
Citation: Rijal, S.S.; Pham, T.D.;

Noer’Aulia, S.; Putera, M.I.; Saintilan,

N. Mapping Mangrove

Above-Ground Carbon Using

Multi-Source Remote Sensing Data

and Machine Learning Approach in

Loh Buaya, Komodo National Park,

Indonesia. Forests 2023, 14, 94.

https://doi.org/

10.3390/f14010094

Academic Editors: Andrzej Węgiel
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Abstract: Mangrove forests provide numerous valuable ecosystem services and can sequester a large
volume of carbon that can help mitigate climate change impacts. Modeling mangrove carbon with
robust and valid approaches is crucial to better understanding existing conditions. The study aims
to estimate mangrove Above-Ground Carbon (AGC) at Loh Buaya located in the Komodo National
Park (Indonesia) using novel Extreme Gradient Boosting (XGB) and Genetic Algorithm (GA) analyses
integrating multiple sources of remote sensing (optical, Synthetic Aperture Radar (SAR), and Digital
Elevation Model (DEM)) data. Several steps were conducted to assess the model’s accuracy, starting
with a field survey of 50 sampling plots, processing the images, selecting the variables, and examining
the appropriate machine learning (ML) models. The effectiveness of the proposed XGB-GA was
assessed via comparison with other well-known ML techniques, i.e., the Random Forest (RF) and the
Support Vector Machine (SVM) models. Our results show that the hybrid XGB-GA model yielded
the best results (R2 = 0.857 in the training and R2 = 0.758 in the testing phase). The proposed hybrid
model optimized by the GA consisted of six spectral bands and five vegetation indices generated from
Sentinel 2B together with a national DEM that had an RMSE = 15.40 Mg C ha−1 and outperformed
other ML models for quantifying mangrove AGC. The XGB-GA model estimated mangrove AGC
ranging from 2.52 to 123.89 Mg C ha−1 (with an average of 57.16 Mg C ha−1). Our findings contribute
an innovative method, which is fast and reliable using open-source data and software. Multisource
remotely sensed data combined with advanced machine learning techniques can potentially be used
to estimate AGC in tropical mangrove ecosystems worldwide.

Keywords: mangroves; Above-Ground Carbon (AGC); remote sensing; Sentinel; machine learn-
ing; Indonesia

1. Introduction

Mangroves provide many important ecological and provisioning services including
the sequestration of atmospheric CO2 [1], protection of shorelines from the impact of waves,
storm surges, and shoreline erosion [2], and habitat for organisms including shorebirds and
commercially important fish [3,4], such that total ecosystem value has been estimated at
more than a million dollars per year [5,6]. Despite their valuable contributions, these forests
have been lost all over the world due to multiple factors, though primarily human distur-
bance, especially in Southeast Asia [7]. Previous studies by Fauzi [8] and Latiff [9] revealed
that mangrove forests were converted into agriculture, aquaculture, infrastructure, and
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other land use. Understanding the driving forces and the efficacy of conservation and reha-
bilitation activities is a central consideration in sustainable mangrove forest replantation
and management [10].

One of the fundamental aspects of the sustainable conservation of mangrove forests is
to understand their spatial distribution and rates of change, the subject of several previous
studies [11–13]. However, these forests are associated with a wide range of biophysical pa-
rameters that can be related to ecosystem health, interactions, functions, and dynamics [14].
Measuring biophysical parameters of mangroves such as their ability to sequester carbon
can be achieved with accuracy using allometric equations applied to field-based measures
from designated plots [15]. However, this method is laborious and time-consuming, and
often logistically challenging due to the complexity of the mangrove environment, consist-
ing of dynamic tidal levels [16] and tidal cycles [17], and dangerous fauna [18]. Therefore,
the development of effective and efficient mangrove carbon estimates is needed.

Remote sensing is an important complementary tool in offering a synoptical overview,
high spectral and spatial resolution, and ease of data capture to overcome some of the limi-
tations of time, labor cost, and inaccessibility facing mangrove carbon measurement [19].
The use of remotely sensed optical and Synthetic Aperture Radar (SAR) images incorpo-
rated with field-based sampling has been successfully applied to develop mangrove carbon
models calibrated by empirical measures [20]. However, a concern for previous studies
has been the need for improved accuracy in mangrove carbon models [21]. This issue
has driven previous studies to build many models from linear/multi-linear regression
from single or combinations of remote sensing image transformations to map mangrove
above-ground biomass and above-ground carbon. Furthermore, they may also integrate
optical and SAR data to achieve better model prediction [22].

Several optical and SAR remote sensing satellite image libraries are available online
and free access, especially for coarse (30 m) and medium-high (20–10 m) spatial resolu-
tions, for instance, generations of Landsat and Sentinel missions [23–25]. Landsat yields
satisfactory results when used for mangrove extent mapping and temporal changes [26,27].
However, it only works well for large geographical areas and shows inconsistencies in ap-
plication over finer mapping scales [28]. Sentinel, which brings optical and SAR wavelength
with higher spatial resolution, has proven to map mangroves well at large scales [22,28].

