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Abstract: It remains challenging to control Tomicus spp., a pest with fast spreading capability, leading
to the death of large numbers of Pinus yunnanensis (Franch.) and posing a severe threat to ecological
security in southwest China. Therefore, it is crucial to effectively and accurately monitor the damage
degree for Pinus yunnanensis attacked by Tomicus spp. at large geographical scales. Airborne hyper-
spectral remote sensing is an effective, accurate means to detect forest pests and diseases. In this
study, we propose an innovative and precise classification framework to monitor the damage degree
of Pinus yunnanensis infected by Tomicus spp. using hyperspectral UAV (unmanned aerial vehicle)
imagery with machine learning algorithms. First, we revealed the hyperspectral characteristics of
Pinus yunnanensis from a UAV-based hyperspectral platform. We obtained 22 vegetation indices
(VIs), 4 principal components, and 16 continuous wavelet transform (CWT) features as the damage
degree sensitive features. We classified the damage degree of Pinus yunnanensis canopies infected by
Tomicus spp. via three methods, i.e., discriminant analysis (DA), support vector machine (SVM), and
backpropagation (BP) neural network. The results showed that the damage degree detected from
the BP neural network, combined with 16 CWT features, achieved the best performance (training
accuracy: 94.05%; validation accuracy: 94.44%).

Keywords: UAV; hyperspectral sensors; Tomicus spp.; plant diseases; plant condition monitoring

1. Introduction

Tomicus yunnanensis (Curculionidae, Scolytinae) has been identified as a destructive
pest that has caused tremendous damage to 1.5 million hectares of Pinus yunnanensis
(Franch.) since 1980, resulting in severe losses to local ecological security and economy
in Yunnan, China [1,2]. Therefore, it is imperative to develop an efficient and accurate
method to monitor and control the spread of the Tomicus yunnanensis that are essential
for maintaining the ecological security barrier and biodiversity conservation. Traditional
field investigation methods primarily rely on manual ground surveys and experience from
experts. However, ground surveys are largely limited due to the high cost, the strong
seasonality, and the complex topography of the investigations sites, failing to provide
repeated information with high frequency at a large geographical scale [3,4]. In recent
years, remote sensing has been gradually recognized as a powerful technique to identify
infected trees or crops in agriculture and forestry due to its capability of providing extensive
coverage and fine-grained spatio-temporal information [5–7]. In particular, hyperspectral
remote sensing provides fine-band reflectance, which can retrieve important information
that includes the plant chlorophyll content, moisture, and structural and physiological
indicators, establishing a venue where monitoring forest pests and diseases becomes
possible [8–12].
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Existing hyperspectral remote sensing studies can be mainly divided into four cate-
gories. (1) Satellite/airborne-based hyperspectral: Satellite-based hyperspectral is widely
used to monitor the forest disease and pests due to its advantages such as extensive ground
coverage and regular data acquisition capability [13–15]. The suitability of vegetation
indices obtained from the satellite-based hyperspectral image was used to evaluate and
monitor stress symptoms induced by the invasion of cypress aphids [16]. Since then, hy-
perspectral satellite data with higher spatial resolution, such as GF-5 (30 m) and Zhuhai-1
(10 m), have been gradually applied to monitor pest and disease disasters. (2) Non-imaging
hyperspectral: Efforts have been made to predict the chlorophyll content or other indica-
tors based on the spectral feature from the hand-held non-imaging spectrometers. The
chlorophyll content and density were predicted from the spectral characteristics [17]. The
optimal hyperspectral bands for identifying Pinus massoniana (Lamb.) trees infected by
Bursaphelenchus xylophilus (Pine wood nematode) disease were determined and the chloro-
phyll content of infected trees was assessed [18]. Non-imaging hyperspectral images have
great potential for the accurate monitoring of pests and diseases but are not suitable for
regional-scale monitoring [19]. (3) Ground-based imaging hyper-spectrometers: Ground-
based hyperspectral imaging spectrometers can reach nanometer levels, which promotes
widespread applications in forestry, agriculture, ecology and the environment [20]. (4) UAV
(Unmanned Aerial Vehicles) hyperspectral platforms: UAVs have been widely used in
forest pests and diseases due to their capability to cover relatively large areas and to dis-
criminate healthy from sick trees based on spectral characteristics [21]. 3D-CNN models
were used to detect early pine wilt disease based on UAV hyperspectral images [22]. A new
processing method for analyzing spectral characteristics in forested environments, as well
as for mapping individual anomalous trees, was developed based on UAV hyperspectral
data [23].

When vegetation is attacked by pests and diseases, water and nutrient delivery will be
impeded, leading to the color changing from green to red or gray externally and modifying
the spectral reflectance [21]. It is difficult to distinguish such a change with the naked eye.
Even for multispectral images and aerial RGB images, the detection of the damage level
remains challenging [4]. The UAV’s hyperspectral sensors, with a low cost and narrow
bandwidths, can achieve dynamic monitoring for forest pests and diseases, thanks to their
capability of identifying minor changes in the spectral characteristics of individual tree
crowns or canopies infected by pests and diseases [24]. However, existing studies mainly
focus on the identification and classification of dead wood, while few studies explored the
potential of UAVs coupled with multispectral sensors in diagnosing the damage degree
caused by diseases. However, Liu et al. (2020) [19] distinguished healthy and damaged
Pinus yunnanesnsis and identified the infestation severity of Tomicus spp. via diagnostic
models, but it had a low accuracy at 79.17%~87.50%, presumably due to the fact that they
only used the spectral features and statistical method to discriminate the damage level of
Pinus yunnanesnsis infected by Tomicus spp.

