 1). The scale was unified to 250 m to compare forest areas
in the 1990s and other years.

Table 1. Information of remote-sensing data.

Years Remote-Sensing Products Tiles Acquisition Date/Day of Year (DOY)

1990s Landsat TM5
(30 m)

115/030; 115/031; 115/032;
115/033; 116/031; 116/032;
116/033; 116/034; 117/031;
117/032; 117/033; 118/032

3 July 1994; 3 July 1994; 3 July 1994;
12 August 1991; 28 May 1993; 20 May 1993;

2 June 1992; 2 June 1992; 27 May 1993;
27 May 1993; 1 June 1992; 15 September 1990

2000
MOD13Q1 (250 m)

NDVI, NIR, MIR band
H27V04; H27V05; H28V05 DOY 065~305

2010
2015
2020

Since a single image can only provide limited information, it may fail to capture the
complete complexity and variability of vegetation types. Moreover, Landsat images are
affected by cloud cover, limiting the availability of cloud-free images for certain regions or
periods. The coverage of North Korea provides limited image data with cloud cover below
5%. Additionally, these data are predominantly available during late autumn or winter,
rendering it impossible to extract pertinent vegetation information.

To obtain the phenological characteristics of each type of vegetation, we used the
Moderate Resolution Imaging Spectroradiometer (MODIS) MOD13Q1 product acquired
from the USGS Earth Explorer. We used the Normalized Difference Vegetation Index
(NDVI), band2 (NIR band), and band 7 (MIR band) from the product, which are related
to plant growth and soil water, to distinguish the unique growth cycle. Considering the
growth cycles of vegetation in North Korea, we used the product from March to October in
2000, 2010, and 2020 (Table 1).

2.2.2. Reference Data

Reference point data for each land cover class were collected based on field surveys
and Google Earth. Due to the political isolation of North Korea, the survey points were
collected only from the Chinese side of the Tumen River. We collected 112 GPS points from
two deforestation landscapes in 2015 and simultaneously observed the deforestation pattern
on the North Korean side of the river (Figure 1). We can interpret the visual criteria of the
two deforestation patterns, which are difficult to distinguish in satellite images, through
Google Earth. For the remaining land cover types, such as forest, built-up areas, farmland
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(paddy), and water bodies, we applied the visual criteria interpreted in Jin et al. [6]. We
ensured that a minimum of 200 samples were collected for each land cover type.

The points for testing classification accuracy were randomly created using ArcGIS 10.7
at each time point (2000, 2010, and 2020). Each class creates a minimum of 50 points with
intervals over 500 m, and the points are overlaid on Google Earth to identify the land cover
classes at every time point, by the same standards. For an objective evaluation, the survey
team collected 115 points for two deforestation landscapes along the Tumen River in 2020
(Figure 2).
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2.3. Land Cover Classification

Forests during the 1990s were used as reference forest maps. However, because of
the limitations in satellite images, the classification of each land cover and deforested type
was unclear. Thus, we only classified two types of land cover in the 1990s: forests and
non-forests.

For 2000, 2010, and 2020 land cover maps, we classified six types of land cover in each
study year: forest, unstocked forest, sloping farmland, farmland, water, and built-up areas
(plateau area was added to the forest in the post-classification). Because of the similarity in
the reflectance of each vegetation cover, the phenology-based indices derived from MODIS
products were used to identify complex heterogeneous vegetation cover (Figure 3).

2.3.1. Normalized Indices

The transformation of spectral data into normalized indices greatly improved the
classification accuracy. The Normalized Difference Vegetation Index (NDVI), an indicator
of land degradation and increases or decreases in photosynthesis, was used as a predictor
variable to capture the differences in land cover with optical sensors, thereby providing
biophysical information.

However, the curves of vegetation cover types (forestland, plateau area, sloping
farmland, and unstocked forest) followed the same general form. Therefore, a single index
cannot effectively classify deforestation based on several vegetation cover types because
similar values are obtained at a given time point [29,30].

Sloping farmland had the highest soil dryness compared to the forest landscapes. This
was particularly evident when farmers prepared the fields early in the season, resulting in
maximum soil exposure. From March to May, which marks the beginning of the growing
season, the amount of soil exposed in the four different vegetation cover types varied
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based on the presence of canopy. Thus, the Normalized Difference Water Index (NDWI,
Equation (1)) [31] was selected to capture the difference in soil moisture.