The emergence of high-performance computing [29,30], and the use of Machine Learn-
ing (ML) techniques can assist in the development of mangrove biomass and carbon maps
based on remotely sensed variables [31–34]. In this study, we aim to test a novel ML method,
which was proposed by Pham et al. [35] to map and quantify mangrove above-ground
carbon (AGC) in Indonesian mangroves using multisource free-of-charge remotely sensed
datasets. Pham et al. [35] developed a novel ML model by integrating the extreme gradient
boosting regression (XGB) and genetic algorithm (GA) to map AGB mangroves in Northern
Vietnam using optical and SAR data combined with field sampling.

The current work aims to test the effectiveness and robustness of the method using free-
of-charge multisource remote sensing data and to extend this approach to other tropical
mangrove environments. The results of this study show the ability of the innovative
mapping technique using open-source software to perform a mangrove’s carbon while
reflecting the optimum features selection to be used.

2. Materials
2.1. Study Area

Established on 6th March 1980, Komodo National Park is one of the earliest national
parks in Indonesia. The Komodo National Park is an archipelagic national park with a total
area of 173,300 ha located at Manggarai Barat Regency, Province of Nusa Tenggara Timur.
It has five major islands: Rinca Island, Padar Island, Komodo Island, Gili Motang Island,
Nusa Kode Island, and 142 smaller islands [36].

The Komodo National Park has seven different ecosystem types: the quasi-cloud
forests (16,706.20 ha), tropical deciduous (monsoon) forests (5026.48 ha), open grassland
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and woodland savannah (33,788.36 ha), mangroves (1030.30 ha), seagrasses (3967.18 ha),
coral reefs (825.61 ha), and the open ocean (111,955.87 ha) [37]. Each ecosystem in the park
is unique compared to one another and has a high biodiversity variety, most importantly
Loh Buaya Resort.

Loh Buaya is a local name for ‘Crocodile Bay’, which is located on Rinca Island
(latitude of 8◦32′36′′ S; longitude of 119◦29′22′′ E). Komodo National Park is comprised
of 23% terrestrial and 77% aquatic environments. Komodo National Park supports up to
23 species of mangrove [37,38], though to the best of our knowledge no published species
list exists.

2.2. Field Survey

Data were collected from 50 plots sampling across four dominant species of mangroves
found in the study area: Ceriops decandra, Lumnitzera racemosa, Rhizophora apiculata, and
Rhizophora mucronata. Plots consisted of 10 m × 10 m squares established during the
field campaign of July 2022 (dry season) using a technique by Dharmawan, 2020 [39]
(Figure 1). Measurement in every plot comprised coordinate tagging using a handheld
Global Positioning System (GPS: Garmin 64s series with± 3 m x-y accuracy), Girth at Breast
Height (GBH), percentage of canopy cover using hemispherical photography, mangroves
species, and substrate identification. MonMang, a smartphone logbook application for
mangrove surveys developed by Lembaga Ilmu Pengetahuan Indonesia (LIPI) [40] was
used to record field data.
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Figure 1. Mangrove field measurement: (a) mangrove situated at the study area, (b) preparing plot 
measurements using a rope, (c) GBH measurement which is then converted to Diameter of Breast 
Height (DBH). (Photos taken by Salma Noer ‘Aulia during field survey). 
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Biomass (AGB) was calculated using the allometric equation (Equation (1)) of Komiyama 
[41] derived for Southeast Asian mangroves. Therefore, this equation is relevant to use in 
the study area. The equation is as follows: 

AGB (Mg·ha−1) = 0.251ρ(DBH)2.46 (1)

where: ρ: Wood density corresponding to the mangrove species, based on the ICRAF data-
base [42] 

DBH: Diameter at Breast Height (mean value of different individual trees in every 
single sampling plot) 

According to the Indonesian National Standards for measuring and calculating forest 
carbon (SNI:7724-2011) [43], about 47% of biomass is carbon. The Above-Ground Carbon 
(AGC) value was therefore calculated by (Equation (2)). 

AGC (Mg C ha−1) = AGB × 0.47 (2)

Figure 1. Mangrove field measurement: (a) mangrove situated at the study area, (b) preparing plot
measurements using a rope, (c) GBH measurement which is then converted to Diameter of Breast
Height (DBH). (Photos taken by Salma Noer ‘Aulia during field survey).

2.3. Biomass and Carbon Estimations

Mangrove GBH was divided by 3.14 to convert into DBH value, and Above-Ground
Biomass (AGB) was calculated using the allometric equation (Equation (1)) of Komiyama [41]
derived for Southeast Asian mangroves. Therefore, this equation is relevant to use in the
study area. The equation is as follows:

AGB (Mg·ha−1) = 0.251ρ(DBH)2.46 (1)

where:
ρ: Wood density corresponding to the mangrove species, based on the ICRAF database [42]
DBH: Diameter at Breast Height (mean value of different individual trees in every

single sampling plot)
According to the Indonesian National Standards for measuring and calculating forest

carbon (SNI:7724-2011) [43], about 47% of biomass is carbon. The Above-Ground Carbon
(AGC) value was therefore calculated by (Equation (2)).