Thus, built upon the work by Liu et al. (2020) [19], we aim to explore an effective
and accurate detection framework to distinguish the damage degree by calculating the
death rate. First, we obtained 120 high-resolution photos of Pinus yunnanesnsis from
UAV, calculated the death rate, and identified the damage degrees. Further, we derived
spectral features from the vegetation index (VI), principal component analysis (PCA),
and continuous wavelet transform (CWT). Finally, the damage degree was classified by
discriminant analysis (DA), support vector machine (SVM), and backpropagation (BP). The
results of this study are expected to provide an essential scientific basis for monitoring
the damage of Pinus yunnanensis caused by Tomicus spp. Meanwhile, the study provides a
technical reference for the detection and control of the damage of Pinus yunnanensis caused
by Tomicus spp.
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2. Materials and Methods
2.1. Study Area

Our study area (Figure 1) is located beside the Heilongtan Reservoir in Shilin County,
Yunnan Province (103◦19′53.454′′–103◦20′17.78′′ E, 24◦45′58.536′′–24◦46′19′′ N), with an
altitude between 1700 and 1950 m. As the national central monitoring station for forests,
Tomicus spp. is one of the primary targets to be monitored. Pinus yunnanensis in Shilin
County covers about 260.50 km2, accounting for 47.48% of the arbor forest. The annual
average occurrence of Tomicus spp. is more than 6.67 km2. The Tomicus spp. lays eggs
twice a year, with a population ratio of 8:2 between the two generations. The adults tend to
migrate from the damaged tips to the trunk for overwintering, and most of them remain
inside the damaged tips. Relying on the data recorded by the Forest Prevention Station of
Shilin County, we selected our study area covering 0.23 km2 (Figure 1).
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Figure 1. Our study area is located in Yunnan, China.

2.2. Data Acquisition and Processing
2.2.1. Sample Data Collection

1. Ground sample data collection

The damaged shoot ratio (DSR) is a commonly used parameter to identify the damage
level of Pinus yunnanensis infected by Tomicus spp. Therefore, we divided the damage
degrees of the Tomicus spp. into four classes, i.e., health, mild damage, moderate damage,
and severe damage (Table 1) based on the Standard of Forestry Pests Occurrence and
Disaster LY/T 1681-2006. Field investigation is one of the most effective ways to accurately
determine the damage of Pinus yunnanensis damaged by Tomicus spp. Meanwhile, the
Tomicus spp. tends to transfer from the tip to the trunk to lay eggs and reproduce in
November. Therefore, we investigated the damaged shoot ratio of the ground (ground-
DSR) of individual Pinus yunnanensis infected by Tomicus spp. from 18 to 30 November
2019. First, the samples of damaged Pinus yunnanensis were randomly and evenly selected
in the study area. Then, the latitude and longitude locations of the sample spot, the number
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of dead shoots, and the total number of shoots were counted and recorded through artificial
ground visual measurements around the trees. The damaged shoot ratio (DSR) can be
calculated by the following:

DSR =
n
m
× 100% (1)

where n represents the number of dead shoots, and m is the total number of shoots.

Table 1. Damage degree of Pinus yunnanensis (Franch.) by Tomicus spp. and the canopy characteristics.

Damage Degree DSR (%) Canopy Characteristics

Health <10 The tree crown is normal

Mild Damage 10~20 A few damaged shoots begin to turn yellow or reddish brown

Moderate Damage 21~50 A few damaged shoots turn reddish brown

Severe Damage >51 Damaged shoots are reddish brown or gray

Finally, a total of 120 samples were randomly selected (evenly distributed in classes):
30 healthy trees, 30 mild damage trees, 30 moderate damage trees, and 30 severe damage trees.

2. Canopy sample data collection

A significantly positive linear correlation exists between Ground-DSR and Canopy-
DSR, so Ground-DSR can be fitted by Canopy-DSR to identify the damage degree to Pinus
yunnanensis. Therefore, we performed UAV canopy data collection of Pinus yunnanensis on
18 November 2019. The drone was equipped with M200+Z30 and flew 2.5 to 5 m above the
wood (Figure 2). The Z30 camera supports a 30x optical zoom lens and a 6x digital zoom
lens. By stretching the lens, the dead shoot and wormhole can be clearly collected at a
height of 100 m, and the wormhole eaten by the Tomicus spp. can be found through the lens
scanning to identify the damaged Pinus yunnanensis. A total of 120 canopy pictures were
obtained, and the dead shoot can be identified visually. The dead shoot can be counted
visually and recorded, and the DSR can be calculated according to Equation (1).
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3. Ground hyperspectral of Pinus yunnanensis needle

We measured the ground hyperspectral data with a SOC710VP imaging spectrometer
(Table 2). A total of 80 samples were selected from the 120 samples. Using high-branch
shear, 80 needle samples were collected in the test area (20 healthy samples, 20 mild-
damaged samples, 20 moderate-damaged samples, and 20 severe-damaged samples). The
samples were collected from different directions of the upper, middle and lower parts of a
single Pinus yunnanensis. The needle spectrum in different damage levels was derived in a
laboratory under controlled lighting conditions.

Table 2. Detailed technical parameters of SOC 710VP image spectrometer and airborne hyperspectral
S185 imager.

Technical Parameter of SOC
710VP Image Spectrometer

A Parameter Value of SOC
710VP Image Spectrometer

Technical Parameter of Airborne
Hyperspectral S185 Imager

A Parameter Value of Airborne
Hyperspectral S185 Imager

Spectral range 400~1000 nm Spectral range 450~950 nm
Height of objective lens and

f-number 50 cm and 5.6 sample interval 4 nm

Spectral resolution 4.68 nm Spectral resolution 8~532 nm
channels 128 channels 125