NDWI =
b7 − b2

b7 + b2
(1)

where b2 and b7 are the near-infrared band 2 and shortwave infrared band 7 of MODIS
data, respectively. In this study, we calculated the NDVI and NDWI from March to October
for the input variables without knowing in which month the difference occurred.
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2.3.2. Random Forest Classification

In addition to phenological indices, we utilized topography data, as well as elevation
and slope, as predictor variables. We used a Random Forest (RF) classifier for deforestation
classification. RF is an ensemble machine-learning method that integrates many decision
trees into a forest and is used to train and classify sample data. One of the advantages of
RF is that it can accurately predict the effects of up to thousands of explanatory variables
and has been applied in remote-sensing classification studies [32]. When classifying data,
the importance of each variable can also be scored and the role of each variable in the
classification evaluated.

The RF model was built using the programming language R and implemented with the
“randomForest” package [33]. Through previous experiments, ntree (the number of trees)
was set to 500 and 100 runs. The accuracy of the trees was estimated using the out-of-bag
prediction, which provides an unbiased estimate of map accuracy if the reference data were
obtained through probability sampling. Finally, we estimated the overall accuracy, user’s
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accuracy, producer’s accuracy, and kappa coefficient through a confusion matrix to verify
the results.

2.4. Spatiotemporal Analysis of Deforested Areas

To compare the forest losses in each time unit, we calculated the rate of deforestation.
For the purpose of standardization and statistical comparability, we utilized the forest
area data and time to determine a standardized deforestation rate based on the following
formula [34]:

rate =
1

(t2 − t1)
× Ln

(
A2

A1

)
× 100 (2)

where A1 and A2 are the deforested areas in years t1 and t2, respectively. For example, for
the period from t1 = 1990 to t2 = 2000, A1 and A2 are the values of deforested areas during
1990 and 2000, respectively.

Considering the reasons for the occurrence of unstocked forest and sloping farmland in
North Korea, we can summarize four cases within the forestland of 1990 (Table 2). Forested
land that was deforested and converted to unstocked forest in 2020, which was based on
the unstocked periods, can be divided into two different cases: risk of degradation and
degradation. Forest degradation is a long-term reduction in canopy cover and forest carbon
stocks within the forest [35]. Thus, forestland under the unstocked status for an extended
period can be regarded as forest degradation due to the low canopy cover and stocks. The
forestland once used for crop production and converted into unstocked forest from 2010
to 2020 is regarded as at risk of degradation, and the area can be degraded if there is no
management.

Table 2. Four cases of forestland changes from the 1990s to 2020 (F: forest; SF: sloping forest; UF:
unstocked forest).

Cases 1990s 2000 2010 2020 Description

Case 1
F F SF/UF F Restoration, once deforested

and restoredF SF/UF F/SF/UF F

Case 2
F F F SF/UF

Deforested land that in useF F SF/UF SF
F SF/UF F/SF/UF SF

Case 3
F F/SF SF UF

Risk of degradation, once
deforested and abandoned.

F SF/UF F UF
F SF/UF SF UF

Case 4
F F UF UF Degradation, forestland

converted to unstocked forest
for a long time (over 2 decades)

F UF UF UF
F SF UF UF

3. Results
3.1. Accuracy Assessment of Classification

According to a UNEP report [36], the forest cover in 1990 was 82,000 km2 (68% of
the total land area), and our results for forestland in 1990s were 68.6%. From this, we
can see that the UNEP data and our results for forested areas are nearly identical. The
overall accuracy for 2000, 2010, and 2020 ranged from 87.1% to 88.6%, with kappa values
from 0.84 to 0.86 (Figure 4). The results show that phenological indices can be used to
distinguish similar spectral signatures, such as sloping farmland, unstocked forest, and
other vegetation cover.
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The producer’s accuracy and user’s accuracy in mapping the built-up area, farmland,
forest and water are higher than the sloping farmland and unstocked forest (Table 3,
Appendix A). The classification accuracy of sloping farmland and unstocked forest is
relatively lower compared to other types. The user’s accuracy for sloping farmland is
89.8% ± 3.2%, with a producer’s accuracy of 85.3% ± 5.4%. For unstocked forest, the user’s
accuracy is 86.5% ± 6.1% and the producer’s accuracy is 79% ± 3%. This is because similar
spectral signatures in the vegetation cover types, sloping farmland are often misclassified
as other categories, such as flat farmland or unstocked forests.