AGC (Mg C ha−1) = AGB × 0.47 (2)
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2.4. Earth Observations (EO) Data

Several earth observation datasets were used in this study including Sentinel-1A (S1A),
Sentinel-2B MultiSpectral Instrument (S2B MSI), and Digital Elevation Model Nasional
(DEMNAS)/Indonesian Digital Elevation Model to estimate mangrove AGC. S1A is a
Synthetic Aperture Radar (SAR) satellite with Level-1 Ground Resolution Distance (GRD)
equipped with the frequency of C-band (5.405 GHz) and uses the polarizations of VV
(Vertical transmit-Vertical receiving) and VH (Vertical transmit-Horizontal receiving) [44].
S2B MSI level-1C has twelve bands, ranging from 443 nm (coastal band), 492 nm (blue
band), 560 nm (green band), 665 nm (red band), 704–783 nm (three red-edge bands), 832 nm
(near-infrared (NIR) band), 865 (narrow-NIR band), and 1614–2202 nm (short-wavelength
infrared (SWIR) band). Each of the S2B bands has a different spatial resolution ranging
from 10–20 m [24]. Both S1A and S2B MSI were acquired on the 20th and 18th July 2022,
respectively. DEMNAS was produced by the Government of Indonesia in 2018 using a
combination of Interferometry SAR, TERRASAR-X, ALOS PALSAR, and mass point data
from stereo-plotting. The spatial resolution for the DEMNAS is about 8.33 m with vertical
accuracy of 3.6 m [45,46].

The S1A and S2B MSI were downloaded from the Copernicus Open Access Hub
(https://scihub.copernicus.eu/, accessed on 16 September 2022), while DEMNAS was
acquired from Tanah Air (https://tanahair.indonesia.go.id/demnas/#/, accessed on 5
October 2022). All the EO datasets are free and open to the public (Table 1).

Table 1. The Earth Observations Data used in this study.

Earth Observations
Data Scene ID Acquisition Date

(Date/Month/Year)
Processing

Level
Spatial

Resolution (m)
Spectral/Polarization

Used

S1A SAR S1A_05460F 20 July 2022 Level-1 GRD 20 C Band (VV and VH
polarizations)

S2B MSI S2B_MSI_T50LQR 18 July 2022 Level-1C 10–20 11 multispectral bands

DEMNAS 2007-33_v1.0 2018 - 8.33 -

3. Methods

We adopted an innovative ML framework introduced by Pham et al. [35] to estimate
mangrove AGC. However, in this study, a combination of multiple EO source data with
free-of-charge Sentinel-2B and Sentinel-1A imagery and a national DEM as elevation data
was used to improve the prediction accuracy. Several steps were conducted to derive
and test models as follows: (1) Pre-processing and processing of the multiple EO sources,
(2) Creating training and testing datasets by combining field sampling data and EO data
extraction, (3) Evaluating Machine Learning models, (4) Selecting the optimal variables
using the Genetic Algorithm and the highest ML model, (5) Model re-evaluation for
mangrove AGC estimations in the study area. The flowchart of this study is shown in
Figure 2.

https://scihub.copernicus.eu/
https://tanahair.indonesia.go.id/demnas/#/
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3.1. EO Image Processing
3.1.1. EO Image Pre-Processing

The S1A was processed in several steps, including applying the orbit file to update
more accurately satellite orbit position, radiometric calibration to convert the intensity
value of VV and VH into sigma nought (σ◦), which can represent the actual backscatter of
the object, speckle filtering to reduce the granular noise on the image, terrain correction
to register the imagery from sensor geometry into the projection coordinate, and convert-
ing backscatter value into decibel (dB) units. The S2B level-1C already has the Top of
Atmosphere (TOA) value and has been geometrically and radiometrically corrected [24].
To gain the Bottom of Atmospheric (BOA) reflectance (Level-2A), The S2B level-1C was
converted using the Sen2Cor algorithm [22,35]. All the EO data (S1A, S2B, and DEMNAS)
were clipped using the vector data of the mangrove area in Loh Buaya, co-registered into
UTM/WGS84 at the 50S zone, and resampled into 10 m corresponds to the field plots size.
According to Kamal [47], matching the size of plots with the image pixel resolution will
improve the accuracy of mangrove identification. All data were processed using European
Space Agency (ESA) SNAP software.

3.1.2. EO Image Transformations

Optical satellite imagery has been widely used to estimate mangrove carbon [16,48,49].
In tropical latitudes, minimum cloud coverage of optical imagery may be difficult to
access. Therefore, previous studies have substituted optical imagery with SAR imagery
for carbon estimation [50,51] or the combination of optical and SAR [22,52]. Further, a
DEM may also be used to improve the accuracy of forest carbon estimates [53–55]. In this
study, we employed a total of 32 variables consisting of 2 polarizations of S1A, 5 SAR
bands transformations of S1A, 12 bands of S2B, 12 Vegetation Indices (VIs) of S2B, and an
elevation model (DEMNAS) (Table 2). The SAR band transformations and VIs are sensitive
to the plant and vegetation characteristics [16,56,57]. The total number of optimal inputs
for predicting the AGC model was 12 variables composed of 5 VIs (NDVI, GNDVI, NDI45,
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SAVI, MCARI), the elevation model (DEMNAS), and 6 bands (B4, B5, B7, B8A, B11, and
B12). The variables were normalized before further processing.

Table 2. Overview of variables used in this study.