Exposure time 35 ms Measured Time 0.1~1000 ms
speed 32 Cubes/s Hyperspectral imaging speed 5 Cubes/s

dynamic range 12 bit dynamic range 12 bit

2.2.2. Hyperspectral Imagery Acquisition Based on a UAV Platform

Hyperspectral data were collected on 17 November 2019, from 11:00 a.m. to 2:00 p.m.
in windless and clear-sky conditions using a UHD S185 hyperspectral imager (Cubert
GmbH, Ulm, Baden-Württemberg, Germany) on a DJI M600 Pro multi-rotor UAV (DJI,
Shenzhen, China). With its snapshot imaging technology, the UHD S185 spectrometer can
instantaneously obtain accurate hyperspectral cube data across the entire field of view.
Table 2 lists the main parameters of the UHD S185. The data acquisition route was planned
by DJI Go Pro (DJI, Shenzhen, China). The reflectance between 0% and 100% was obtained
via standard white and black calibration corrections (Figure 3b). Considering the actual
terrain and vegetation conditions, the UAV flight altitude was set to 100 m above the
ground, with a flight speed of 5 m/s, forward overlaps of 70%, and side overlaps of 60%,
with an average flight altitude of 1832 m. The obtained images contain 125 bands (450 to
950 nm) with a spatial resolution of 0.1 m. The Global Positioning System (GPS) and inertial
Measurement Unit (IMU) modules are integrated into the UAV, with horizontal and vertical
position errors of approximately 2.0 m and 5.0 m, respectively, with a positioning accuracy
of approximately 1◦. In small-area image analysis, relative position is more important than
absolute horizontal position and absolute vertical position. Therefore, these error margins
are acceptable in small-area forestry surveys (See Liu et al., 2020 [19]). We synchronized
the position and orientation system (POS) to correct the hyperspectral data. Meanwhile,
we acquired the RGB orthophoto image based on UAV for geometric correction of the
hyperspectral data. All experimental data are shown in Table 3.

Table 3. Summary of experimental data.

Sample Type Number Sampling Methods

DSR collection 120 samples Manual visual counting
Damaged needle 80 samples Cut branches of sampled trees
Canopy photos 120 samples Z30 camera based on UAV

Needle hyperspectral data 80 samples SOC710VP
The airborne hyperspectral imager 6.67 km2 UHD S185
Airborne hyperspectral spectrum 120 samples Manual drawing
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2.2.3. Data Preprocessing

It is important to extract a canopy spectrum of Pinus Yunnanensis accurately. The
selection of ROI (Region of Interesting) significantly affects the extraction of canopy spectral
information. In this study, the ROI selection tool based on ENVI software was used to draw
the canopy range by combining it with the latitude and longitude location information of
the ground survey.

Ground hyperspectral data were processed based on the SRAnal710e software, in-
cluding black field calibration, radiation calibration, spectral calibration, and converting
the DN value into reflectance. The pre-processing process of ground hyperspectral data
obtained by SOC710VP contains three major steps: (1) Spectral calibration: SOC710VP
hyperspectral data were calibrated, allowing the calibration file directly to be accessed
through SRAnal710e. (2) Radiation calibration: We conducted radiation calibration using
the SRAnal710e software. (3) Converting DN value into reflectance: We selected the ref-
erence area, saved DN values, referred to the reflectance references, and converted them
into reflectance.

The manufacturer provides the radiometric calibration of the canopy hyperspectral
data, and the atmospheric, geometric, and topographic corrections are processed based on
the ENVI 5.3 platform. We standardized the reflectance records:

R′i =
Ri
1

n ∑n
i=1 Ri

(2)

where Ri is the initial reflectance; n is the total of bands (n = 125), and R′i is the normalized
reflectance.

The captured hyperspectral data are noisy for various reasons, such as the equip-
ment, soil, topographic, and light conditions. We used the Savitzky–Golay (S–G) method



Forests 2023, 14, 61 7 of 25

to smooth the spectral reflectance [25,26], ensuring the quality of the spectral curve by
removing noises:

χn,s= 1
G ∑m

i=−m χn+1gi
(3)

where χn,s represents the smoothed spectral value at the wavelength of n; gi
G denotes the

parameter estimated by the least squares method; G is the normalization factor; g is the
smoothing factor.

To further improve the spectral quality, we further processed the original spectral
curve by calculating the first derivative of the spectral reflectance [27]:

R′(λi) =
dR(λi)

dλ
=

R(λi + 1)− R(λi − 1)
2∆λ

(4)

where λi is the wavelength at i, R(λi) represents the spectral value of wavelength λi; ∆λ is
the interval between λi − 1 and λi + 1.

2.3. Methods

We first preprocessed the spectral reflectance and derived canopy spectral features
from vegetation indices (VI), principal components and continuous wavelet transform
(CWT) to reduce the dimensionality. Then, we classified the damage degrees of Pinus
yunnanensis by Tomicus spp. via algorithms that include DA, SVM, and BP. Finally, we
validated the classification results and analyzed the feasibility of different methods for
varying damage degrees.

2.3.1. Spectral Feature Extraction

1. Vegetation index (VI)

Vegetation indices can reflect the plant’s physiological characteristics. The spectral
reflectance changes are affected by Tomicus spp. due to the altered chlorophyll content
levels. In this study, we extracted 10 vegetation indices (Table 4), and selected 20 hyper-
spectral features (Table 4) by combining canopy spectral curves and first-order derivative
features [28–30].

Table 4. Vegetation indices and spectral features.

Variable Categories Parameter Names Variable Definitions and Formulas

Vegetation indexes

NDVI
Normalized Difference Vegetation Index

NDVI =
(

R(760∼850) − R(650∼670)

)
/
(

R(760∼850) + R(650∼670)

)
NDVI705 NDVI705 = (R750 − R705)/(R750 + R705)

RVI Ratio vegetation index RVI = RNIR/RRED
GI GI = R544/R677

DVI Difference vegetation index DVI = RNIR − RRED
PRI PRI = (R531 − R570)/(R531 + R570)

PSRI PSRI = (R682 − R498)/R749
TVI TVI = 0.5 ∗ [120 ∗ (R750 − R550)− 200 ∗ (R670 − R550)]

SAVI SAVI = R800/(R700 + R800)
YI YI = (R580 − 2 ∗ R630 + R680)/2500

Location parameters
Rg

Green peak, the maximum reflectance in the wavelength range
510 to 560 nm

Rr
Red valley, the minimum reflectance in the wavelength range

640 to 680 nm
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Table 4. Cont.