Table 3. Producer’s and user’s accuracy of land cover for land cover classification in the years 2000,
2010, and 2020.

Land Cover User’s Accuracy Producer’s Accuracy

Built-up 98.5% ± 1.5% 84.7% ± 4.9%
Farmland (flat land) 84.6% ± 2.9% 95% ± 3%

Sloping farmland 89.8% ± 3.2% 85.3% ± 5.4%
Unstocked forest 86.5% ± 6.1% 79% ± 3%

Forest 81.6% ± 0.6% 94.9% ± 0.8%
Water 92.4% ± 3.5% 95% ± 1%

3.2. Spatiotemporal Changes in Forest Cover

The extent of forest and deforestation from the 1990s to 2020 is shown in Figure 5. The
forest cover that remained in 2020 accounted for 41.5% of the total land area, and the extent
of forest cover decreased by nearly 27% over the 30-year study period. As summarized in
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Table 4, the loss of forest cover in the 1990s was much greater than that from 2000 to 2010
or 2010 to 2020. The rate of forest loss was 1.7% per year on average throughout the study
period. The first decade of analysis (1990s–2000) contributed 67.3% of total forest loss, the
rate of forest loss in this period was 3.1% per year and most forest cover was converted to
sloping farmland and unstocked forest. The second decade (2000–2010) and third decade
(2010–2020) accounted for 14.8% and 17.9% of forest loss, respectively, and these values
were less than half the rate in the 1990s.
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Table 4. Changes in forest cover area and rate from the 1990s to 2020.

1990s–2000 2000–2010 2010–2020 1990s–2020

Forest loss (rate) 24,302 (−3.1%) 4953 (−0.8%) 5982 (−1.1%) 33,437 (−1.7%)
Forest to sloping farmland 8777 5961 5125 14,184
Forest to unstocked forest 15,992 6484 7156 17,657
Forest to others 3946 348 356 4249

Restoration 4413 7840 6555
Case 1: Restoration 8940
Case 2: Deforestation 18,263
Case 3: Risk of degradation 6728
Case 4: Degradation 5346

As the forest near the village is damaged owing to the expansion of farmland, it can
be estimated that deforestation is proceeding in the core area and causing severe fragmen-
tation. The decrease in forestland and fragmentation can affect ecological connectivity
and biodiversity. For example, the forest in North Korea is in an important position to
link ecological networks from Mt. Changbai (the border of China and North Korea) to Mt.
Jiri (South Korea). However, deforestation causes forests to gradually shrink, especially
on the North Korean–South Korean and North Korean–Chinese borders, and substantial
fragmentation has been observed in these areas (Figures 6 and 7).
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Among the forestland utilization types, the highest rates of forest loss were observed
for unstocked forest and sloping farmland, which accounted for 48.9% and 39.3% of the total
loss during the study period, respectively. From the 1990s to 2000, North Korea experienced
extensive deforestation. The area of newly increased unstocked forest and sloping farmland
accounted for 86% of the total forest loss, and the unstocked forest area was nearly twice
that of the sloping farmland area. Since 2000, deforestation has decreased significantly,
newly increased sloping farmland and unstocked forest have also declined, and restoration
of sites to forest has increased (Figure 6). The greening policies in North Korea, which
began in 2001, slowed the rate of deforestation and improved forest restoration.

Although the rate of deforestation has decreased and nationwide restoration efforts
are ongoing, deforested areas have increased during each period of study. Moreover, the
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low efficiency of restoration cannot keep up with the rate of deforestation. Due to the
different land use change histories, the soil status and abandonment period are different,
which necessitate appropriate measurements. Most of the forestland deforested in the 1990s
was turned into sloping farmland (14,184 km2) and unstocked forest (17,657 km2) by 2020,
between which interchangeable uses were observed. Most of the sloping farmland had
been used for a long time (case two, 18,623 km2) and was eventually abandoned without
management (case three, 6728 km2). Moreover, owing to repeated fires, some unstocked
forests have long had an unstocked land status and have degraded (case four, 5324 km2)
(Table 4).