Band/Polarizations/Index Central Wavelength/Formula References Sensor

VH Horizontally polarized backscatter [58] S1A

VV Vertically polarized backscatter [58] S1A

VH/VV SAR polarization ratio [44,59] S1A

VV/VH SAR polarization ratio [44,59] S1A

(VV+VH)/2 SAR polarization ratio [44,59] S1A

VV, VH GLCM SAR image transformations [60] S1A

VV, VH PCA SAR image transformations [61] S1A

B1—Coastal Aerosol 442.2 [62] S2B

B2—Blue 492.1 [62] S2B

B3—Green 559.0 [62] S2B

B4—Red 664.9 [62] S2B

B5—Red Edge 1 703.8 [62] S2B

B6—Red Edge 2 739.1 [62] S2B

B7—Red Edge 3 779.7 [62] S2B

B8—Near InfraRed (NIR) 832.9 [62] S2B

B8A—Narrow NIR 864.0 [62] S2B

B9—Water Vapor 943.2 [62] S2B

B11—Short Wave InfraRed (SWIR-1) 1610.4 [62] S2B

B12—Short Wave InfraRed (SWIR-2) 2185.7 [62] S2B

Ratio Vegetation Index (RVI) NIR
Red

[63] S2B

Normalized Difference Vegetation Index
(NDVI)

NIR− Red
NIR + Red

[64] S2B

Green NDVI (GNDVI) NIR−Green
NIR + Green

[65] S2B

Normalized Difference Index using Bands 4
and 5 (NDI45)

Red Edge (B5)− Red
Red Edge (B5) + Red

[66] S2B

Soil-Adjusted Vegetation Index (SAVI) (1 + L)
(

NIR− Red
NIR + Red + L

)
L = 0.5 in most conditions

[67] S2B

Inverted Red-Edge Vegetation Index (IRECI) Red Edge (B7)− Red
Red Edge (B5)/ Red Edge (B6)

[68] S2B

Modified Chlorophyll Absorption in
Reflectance Index (MCARI)

[
(Red Edge (B5)– Red)– 0.2
∗ (Red Edge (B5)– Green)

]
∗ (Red Edge (B5) – NIR)

[69] S2B

Modified Soil-Adjusted Vegetation Index
(MSAVI)

(1 + L) ∗ (NIR – Red) / (NIR + Red + L)
L = 0.5 in most conditions [70] S2B

The Second Modified Soil-Adjusted
Vegetation Index (MSAVI2)

(
1
2

)
∗ (2∗NIR + 1−

Sqrt
(
(2∗NIR + 1) ∗ (2∗NIR + 1)−

8 ∗ (NIR− Red)

) [70] S2B
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Table 2. Cont.

Band/Polarizations/Index Central Wavelength/Formula References Sensor

Different Vegetation Index (DVI) NIR− Red [71] S2B

Perpendicular Vegetation Index (PVI)
Sin(a)∗NIR−Cos(a)∗Red

a = angle between the soil line and the NIR axis, in
degrees

[71] S2B

The Second Enhanced Vegetation Index
(EVI-2) 2.5

(
NIR− Red

NIR + 2.4∗Red + 1

)
[68] S2B

Elevation Data - [45] DEMNAS

3.2. Machine Learning Algorithms
3.2.1. Random Forest (RF)

The RF algorithm was developed by Breiman [72] for supervised classification and
regression tasks, applying bootstrap sampling and bagging trees in the ensemble learning
family. The RF model can effectively handle non-linear data without overestimation during
the training and testing phases. In the RF model, approximately 2/3 of the total samples
(in-bag) are used during the training phase and the remaining 1/3 of the total samples
(out-of-bag, OOB) is used for the testing phase.

In the RF benchmark, a maximum depth, a minimum sample leaf, a minimum sample
split, a maximum feature, and the number of trees as well as the number of features m
can be tuned to fit a specific dataset. These parameters were optimized using five-fold
cross-validation (CV) in the Python environment.

3.2.2. Support Vector Machine (SVM)

The SVM algorithm was developed by Vapnik [73] based on the statistical learning
theory for supervised classification and regression tasks. This algorithm has been widely
applied in numerous domains such as image processing, computer vision, pattern recog-
nition, and environmental monitoring. In the SVM model, the choice of different kernel
functions largely influences the model performance. For this reason, we selected the radial
basis function (RBF) kernel in this work to minimize the bias as suggested by the prior
studies for the estimates of mangrove AGC [52,74].

The effectiveness of the estimate of mangrove AGC can be highly influenced by the
hyperparameters. In the SVM benchmark, we configured three main parameters with an
RBF kernel: the regularization parameter (C), Epsilon (ε), and the kernel width (γ) using
five-fold CV using Python scripting.

3.2.3. Extreme Gradient Boosting (XGB)

The XGB algorithm uses the theory of boosting technique and belongs to the ensemble-
based decision tree learning. Initially introduced by Chen and Guestrin [75], XGB has been
effectively applied in both classification and regression tasks for the supervised-learning
domains [76].

In the XGB model, two regularization terms L1 and L2 are added to the cost functions
to improve the generalization, optimize performance, and reduce the overfitting problem.
In the XGB benchmark, several hyperparameters such as the booster, a maximum depth, a
minimum child weight, several trees, and a learning rate must be set and tuned beforehand.