Variable Categories Parameter Names Variable Definitions and Formulas

Positional parameters

Db
The maximum value of the first derivative in the blue edge region

(490~530 nm)

Dy
The maximum value of the first derivative spectra in the yellow edge

region (550~582 nm)

Dr
The maximum value of the first derivative spectra in the red edge

region (680~780 nm)

Dnir
The maximum value of the first derivative spectra in the

near-infrared region (780~1300 nm)

Area parameter

SDb
The sum of the first derivative values in the blue edge region

(490 to 530 nm)

SDy
The sum of the first derivative values in the yellow edge region

(550 to 582 nm)

SDr
The sum of the first derivative values in the red-edge region

(680 to 780 nm)

SDnir
The sum of the first derivative values in the near-infrared region

(780~1300 nm)

Characteristic parameters
of vegetation indexes

Rg/Rr The ratio of green peak reflectance (Rg) to Red Valley reflectance (Rr)
SDr/SDb The ratio of SDr to SDb
SDr/SDy The ratio of SDr to SDy

SDnir/SDb The ratio of SDnir to SDb
SDnir/SDr The ratio of SDnir to SDr

(Rg − Rr)/(Rg + Rr) Normalized values of Rg and Rr
(SDr − SDb)/(SDr + SDb) Normalized values of SDr and SDb(
SDr − SDy

)
/
(
SDr + SDy

)
Normalized values of SDr and SDy

(SDnir − SDb)/(SDnir + SDb) Normalized values of SDnir and SDb
(SDnir − SDr)/(SDnir + SDr) Normalized values of SDnir and SDr

2. Principal component analysis (PCA)

Principal component analysis (PCA) is a technique for feature extraction that reduces
the dimensionality of a dataset and increases the interpretability to preserve the maximum
amount of information [31–33]. An n × m matrix is transformed into an n × k matrix
(k < m). In PCA, the first principal component is the direction in space with maximized
variance, which is calculated so that it accounts for the greatest possible variance in the
dataset. The second principal component, uncorrelated with the first principal component,
is the direction orthogonal to the first, with the second-largest variance. Then, a total of
p principal components was derived in the same way, equal to the original number of
variables. The transformations of the original variables to the principal components follow:

P = QTQ (5)

where P is the spectral matrix, the sum of the outer products of the m-dimensional spectral
vectors for n samples; Q is the score matrix Q = {Q1Q2 . . . . . . Qi}(i < m), and T is
the principal component matrix T = {T1T2 . . . . . . Ti}. The principal components are
eigenvectors of the data’s covariance matrix, which are commonly computed by the eigen
decomposition of the data covariance matrix.

In this study, we computed the characteristic values of each component and the
cumulative and single contribution rate for 125 channels from UAV’s hyperspectral data.

3. Continuous Wavelet Transform (CWT)

The continuous wavelet transform (CWT) is a non-numerical way that provides an
overcomplete representation of a signal by letting the translation and scale parameters
of the wavelets vary continuously. CWT is one of the important methods for conducting
hyperspectral vegetation feature extraction, which can separate multiple features of the
reflectance spectrum through high- and low-frequency information. It can obtain wavelet
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energy decomposed coefficients at different locations and scales, generating stronger spec-
tral features after correlation analysis [34–36]. First, the original reflectance spectrum is
decomposed into wavelet coefficient spectra of multiple scales. Each scale is a frequency of
spectral variation; different scales represent different frequencies; lower scales correspond
to higher frequencies. Note that the number of the spectra of wavelet coefficient and the
number of spectral bands is the same. Then, important bands are extracted as the features
of the wavelet coefficient. The obtained wavelet features contain the spectra of a specific
range of bands:

ϕa,b(γ) =
1√
|α|

ϕ

(
γ− b

a

)
(6)

W f (a, b) =< f , ϕa,b >=
∫ +∞

−∞
f (γ)ϕa,b(γ)dγ (7)

where γ is the Daubechies (DBN) wavelet basis; a is the scale factor; b is the translation
factor;

√
|α| ensures that the energy of the function remains constant at different resolutions;

W f (a, b) is the wavelet energy factor (an m× n matrix); f (γ) is reflectivity spectrum (γ = 1,
2,. . . , m).

In this study, the DB4 in the Daubechies series is selected as the wavelet basis for
wavelet decomposition and reconstruction, with the minimum error. Therefore, the decom-
position scale is 2i (i = 1, 2, 3,..., 10), and the maximum decomposition scale is selected to be
7 by detecting the correlation coefficient between the wavelet coefficient matrix and the
damage degree.

2.3.2. Classification and Evaluation

1. Classification based on VIs, PCA and CWT

The selected features (VIs, PCA, and CWT) serve as inputs to algorithms that include
DA, SVM, and BP for the classification of the damage degrees.

DA is a multivariate method commonly utilized for classification and dimension
reduction. The objects are separated into classes in DA based on the known classification,
minimizing the intra-class variance and maximizing the inter-class variance, and finding
the linear combination of the original directions, which are called discriminant functions.
The separation between classes is the hyperplane. Among all DA models, linear discrim-
inant analysis (LDA) is particularly popular, as it can serve as a classifier while being a
dimensionality reduction technique at the same time. Quadratic discriminant analysis
(QDA) is a variant of LDA, allowing for nonlinear data separation, which can be used to
classify datasets with two or more classes.

LDA and QDA come from a simple probability model, where the model for each
category of k distribution P(X|y = k) can be attained by Bayes’ theorem:

P(y = k|X) =
P(y = k)P(X|y = k)

P(X)
=

P(y = k)P(X|y = k)
∑l P(y = l)P(X|y = l)

(8)

We maximize the conditional probability of category k. More specifically, P(X|y = k)
is modeled as a multivariate Gaussian distribution:

P(y = k|X) =
1

(2π)n√|Σ| e− 1
2 (X−µk)

TΣ−1(X−µk) (9)

where n represents the number of features. We estimate the prior probability P(y = k), class
mean µk, and covariance matrix Σ of the class from the training data. In LDA, the Gaussian
distribution of each category k shares the covariance matrix, and the linear decision surface
between the two categories can be derived by comparing the logarithmic probabilities
of the two categories, log P(y=k|X)

P(y=l|X)
. In QDA with the quadratic decision plane, there is

no assumption about the Gaussian covariance matrix. In this study, we use both LDA
and QDA.
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The SVM algorithm is a powerful and flexible supervised learning model that can
be used for classification and regression. The SVM model is a representation of different
classes of hyperplanes in a multidimensional space. The hyperplane is iteratively generated
by the support vector machine to minimize the error. It aims to find a maximum-margin
hyperplane in a multi-dimensional space that distinctly classifies the data points [37,38].