Large areas of degradation and land at risk of degradation are connected with sloping
farmland distributed along the edge of forestlands, resulting in shrinking and fragmentation
(Figure 7). The denuded slopes are desolate and can be observed on the Chinese side of
the Tumen River and along the border between North Korea and South Korea in the
summer. Because of the political tension between North and South Korea, most of these
desolate areas are caused by fires at the borders. Abandoned slopes mainly generate areas
with low productivity that are not managed. These areas are unsustainable and have
poor ecological functions, and they have become increasingly degraded until reaching an
unstocked status [26].

4. Discussion

The two deforestation patterns in North Korea, namely, sloping farmland and un-
stocked forest, reduce the ability to withstand natural disasters. Large-scale forest fires,
commercial logging, and expanding farmlands in hilly areas are the main drivers of de-
forestation and forest degradation in North Korea. Our results provide a comprehensive
deforestation map of the two classes of deforested land. Between 1990 and 2020, forestland
areas of 14,181 km2 and 17,657 km2 were converted to sloping farmland and unstocked
forest, respectively, and these trends are consistent with other research on North Korea [5].
In addition, this study presents a spatiotemporal trajectory analysis for the first time for the
detection of two patterns of deforestation in North Korea.

To validate the estimated forest cover transitions, we conducted a comparison with
the GLAD Global Land Cover and Land Use Changes dataset [37]. This dataset measures
changes in forest extent from the year 2000 to 2020 at a spatial resolution of 30 m. Our
findings indicate that 41.5% of the total land area remained unchanged as forest from 2000
to 2020, whereas the GLAD dataset shows a stable forest area of 49.5%. The variation in
these numbers can be attributed to discrepancies in spatial resolution. A limitation of our
study was the use of a 250 m pixel resolution, which presented challenges in classifying
fragmented forest areas. The comparison of forest cover distribution demonstrates that
our results align well with the spatial distribution of forest core areas and forest distur-
bances in the GLAD dataset (Figure 8). In contrast, our findings reveal that 13.6% of the
forested land underwent conversion into sloping farmland or unstocked forest, whereas the
GLAD dataset indicates a much lower transformation rate of 3.74% into short vegetation
and cropland.

Therefore, we compared it with Google Earth imagery (Figure 9). The analysis of
Figure 9 reveals that the pointed area in the 2018 image represents extensive sloping
farmland. However, the GLAD dataset classifies it as short vegetation, which aligns with
our study’s characterization of unstocked forest cover. This discrepancy may arise due to
the GLAD dataset’s focus on global land use, which might not fully account for the distinct
land use characteristics of individual countries. Our research excels in its comprehensive
examination of North Korea’s land use characteristics, enabling us to analyze the dynamic
patterns of forest cover transition.
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Many studies have attempted to quantify North Korea’s scale of deforestation, with
many indicating that deforestation is a result of forest conversion to cropland; however, the
discussion on unstocked forests is insufficient. Unstocked woods, which are temporarily
devoid of forest growth, are among the main manifestations of deforestation in North Korea.
Long periods of abandonment, low production, logging, and forest fires can all cause
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unstocked forests. Therefore, it is impossible to determine whether an area is degraded
by analyzing the unstocked forest at only one time point. A forest with a long unstocked
period can be regarded as an unproductive area in the process of degradation [38]. Through
the analysis of the past 30 years of deforestation, we can identify forestland that is in the
process of degradation and land that is at risk of degradation.

To perform effective forest rehabilitation, it is necessary to consider forestland dynam-
ics reflected in differentiated reforestation planning. The Korean Peninsula experienced a
similar conversion of forestland in North and South Korea. South Korea has succeeded in
restoring the forest ecosystem, whereas North Korea has not successfully restored its forests,
even with continuous reforestation planning. The difference between the two countries is
the financial situation and rehabilitation projects.

Different reforestation planning strategies have been applied in South Korea based on
the forestland status. To restore degraded land and prevent soil erosion, fast-growing tree
species have been planted in areas that have been deforested. Additionally, the practice
of slash-and-burn farming has been eliminated, which has contributed to the successful
restoration of forests. To establish effective forest management, the economic functions and
public benefits of forests have also been considered. Through the successful reforestation of
South Korea [26], we can see that different strategies have been implemented for different
statuses of forestland. Therefore, deforested landscapes must be classified to perform
reforestation planning.