3.3. Model Configuration, Implementation, and Accuracy Assessment
3.3.1. Configuration and Training

A total of 50 samples were split randomly into the training set (80%) and the testing
set (20%) of the total samples. The former set was used to construct the ML models using
the features derived from multiple source EO such as bands’ reflectance, vegetation indices
(VIs) derived from S2B, backscatters coefficients, and SAR transformation derived from
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S1A C-band as well as the national DEM, whereas the latter dataset was used to assess
the predictive performance of the ML models. All features were normalized using the
normalization function in the Scikit-learn library in Python 3.7 [77].

3.3.2. Hyperparameters Tuning

ML models consist of several parameters, which control the learning process during
the construction of any ML model. These parameters are called hyperparameters, which
often need to be tuned or optimized to achieve the highest regression performance. In
this work, the hyperparameters of the RF, the SVM, and the XGB models were tuned and
maintained during the training and the testing phases using a grid-search with a five-fold
CV in the Scikit-learn library [77].

3.3.3. Feature Selection Using the Genetic Algorithm (GA)

In the current study, the GA was implemented in the Python environment to auto-
matically select the optimal number of variables for estimating mangrove AGC in the
study area. The GA adopts Darwinian natural selection theory to automatically tune the
hyperparameters of an ML model [78]. In the GA, the vector of parameter values, which is
called an individual, is the most important pattern to define a solution in each generation.

First, all features generated from S1A C-band SAR and S2B (input variables) were
tested with the three ML models using a grid search with a five-fold CV to tune the
hyperparameter of each model. Second, the highest predictive ML model performance for
estimating mangrove AGC with the lowest root-mean-square error (RMSE) was chosen.
The GA was then used in conjunction with the best predictive model to select the optimal
features derived from the S2B MSI, VIs, and S1A, SAR transformations generated from
S1A, and national DEM data for mangrove AGC estimation. Finally, all of the chosen ML
models were tested with the best features for comparison.

3.3.4. Accuracy Assessment

We used several criteria including RMSE and the coefficient of determination (R2) for
model evaluation and comparison of different ML algorithms for estimating mangrove
AGC as they are well-known indices for assessing the performance of any regression
model [52,79].

RMSE (Equation (3)) and R2 (Equation (4)) are standard criteria for measuring errors of
regression tasks, in which higher R2 and lower RMSE values indicate the better regression
model

RMSE =

√
∑n

i=1
(ŷi − yi)

2

n
, (3)

R2 = 1− ∑n
i=1(yi−ŷi)

2

∑n
i=1

(
yi−
−
y
)2 , (4)

where ŷi and yi are the estimated and measured mangrove AGC for the ith plot, respectively;

n is the total number of sampling plots, and
−
y is the measured mean values of the mangrove

AGC.

4. Results
4.1. Characteristics of Mangrove Forests

Mangroves in the study area (Figure 3) also had varying DBH, ranging from 7.48 cm in
plot 5 (Rhizophora apiculata) to 19.21 cm in plot 27 (Rhizophora mucronata) with an average of
12.67 cm. Based on the calculated results of AGC listed in Table 3, the lowest carbon stock
was 13.63 Mg C ha−1 in Plot 14 while the largest carbon stock was found in Plot 27 with
143.94 Mg C ha−1. An average AGC was observed at approximately 57.51 Mg C ha−1. The
dominant species in the sampling plots were Rhizophora apiculata, which was common in 23
of the 50 plots. The calculation of carbon stock is influenced by DBH and wood density,
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therefore, although Rhizophora apiculata had the lowest DBH, this is not corresponding with
the lowest carbon stock due to its wood density being higher than Ceriops decandra.
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Table 3. Identification of mangrove characteristics in the study area.

Plot Longitude (E) Latitude (S) DBH
(cm)

AGC
(Mg C ha−1) Dominant Species Canopy Cover

(%) Substrate

1 119◦42′56.62′′ 8◦39′13.42′′ 11.86 43.99 Rhizophora mucronata 77.29 Sandy Mud

2 119◦42′56.72′′ 8◦39′12.22′′ 14.62 76.36 Rhizophora apiculata 73.94 Sandy Mud

3 119◦42′56.58′′ 8◦39′11.25′′ 12.98 57.05 Rhizophora apiculata 84.32 Sandy Mud
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Table 3. Cont.

Plot Longitude (E) Latitude (S) DBH
(cm)