In practice, SVM algorithms are implemented with a kernel, which converts the input
data space into the desired form. SVM uses a technique called the kernel trick, which
takes a low-dimensional input space and converts it to a higher-dimensional space, i.e., the
kernel transforms a non-separable problem into a separable problem by adding dimensions.
It makes SVMs more powerful, flexible, and accurate. The kernel types of SVM include
Linear kernel, Polynomial kernel, and Radial Basis Function (RBF) kernel, to list a few. We
chose the linear kernel function (Linear) and quadratic rational kernel function (RQ) for
comparison. Linear kernel can be used as a dot product between any two observations
(Equation (10)).

K(x, xi) = sum(x ∗ xi) (10)

Polynomial kernel is a more generalized form of the linear kernel and can distinguish
curved or nonlinear input spaces.

K(x, xi) = 1 + sum(x ∗ xi)
d (11)

where d is the order of the polynomial, which needs manual specification.
Artificial neural networks (ANNs) are also known as neural networks by simulating

basic characteristics of the human brain and natural neural network. Its learning rule is
to adopt the steepest descent method in which the back propagation is used to regulate
the network’s weight value and threshold value to achieve the minimum error sum of
the square. BP neural network is a widely applied neural network model relying on
the error backpropagation algorithm [39,40]. It is a multi-layer feedforward network
trained according to the error backpropagation algorithm. The BP neural network model
includes three layers: input layer, hidden layer, and output layer. The BP algorithm has
two processes: data forward propagation and error backward propagation. The forward
propagation starts in the input layer, moves to the hidden layer, and finally reaches the
output layer. The status of each layer of neurons only affects the neurons in the next
layer. The back propagation process will be triggered if the output layer does not reach
the expected value. This error function of the network reaches the minimum value by
the alternation of two propagation processes. BP is commonly used in the hyperspectral
analysis of agricultural diseases and pests, where the nodal activation function usually
adopts a Sigmoid function (Equation (8)).

f (x) =
1

1 + e−x/p (12)

where p is the Sigmoid parameter that adjusts the activation function.
In this study, we selected Sigmoid as the activation function for the hidden layer,

Purelin function at the output layer, and trainlm as the training function.

2. Evaluation

We derived the Confusion Matrix (CM) from validation data for evaluation. CM
contains the number of correct classifications and the number of those misclassified into
other categories. We also used the Overall Accuracy (OA), Producer Accuracy (PA), and
User Accuracy (UA) to evaluate classification results according to the confusion matrix.
PA represents the probability that a pixel is correctly classified to a damage degree, while
UA represents the proportion of pixels that are correctly classified within the samples.
The PA and UA are, respectively, the complement of the Omission Error and Commission
error: the Omission Error equals 1− PA and Commission error equals 1−UA. OA is a
ratio between the number of correctly classified pixels and the total number of pixels. The
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collected 120 sample data were randomly divided into training datasets (84 samples) and
validation datasets (36 samples), following a ratio of 7:3.

OA =
n

∑
k=1

Pkk
p

(13)

PA =
Pjj

∑n
i=1 Pij

(14)

UA =
Pii

∑n
j=1 Pij

(15)

where OA denotes the overall classification accuracy, Pij is a ratio between the of category
ith in classification and the actual category jth .

3. Results
3.1. Results of Canopy Spectral Feature Extraction
3.1.1. Vegetation Indices (VI)

Table 5 presents the results of the variance analysis of 30 spectral features (including
ten vegetation indices and 20 hyperspectral parameters) with damage degrees. Features
that include NDVI, NDVI705, RVI, GI, DVI, PRI, PSRI, TVI, SLAVI, YI, Rg, Rr, Db, Dr, Dnir,
SDb, SDy, SDr, SDnir, Rg/Rr, (Rg−Rr)/(Rg+Rr) and (Sdr−SDy)/(Sdr+SDy) present strong
differences, while features that include Dy, SDr/SDb, SDr/SDy, SDnir/SDb, SDnir/SDr,
(SDr−SDb)/(SDr+SDb), (SDnir−SDb)/(SDnir+SDb), and (SDnir−SDr)/(SDnir+SDr) present
no significant difference.

Table 5. Results of variance analysis of vegetation index and hyperspectral characteristic parameters
of Pinus yunnanensis canopy with different degrees of damage.

Name F-Value p Name F-Value p

NDVI 19.368 0.000 Dnir 5.453 0.002
NDVI705 15.137 0.000 SDb 18.74 0.000

RVI 21.486 0.000 SDy 20.178 0.000
GI 22.854 0.000 SDr 30.361 0.000

DVI 29.059 0.000 SDnir 22.676 0.000
PRI 9.703 0.000 Rg/Rr 22.214 0.000

PSRI 13.936 0.000 SDr/SDb 1.335 0.266
TVI 31.099 0.000 SDr/SDy 1.599 0.193

SLAVI 14.577 0.000 SDnir/SDb 2.838 0.041
YI 6.665 0.000 SDnir/SDr 1.837 0.144
Rg 6.344 0.001 (Rg − Rr)/(Rg + Rr) 20.947 0.000
Rr 5.332 0.002 (SDr − SDb)/(SDr + SDb) 1.455 0.231
Db 14.462 0.000

(
SDr − SDy

)
/
(
SDr + SDy

)
8.57 0.000

Dy 3.745 0.013 (SDnir − SDb)/(SDnir + SDb) 3.262 0.024
Dr 30.868 0.000 (SDnir − SDr)/(SDnir + SDr) 1.134 0.338

3.1.2. Principal Component Analysis (PCA)

We obtained the principal components using the eigenvalues based on PCA anal-
ysis and then calculated cumulative contribution rates. To avoid information loss and
improve the classification accuracy, principal components were selected for which the
eigenvalues > 1 and cumulative contribution rate reached more than 99%. The contribu-
tion rate reached 73.84% for the first principal component, which can better represent
all the spectral information. The cumulative contribution rate of the first four principal
components was 99.14% (Figure 4).
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3.1.3. Continuous Wavelet Transform (CWT)