We proposed a new set of maps to quantify the extent of deforestation and degrada-
tion and the risk of degradation in North Korea and used observation reference data and
phenology-based indices for 2015 to predict land cover in 2000, 2010, and 2020. Although
this approach consistently increased individual classification accuracy, the above quantifi-
cation still contained some errors. Because a slight gap in phenology occurred between the
survey year and prediction year, which can affect the results, this study used the monthly
average of indices to reduce the uncertainty generated by the temporal interval. To improve
the accuracy of deforestation mapping, it is necessary to observe the phenology of each
vegetation cover type. Furthermore, the phenology of the target year differed from that of
the year in which the model was constructed. In such cases, the classification model should
be reconstructed and indices that have the greatest impact on the target year should be
identified. The classification method proposed in this study for mapping deforestation will
be valuable for monitoring areas with diverse vegetation cover in mountainous regions.
Moreover, this approach can also be utilized in situations where accessing field data is
difficult and there is a lack of historical information. It enables us to better understand
and manage forest resources, ultimately contributing to a more sustainable and resilient
ecosystem. However, further research and field surveys are necessary to enhance the
techniques for classifying different types of vegetative cover at high spatial resolutions.

5. Conclusions

The three decades from 1990 to 2020 witnessed an increase in deforestation of sloping
farmland and unstocked forest. Almost 39.4% of the remaining forestland in 1990 was lost
by 2020. The rate of forest loss reached 3.1% per year before 2000 and began to decline
after 2000 because of forest policies; however, forest loss continues. The most severe
deforestation occurred from 1990 to 2000, and 13.68% of the deforested land continued to
be used as sloping farmland by 2020. Deforestation spread into the core area and caused
severe shrinking and fragmentation, while the edge of the forestland was degraded or at
risk of degradation. Although reforestation policies can decrease the rate of forest loss, the
effectiveness of reforestation requires both technological and cooperative management.

North Korea is a region where forest conservation and development demands exist.
Therefore, there is an urgent need for preservation and sustainable development. For
effective management and reforestation, in-depth research should be conducted, such as
investigations of site-specific characteristics, surveys of forest ecological functions, and
the selection of priority restoration areas. This study provides insights that are useful for
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planning reforestation projects, reaching conservation targets, and improving ecosystem
services for the entire Korean Peninsula.
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Appendix A

Table A1. The confusion matrix for the land cover classification of 2000.

Built Up Farmland Sloping
Farmland

Unstocked
Forest Forest Water Total User’s

Accuracy

Built up 72 6 0 0 0 12 90 0.8
Farmland 0 98 2 0 0 0 100 0.98
Sloping farmland 0 6 78 0 2 0 86 0.907
Unstocked forest 0 0 6 76 18 0 100 0.76
Forest 0 0 0 6 92 0 98 0.939
Water 2 2 0 0 0 96 100 0.96
Total 74 112 86 82 112 108 574
Producer’s
Accuracy 0.973 0.875 0.927 0.927 0.821 0.889

Table A2. The confusion matrix for the land cover classification of 2010.

Built Up Farmland Sloping
Farmland

Unstocked
Forest Forest Water Total User’s

Accuracy

Built up 86 4 0 0 2 4 96 0.896
Farmland 0 92 2 6 0 0 100 0.92
Sloping farmland 0 6 80 8 6 0 100 0.8
Unstocked forest 0 0 4 82 14 0 100 0.82
Forest 0 0 0 6 94 0 100 0.94
Water 0 6 0 0 0 94 100 0.94
Total 86 108 86 102 116 98 596
Producer’s
Accuracy 1 0.852 0.93 0.804 0.81 0.959

Table A3. The confusion matrix for the land cover classification of 2020.

Built Up Farmland Sloping
Farmland

Unstocked
Forest Forest Water Total User’s

Accuracy

Built up 82 10 2 0 2 4 100 0.82
Farmland 0 98 0 2 0 0 100 0.98
Sloping farmland 0 8 78 4 6 0 96 0.812
Unstocked forest 0 0 10 76 14 0 100 0.76
Forest 0 0 0 4 96 0 100 0.96
Water 0 4 0 0 0 90 94 0.957
Total 82 120 90 86 118 94 590
Producer’s
Accuracy 1 0.817 0.867 0.883 0.814 0.957
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