AGC
(Mg C ha−1) Dominant Species Canopy Cover

(%) Substrate

4 119◦42′55.84′′ 8◦39′10.41′′ 11.94 46.39 Rhizophora apiculata 86.24 Muddy Sand

5 119◦42′55.23′′ 8◦39′9.68′′ 7.48 14.72 Rhizophora apiculata 72.96 Muddy Sand

6 119◦42′56.71′′ 8◦39′9.97′′ 10.40 31.79 Rhizophora mucronata 72.03 Sandy Mud

7 119◦42′57.61′′ 8◦39′9.55′′ 8.49 18.97 Lumnitzera racemosa 83.21 Sand

8 119◦42′57.48′′ 8◦39′10.84′′ 9.38 24.21 Lumnitzera racemosa 73.54 Sand

9 119◦42′57.59′′ 8◦39′11.79′′ 14.53 72.37 Rhizophora mucronata 68.97 Sand

10 119◦42′57.47′′ 8◦39′12.99′′ 10.75 34.52 Rhizophora mucronata 82.35 Sand

11 119◦42′53.96′′ 8◦39′8.82′′ 14.99 81.25 Rhizophora apiculata 69.04 Muddy Sand

12 119◦42′59.76′′ 8◦39′15.21′′ 12.77 45.08 Ceriops decandra 75.74 Muddy Sand

13 119◦42′00.45” 8◦39′15.82′′ 16.02 78.70 Ceriops decandra 70.34 Muddy Sand

14 119◦42′58.88′′ 8◦39′16.17′′ 7.85 13.63 Ceriops decandra 79.69 Sand

15 119◦42′59.53′′ 8◦39′16.80′′ 9.86 23.82 Ceriops decandra 76.73 Muddy Sand

16 119◦42′58.63′′ 8◦39′17.75′′ 14.04 66.51 Rhizophora mucronata 78.24 Muddy Sand

17 119◦42′57.87′′ 8◦39′17.01′′ 14.64 73.76 Rhizophora mucronata 80.04 Muddy Sand

18 119◦42′56.89′′ 8◦39′16.25′′ 14.43 73.98 Rhizophora apiculata 83.12 Muddy Sand

19 119◦42′54.96′′ 8◦39′16.22′′ 10.82 36.41 Rhizophora apiculata 85.28 Muddy Sand

20 119◦42′55.90′′ 8◦39′17.12′′ 13.20 59.42 Rhizophora apiculata 82.14 Muddy Sand

21 119◦42′56.89′′ 8◦39′17.96′′ 10.65 35.06 Rhizophora apiculata 83.04 Muddy Sand

22 119◦42′57.80′′ 8◦39′18.85′′ 8.98 23.07 Rhizophora apiculata 81.54 Muddy Sand

23 119◦42′56.89′′ 8◦39′19.91′′ 8.89 21.64 Rhizophora mucronata 77.4 Sandy Mud

24 119◦42′56.02′′ 8◦39′18.94′′ 9.37 25.56 Rhizophora apiculata 83.3 Muddy Sand

25 119◦42′54.93′′ 8◦39′18.01′′ 8.79 17.98 Ceriops decandra 83.2 Muddy Sand

26 119◦42′54.05′′ 8◦39′17.21′′ 16.07 96.45 Rhizophora apiculata 78.41 Muddy Sand

27 119◦42′53.87′′ 8◦39′18.84′′ 19.21 143.94 Rhizophora mucronata 78.84 Muddy Sand

28 119◦42′55.02′′ 8◦39′19.88′′ 15.02 81.64 Rhizophora apiculata 87.64 Muddy Sand

29 119◦42′55.97′′ 8◦39′20.89′′ 10.83 35.14 Rhizophora mucronata 81.19 Muddy Sand

30 119◦42′55.02′′ 8◦39′21.84′′ 8.84 18.22 Ceriops decandra 81.61 Muddy Sand

31 119◦42′53.78′′ 8◦39′21.94′′ 17.04 111.42 Rhizophora apiculata 85.1 Muddy Sand

32 119◦42′53.65′′ 8◦39′20.50′′ 16.37 100.89 Rhizophora apiculata 82.38 Muddy Sand

33 119◦42′53.10′′ 8◦39′23.06′′ 15.70 90.97 Rhizophora apiculata 80.96 Muddy Sand

34 119◦42′52.23′′ 8◦39′24.30′′ 8.33 15.77 Ceriops decandra 83.63 Muddy Sand

35 119◦42′50.21′′ 8◦39′24.47′′ 12.67 50.76 Lumnitzera racemosa 82.9 Muddy Sand

36 119◦42′51.24′′ 8◦39′22.98′′ 8.97 18.90 Ceriops decandra 79.4 Muddy Sand

37 119◦42′51.97′′ 8◦ 9′21.75′′ 13.29 58.13 Rhizophora mucronata 82.24 Muddy Sand

38 119◦42′50.99′′ 8◦39′20.23′′ 17.61 120.65 Rhizophora apiculata 88.28 Muddy Sand

39 119◦42′50.10′′ 8◦39′21.53′′ 14.59 75.95 Rhizophora apiculata 85.6 Muddy Sand

40 119◦42′49.17′′ 8◦39′22.71′′ 9.22 20.22 Ceriops decandra 79.62 Muddy Sand

41 119◦42′49.07′′ 8◦39′20.05′′ 14.68 77.18 Rhizophora apiculata 83.96 Muddy Sand
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Table 3. Cont.

Plot Longitude (E) Latitude (S) DBH
(cm)

AGC
(Mg C ha−1) Dominant Species Canopy Cover

(%) Substrate

42 119◦42′50.11′′ 8◦39′18.93′′ 13.36 58.89 Rhizophora mucronata 76.91 Muddy Sand

43 119◦42′48.76′′ 8◦39′18.03′′ 13.73 63.04 Rhizophora mucronata 85.35 Muddy Sand

44 119◦42′47.52′′ 8◦39′16.97′′ 18.22 131.36 Rhizophora apiculata 82.2 Sandy Mud

45 119◦42′46.77′′ 8◦39′15.50′′ 13.01 47.12 Ceriops decandra 82.87 Sandy Mud

46 119◦42′45.96′′ 8◦39′13.78′′ 14.98 81.12 Rhizophora apiculata 84.39 Sandy Mud

47 119◦42′45.42′′ 8◦39′12.29′′ 7.96 14.08 Ceriops decandra 81.1 Sandy Mud

48 119◦42′43.83′′ 8◦39′12.11′′ 15.53 83.73 Lumnitzera racemosa 77.42 Sandy Mud

49 119◦42′44.60′′ 8◦39′10.84′′ 18.10 129.16 Rhizophora apiculata 83.39 Muddy Sand