The original spectra were decomposed by the wavelet basis functions. As the wavelet
basis function, DB4 was used to calculate the wavelet coefficients for different damage
degrees. The number of spectral reflectance bands was 12, and the decomposition scale
was set to 2i (i = 1, 2, 3, . . . , 10). We further calculated the wavelet coefficient matrix and
the correlation coefficients between the wavelet coefficient matrix and DSR. The results
suggested that the correlation coefficients remained stable with scales from 8 to 10. There-
fore, the maximum decomposition scale was set to 7 (Figure 5). The wavelet coefficients
with higher correlation on a scale of 1–7 failed to achieve dimensionality reduction; thus,
we conducted multicollinearity analysis on wavelet coefficient features.
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The multicollinearity analysis aims to remove the redundancy in the wavelet coeffi-
cients. The multiple linear regression and multicollinearity analysis were used to diagnose
the variables corresponding to 125 × 7 wavelet coefficients and DSR. We observed that
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the R2 values gradually increased with decreased standard estimation errors. Then, we
obtained a total of 16 features with collinearity and a strong correlation with DSR (0.991)
at the 22nd fitting. The variance inflation factor (VIF) of the 16 features was less than 10
(Table 6), indicating their weak collinearity. In addition, the probability p-values (signif-
icance Sig.) of the t-tests were all less than 0.05, indicating that these features showed a
significant correlation with DSR.

Table 6. CWT characteristics and collinearity statistics.

Number Scale λ (nm) Sig. VIF Number Scale λ (nm) Sig. VIF

WF1 3 822 0.000 8.725 WF9 1 678 0.000 1.183
WF2 3 854 0.000 1.631 WF10 4 662 0.007 2.165
WF3 2 542 0.000 1.643 WF11 2 910 0.000 2.059
WF4 2 626 0.000 1.758 WF12 6 474 0.000 1.964
WF5 3 630 0.000 2.284 WF13 1 714 0.000 5.072
WF6 2 474 0.000 4.355 WF14 1 930 0.000 3.712
WF7 6 614 0.000 1.472 WF15 3 462 0.000 1.823
WF8 5 862 0.000 1.366 WF16 5 838 0.008 1.663

3.2. Classification Results
3.2.1. Results of VI-Based Classification

The classification performance of all the methods based on VIs, PCA and CWT are
shown in Figures 6 and 7. To avoid covariance among the VI indices, LDA was used to
construct the VIs classification model. The training and validation accuracies of LDA based
on VIs were 79.76% and 80.56%, respectively. The SVM with Linear and Quadratic kernel
functions yielded training accuracies of 76.19% and 83.33%, and validation accuracies of
77.78% and 80.56%, respectively. For BP, the number of nodes in the implicit layer was set
to 9. The network structure of 22-9-1 was constructed, achieving a training accuracy of
77.38% and the validation classification accuracy of 77.78%.
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For the category of healthy, VI-LDA, VI-SVM-Linear, SVM-Quadratic and VI-BP yielded
a relatively high PA (86.36%, 81.82%, 82.61% and 80.00%) and UA (90.48%, 85.71%, 90.48%
and 76.19%), respectively (Figures 6 and 7). The confusion was mainly observed among
mild, moderate, and severe damage (SVM-Quadratic) (Figure 8). For mild damage, PA
was reduced by using DA (76.47%), SVM-Linear (72.22%), and BP (69.57%), except SVM-
Quadratic (93.75%). UA was decreased by using DA (61.90%), SVM-Linear (61.90%), and
SVM-Quadratic (71.43%). The omission and commission errors were mainly observed
between health, mild, and moderate damage. For moderate damage, the PA was 65.55%,
65.38%, 68.97%, and 78.95%; the UA was 90.48%, 80.95%, 95.24%, and 71.43% in VI-DA,
VI-SVM-Linear, SVM-Quadratic and VI-BP. The PA was significantly reduced based on VI-
DA and VI-SVM. The confusion was mainly observed between mild damage and moderate
damage. The PA of severe damage was 100%, 88.89%, 100%, and 81.82%, and the UA was
76.19%, 76.19%, 76.19%, and 85.71%.

For the validation sample, the omission increased compared with training data in
VI-LDA (80%), VI-SVM-Linear and VI-SVM-Quadratic (61.54% and 75%), VI-BP (75%) for
the healthy category, and the UA slightly increased for SVM-Linear and SVM-Quadratic
(88.89% and 100%) and VI-BP (100%). Meanwhile, the confusion was mainly observed
between healthy and mild damage (Figure 9). For mild damage, the PA was significantly
increased based on VI-SVM-Linear and VI-SVM-Quadratic (100% and 100%) and VI-BP
(100%); however, the UA was significantly decreased based on VI-SVM-Linear and VI-
SVM-Quadratic (44.44% and 55.56%). For moderate damage, the PA was 77.78% (VI-LDA),
88.89% (VI-SVM-Linear), 77.78% (VI-SVM-Quadratic), and 66.67% (BP). For severe damage,
the PA in VI-LDA, VI-SVM-Linear, VI-SVM-Quadratic and VI-BP was 87.5%, 80%, 72.73%,
and 85.71%, respectively, and the UA was 77.78%, 88.89%, 88.89%, and 66.67%, respectively.
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3.2.2. PCA-Based Classification and Diagnosis Results

The LDA and QDA yielded an OA of 85.71% and 71.43%, respectively, for training
samples (Figure 6) and an OA of 83.33% and 72.22% for validation accuracies, respectively
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(Figure 7). The training accuracies of the SVM-Linear and SVM-Quadratic were 83.33%
and 75.00%, respectively (Figure 6), and the validation accuracies were 80.56% and 72.22%,
respectively (Figure 7). The structure of the BP neural network was set as 4-9-1, and the
training accuracy reached 91.67% (Figure 6), with a validation accuracy of 86.11% (Figure 7).

For the training sample (the category of health), PCA-LDA, PCA-QDA, PCA-SVM-
Linear, PCA-SVM-Quadratic and PCA-BP achieved 91.30%, 89.47%, 100%, 73.68% and 95%
for PA, and UA of 100%, 80.95%, 90.47%, 66.67% and 90.48%, respectively. Health was
mainly confused with mild damage (Figure 8). For mild damage, PA was 80.95%, 57.89%,
75%, 50% and 90.91%, and UA was 80.95%, 52.38%, 85.71%, 52.38% and 95.24% based on
PCA-LDA, PCA-QDA, PCA-SVM-Linear, PCA-SVM-Quadratic and PCA-BP, respectively.
The PCA-QDA and PCA-SVM-Quadratic had relatively poor performances. The mild
damage was confused with healthy and moderate damage. For moderate damage, the PA
values were 86.67%, 52.38%, 68%, 77.27%, 100%, while the UA values were 61.90%, 52.38%,
80.95%, 80.95%, 80.95%, 80.95% for PCA-LDA, PCA-QDA, PCA-SVM-Linear, PCA-SVM-
Quadratic and PCA-BP, respectively. For heavy damage, PA and UA saw a notable increase
in PCA-LDA (84% and 100%), PCA-QDA (84% and 100%), PCA-SVM-Liner (100% and
76.19%), PCA-SVM-Quadratic (100% and 100%) and PCA-BP (84% and 100%).

In the validation sample, the PCA-LDA, PCA-QDA, PCA-SVM-Linear, PCA-SVM-
Quadratic and PCA-BP achieved a PA of 88.89%, 87.5%, 88.89%, 75%, and 90% for health
and UA of 88.89%, 77.78%, 88.89%, 66.67% and 100%, respectively. For mild damage,
PA was 77.78%, 62.50%, 75%, 50%, 87.5% and UA was 77.78%, 55.56%, 66.67%, 55.56%,
77.78% for PCA-LDA, PCA-QDA, PCA-SVM-Linear, PCA-SVM-Quadratic and PCA-BP,
respectively. For moderate damage, the PA was 85.71%, 55.56%, 66.67%, 70% and 77.78% for
PCA-LDA, PCA-QDA, PCA-SVM-Linear, PCA-SVM-Quadratic and PCA-BP respectively,
and the UA was 66.67%, 55.56%, 88.89%, 77.78% and 77.78%. For severe damage, PCA-LDA,
PCA-QDA, PCA-SVM-Linear, PCA-SVM-Quadratic and PCA-BP had PA of 81.82%, 81.82%,
100%, 100%, 88.89% and UA of 100%, 100%, 77.78%, 88.89% and 88.89%, respectively.

3.2.3. CWT-Based Classification and Diagnosis Results

To avoid collinearity of wavelet features, we selected the LDA to classify the damage
degrees of Yunnan pine canopies. The OA for training and validation samples based on
CWT-LDA was 86.90% and 86.11%, respectively (Figure 6). The SVM with Linear and
Quadratic kernel functions produced an OA of 77.38% and 80.95% for training data and
75.00% and 80.56% for validation data, respectively (Figure 6). The number of the hidden
layer of BP was set to eight, producing the highest training accuracy of 94.05%, with a
validation accuracy of 94.44%.

For the training data, PA and UA were 94.74% and 85.71% (CWT-DA), 100% and
61.90% (CWT-SVM-Linear), 85.71% and 85.71% (CWT-SVM-Quadratic), 90.91% and 95.24%
(CWT-BP), respectively. For mild damage, a lower PA was yielded by CWT-SVM-Linear
and CWT-SVM-Quadratic of 61.29% and 66.67%. The confusion was mainly among healthy,
mild damage and moderate damage. For moderate damage, PA and UA achieved the
highest value of 95.24% based on CWT-BP. However, PA has a lower value for CWT-DA
(76.92%) CWT-SVM-Linear and CWT-SVM-Quadratic (70.83% and 78.95%). The maximum
commission error was 71.43% (CWT-SVM-Quadratic). For severe damage, the PA for all
methods was 100%, but UA was 76.19%, 76.19%, 80.95% and 95.24% for CWT-DA, CWT-
SVM-Linear and CWT-SVM-Quadratic, CWT-BP, respectively. Significant misclassification
was observed between moderate damage and severe damage via CWT-DA and CWT-SVM-
Linear models.

For the validation samples, the PA was 100% (CWT-DA), 100% (CWT-SVM-Linear),
70% (CWT-SVM-Quadratic) and 81.82% (BP) for the healthy category, respectively. The
commission error was observed between CWT-DA (21.22%), CWT-SVM-Linear (33.3%),
and CWT-SVM-Quadratic (21.22%), respectively. The mild damage produced a lower
accuracy of 75% (CWT-DA), 63.64% (CWT-SVM-Linear), 70% (CWT-SVM-Quadratic), and
a maximum value of 100% in CWT-BP. UA was 100%, 77.78%, 77.78% and 77.78% for CWT-
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DA, CWT-SVM-Linear and CWT-SVM-Quadratic, CWT-BP, respectively. For moderate
damage, The PA of CWT-DA, CWT-SVM-Linear, CWT-SVM-Quadratic and CWT-BP was
80%, 61.54%, 87.50%, 100%, respectively, and UA was 88.89%, 88.89%, 77.78%, 100%,
respectively. The PA values for severe damage with different methods were all 100%,
and the UA was 77.78%, 66.67%, 88.89% and 100% for CWT-DA, CWT-SVM-Linear and
CWT-SVM-Quadratic, CWT-BP, respectively.

We noticed that, overall, the classification accuracies from CWT and PCA were higher
than the ones in VI. The BP algorithm has the highest accuracy, followed by DA. BP coupled
with CWT achieves the best performance compared with all other models.

4. Discussion
4.1. Comparison between Needles and Canopy
4.1.1. Comparison of Spectral Characteristics

1. Comparison of Original Spectral Reflectance

The spectral reflectance (Figure A1) and the first derivative curves (Figure A2) of
Pinus yunnanensis by Tomicus spp. canopies with different damage degrees are shown in
Appendix A.