50 119◦42′42.76′′ 8◦39′8.20′′ 11.79 45.01 Rhizophora apiculata 82.41 Sandy Mud

4.2. Model Performance and Comparison

Table 4 and Figure 4 compare the model performance of the three ML techniques with
all input variables derived from S2B MSI, VIs, and S1A together with SAR transformation
as well as DEM and the proposed hybrid XGB-GA model with the optimal 12 features.
The hybrid model XGB-GA yielded the highest performance in both the training phase
(R2 = 0.857) and the testing phase (R2 = 0.758) and had an RMSE = 15.40 Mg C ha−1 for
mangrove AGC estimation in the study site. The XGB-GA model incorporating the S2B
(6 MS bands), and VIs (5 bands) together with DEM data achieved the highest performance,
reflecting a good fit between the model estimates and field-based measurements. The next-
highest performers in the testing phase were the XGB (R2 = 0.572) and the RF (R2 = 0.529)
models. In contrast, the SVM model (R2 testing = −0.039) was unsuitable for estimating
the mangrove AGC at Loh Buaya (Table 4).

Table 4. Performance comparison of ML techniques on mangrove AGC estimation (bold values
highlight the best-performing model).

No Machine Learning Model R2 Training (80%) R2 Testing (20%) RMSE (Mg C ha−1)

1 Extreme Gradient Boosting (XGB) 0.892 0.572 16.45
2 Support Vector Machine (SVM) 0.747 −0.039 38.74
3 Random Forests (RF) 0.807 0.529 18.11

4 Extreme Gradient Boosting optimized
by Genetic Algorithm (XGB-GA) 0.857 0.758 15.40

Table 5 compares the effectiveness and performances of the XGB-GA model in four
scenarios (SC) for mangrove AGC estimation using difference integrations of S2B, S1A, VIs,
SAR transformations, and DEM data. The XGB-GA models using the different combinations
of datasets had promising results in both four SC with the R2 greater than 0.57 in the testing
phase. The XGB optimized by the GA with 12 optimal features in SC3 produced the best
accuracy with the highest R2 of 0.758 and the lowest RMSE of 15.40 Mg C ha−1 as well as
reduced overfitting problems in both the training and the testing phases.
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Figure 4. Scatter plots of the estimated (Y-axis) and measured (X-axis) mangrove AGC in the three
ML models and the proposed hybrid XGB-GA model (a) XGB, (b) SVM, (c) RF, (d) XGB-GA.

Table 5. Performance of the XGB-GA model using different numbers of variables (bold values
highlight the best-performing model).

Scenario
(SC) Number of Variables R2 Training Set R2 Testing Set RMSE (Mg C ha−1)

SC1 14 variables (12 MS bands of S2B data + 2
backscatter coefficients VV and VH of S1A) 0.997 0.651 21.66

SC2 27 variables (12 MS bands of S2B + 12 VIs + 2
backscatter coefficients VV & VH of S1A + DEM) 0.892 0.572 16.45

SC3 12 optimal variables (6 MS bands of S2B + 5 VIs
+ DEM) 0.857 0.758 15.40

SC4 32 variables (2 backscatter coefficients VV & VH of
S1A + 30 SAR transformations) 0.991 0.573 15.82

4.3. The Important Variables

Among the 12 multispectral bands of S2B, the Red Edge-3 (Band 7 at 779.7 nm), and
the Red (Band 4 at 664.9 nm) were the most sensitive to mangrove AGC in the current
study, followed by the two SWIR spectra (band 11 at 1610.4 nm and band 12 at 2185.7 nm).
Interestingly, among the 12 VI indices, the Modified Chlorophyll Absorption in Reflectance
Index (MCARI) and the Green Normalized Difference Vegetation Index (GNDVI) were
also important variables for estimating mangrove AGC in the study area, followed by
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the Soil-Adjusted Vegetation Index (SAVI) and the Normalized Difference Index (NDI45)
(bands 4 and 5 of S2B) (see Figure 5). The DEM data showed that mangrove AGC was
sensitive to elevation. It is noted that the VH and VV backscatter coefficients of the S1A
C-band and their SAR transformations were likely less important and were eliminated in
the final optimal 12 features selection using the GA algorithm (Figure 5).
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4.4. Mangroves AGC Models

The prediction performance of the XGB-GA model for estimating mangrove AGC was
improved by combining the S2B multispectral bands, VIs, and DEM datasets. Thus, the
hybrid XGB-GA model was employed for generating mangrove AGC in the study area. The
final results were computed to a raster in GeoTiff format for visualization. The AGC map
was interpreted (Figure 6), showing the mangrove AGC ranging from 2.52 to 123.89 Mg C
ha−1 (average = 57.16 Mg C ha−1).
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5. Discussion

Rhizophora was the dominant genus in the study area, in common with other Indone-
sian mangroves forests at Karimun Jawa island [80,81], Bali island [82], and East Java [83],
and is the dominant tropical genus [84]. Besides Rhizophora sp., other important species
found in the study area included Ceriops decandra and Lumnitzera racemosa, their first obser-
vation in the area (c.f. Erdmann [37] and Suraji et al. [38]. The estimation of AGC calculation
was controlled by tree density and girth [16,85], and also wood density [86]. Canopy cover
provided a negligible contribution to biomass, though is likely to be sensitive to variation
in hydroperiod [17] and influence forest productivity.

Our results show that the XGBR-GA model yielded the highest performance in the
estimation of mangrove AGC, with an R2 and an RMSE of 0.758 and 15.40 Mg C ha−1,
respectively. The lowest performing model was SVM, with an R2 and an RMSE of −0.039
and 38.74 Mg C ha−1. Both the XGB model (R2 = 0.572) and the RF model (R2 = 0.529)
produced a relatively good performance for the estimates of mangrove AGC, indicating that
the ensemble decision trees regression models were suitable for mapping mangrove AGC.
As shown in Tables 4 and 5, the combined S2B and VIs as well as DEM data significantly
improved the estimation of mangrove AGC in the study area. Backscatter coefficients and
transformations generated from the dual polarimetric VV and VH of the S1A C-band were
less important. These results are strongly consistent with a recent study in Northern Viet-
nam [35] and prove that the ML approach can also depict mangrove biomass/carbon with
satisfying results compared to conventional parametric regression models. This is due to
the ability to provide nearly unbiased error prediction and select effective variables [87,88].
Overall, the XGB-GA model performed well and outperformed the existing algorithms
for estimating mangrove AGC in an Indonesian mangrove national park. Indonesian
Government through the Ministry of Environment and Forestry has released an operational
plan for FOLU (Forestry and Other Land Use) Net Sink to reduce greenhouse emission
in 2030 [89] and mangrove has been mentioned for their potential for carbon absorption
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ability. Therefore, this study could potentially support that policy using a state-of-the-art
and scientific approach.

The XGB-GA model estimated the mangrove AGC at Loh Buaya ranging from 2.52 to
123.89 Mg C ha−1 with a mean of 57.16 Mg C ha−1. These numbers fit well a range between
13.63 and 143.94 Mg C ha−1 with a mean measured mangrove AGC of 57.32 Mg C ha−1

(Table 3). In comparison to existing global coarse (30 m) mangrove biomass datasets [90],
the results of this study produced a more suitable AGC range corresponding to field AGC
data, with promising R2 and RMSE values. More accurate information on mangrove
biomass is frequently produced by higher satellite spatial resolution [91]. This finding is
consistent with the finding of Nguyen [92], who compared the ability of Sentinel-2 and
Landsat-8 to map the AGB of mangroves in Vietnam. However, the proposed hybrid model
was likely under-estimating at high observed carbon values and over-estimating at low
observed carbon values. The scatterplot in Figure 4d depicts the prediction ability of the
proposed hybrid XGB-GA model with optimal features to estimate the AGC of mangrove
forests ranging from 10 to 100 Mg C ha−1 with the highest accuracy between 20 and 80 Mg
C ha−1. One possible reason could be the saturation levels for mangrove AGC estimates
of S2B data, resulting in weak prediction performance at high AGC values and dense
mangrove canopy densities observed in Indonesian mangrove ecosystems as reported
by [88]. Further research focuses on the data integration and fusion between multispectral
and longer wavelength SAR sensors, particularly integrating S2B and ALOS-2 PALSAR-2
to overcome the limitation saturation problem of the S2B sensor.

The results of variable importance in Figure 5 showed that the mangrove AGC at
the Loh Buaya in Indonesia was largely retrieved from the Red band and the Red Edge
bands. A similar observation was reported in other mangrove regions in Southeast Asian
nations [87,93]. The Red and the Red Edge, and SWIR reflectance are more sensitive
indicators to mangrove carbon stock volume than the visible reflectance [94]. Our results
also revealed that the new vegetation index NDI45, which is generated from bands 4 and
5 of the S2B sensor, is probably correlated with mangrove AGC. The two SWIR spectra
(bands 11 and 12) as well as the narrow NIR (band 8A) also play a vital role in estimating
mangrove AGC. Noticeably, the MCARI derived from S2B was strongly correlated with
mangrove AGC in the national park. The high quality of a national DEM also contributes
to the hybrid ML model as it is strongly related to the distribution of mangrove canopy
cover as shown in a recent study [17]. Furthermore, this is the first use of the national DEM
for mangrove AGC estimation, though it is commonly used for disaster-related mapping,
e.g., tsunami and tidal flood [95,96].

6. Conclusions

We incorporated S2B and S1A together with national DEM data into the XGB-GA
model to estimate the mangrove AGC in an Indonesian mangrove area for the first time. The
XGB-GA model outperformed other well-known ML models in mangrove AGC retrieval
at Loh Buaya. The proposed hybrid XGB-GA with 12 optimal features estimated the
mangrove AGC with the highest prediction accuracy for the first time in the Indonesian
mangrove ecosystems (R2 = 0.758, RMSE = 15.40 Mg C ha−1). Interestingly, we found that
new vegetation indices derived from the S2B data, such as the Normalized Difference Index
(NDI45) and the Modified Chlorophyll Absorption in Reflectance Index (MCARI) were
sensitively detected mangrove AGC in the Indonesian mangrove ecosystem.
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