The spectral reflectance curve has a notable difference between the ‘red valley’ (640–700 nm)
and the ‘green peak’. The spectral reflectance difference with different damage degrees is not
significant at the ‘green peak’, but it presents a notable difference at the ‘red valley’ (Figure 10a).
With the damage of Pinus yunnanensis, the spectral reflectance for needles increased gradually,
with a disappearing ‘red valley’ (Figure 10a). The canopies’ spectral reflectance of healthy, mild,
and moderate damage had no significant variation at the ‘green peak’. The lowest reflectance
was observed in severe damage (Figure A1). These phenomena can be explained by the
difference in spectral equipment parameters for needles and canopy. Similarity exists between
the needle and canopy spectral reflectance curves at the ‘red valley’ (Figures 10a and A1), where
the healthy spectral reflectance is the lowest, and the reflectance at the ‘red valley’ increases
when the Yunnan pine needles are infested with Tomicus spp.

The result showed that the damage spectra of Tomicus spp. were similar at the two
scales. The spectral reflectance curves of different damage degrees were different in the ‘red
valley’ (640~700 nm) and fluctuated significantly in the near-infrared band. The spectral
reflectance of Pinus yunnanensis needles decreased significantly as the damage degree by
Tomicus spp. increased; Thus, the optimal spectral reflectance monitoring band lies in the
red band within the 765–838 nm range for needles (Table 7).
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Table 7. Comparison of the best monitoring windows of different damage degrees.

Damage Degree
The Optimal Spectral Reflectance Monitoring Window (nm)

Spectral Reflectance
of Needle

Spectral Reflectance
of Canopy

The First Derivative of
the Needle

The First Derivative
of Canopy

Health/Mild Damage 781, 775, 786, 791, 770,
796, 801, 765

750, 746, 754, 794, 758,
798, 762, 782

718, 723, 713, 728, 708,
734, 739, 702

714, 710, 718, 706, 722,
702, 726, 698

Health/Moderate
Damage

781, 786, 775, 791, 796,
770, 828, 801

770, 774, 758, 778, 766,
754, 762, 782

723, 718, 728, 713, 734,
739, 708, 744

714, 718, 710, 722, 706,
726, 730, 702

Health/Severe Damage 781, 786, 775, 791, 770,
796, 801, 828

778, 782, 774, 790, 786,
770, 758, 794

723, 718, 713, 728, 734,
708, 739, 702

714, 718, 710, 706, 722,
702, 726, 698

Mild/Moderate
Damage

786, 781, 791, 828, 823,
833, 775, 796

774, 770, 766, 778, 786,
762, 758, 782

723, 728, 718, 734, 713,
739, 744, 708

722, 718, 726, 714, 886,
730, 710, 890

Mild/Severe Damage 781, 786, 775, 791, 796,
770, 801, 828

778, 774, 782, 786, 790,
770, 766, 762

723, 718, 728, 713, 734,
739, 708, 744

718, 714, 710, 722, 706,
702, 726, 698

Moderate/Severe
Damage

833, 828, 838, 786, 823,
844, 781, 791

790, 802, 794, 806, 778,
782, 798, 786

718, 723, 713, 728, 708,
734, 702, 839

714, 710, 706, 718, 702,
698, 722, 694

2. Comparison of first-order derivative reflectance

The first derivative of the spectrum has an obvious peak at the ‘red edge’ (680 nm~740 nm)
at the two scales (Figures 10b and A2). With the increase in the damage degree, the peak height
gradually decreases, and the ‘red edge’ position is slightly shifted to the direction of blue light
(Figures 10b and A2). At 750–950 nm, we observed peaks and troughs, and the overall trend
of the four damage levels was similar (Figures 10b and A2). The optimal first-order derivative
monitoring band lies in 702–744 nm (i.e., the visible red band) (Table 7). As the damage degree
by Tomicus spp. increases, the spectral reflectance decreases significantly in the near-infrared
band but increases at the ‘red valley’ (Figures 10b and A2). When the damage is severe, the ‘red
valley’ disappears (Figures 10b and A2). The peak value of the curve of the first derivative of
the spectrum decreases gradually with the increase of damage degree at the ‘red edge’, and the
position of the ‘red edge’ tends to shift slightly to the blue light band (Figures 10b and A2).

4.1.2. Comparison of Sensitive Bands

The range of the optimal monitoring band for needles is roughly 765~838 nm (Table 7),
and that of the canopy was about 746~802 nm for original spectral reflectance (Table 7),
which belongs to red and near-infrared bands. It indicates that the spectral reflectance
of red and near-infrared bands can effectively monitor the different damage degrees of
Pinus yunnedanensis by Tomicus spp. The best monitoring bands for needles and canopy
are approximately 702~744 nm and 694~726 nm (located in the red wavelengths) for the
first-order derivative reflectance (Table 7).

The differences in the correlation coefficients were mainly concentrated in the range of
450–715 nm (Figures 11a and A3a). The results for the needles showed highly significant
positive correlations at 450–514 nm and 569–708 nm (Figure 11a). The correlation coefficients
of the canopy were negative at 526–562 nm but positive at 654–678 nm (Figure A3a). The
results showed that needles had a highly significant negative linear correlation with canopy
within 715–950 nm (Figure A3a). The correlation coefficient difference was mainly observed
in the 800–950 nm range both the needles and the canopy (Figures 11b and A3b). The
correlation coefficients between the needles and the canopy were inconsistent (Figure 11b).

The sensitive bands for needles and canopy are mainly concentrated in the near-
infrared and red wavelengths (Figures 12a and A4a,b), and the first-order spectral deriva-
tives are primarily concentrated in 450–750 nm and 900–950 nm (Figures 12b and A4c,d).
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Figure 11. Correlation coefficient comparison between spectral reflectance and the first derivative of
Pinus yunnanensis with different damage degrees by Tomicus (Needle) (a). The correlation coefficient
between spectral reflectance and different damage degree of Pinus yunnanensis needles; (b). The
correlation coefficient between the different damage degrees of Pinus yunnanensis needles and the
first derivative of Pinus yunnanensis needles.
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yunnanensis with different damage degrees by Tomicus (Needle). (a) Spectral reflectance of the needle;
(b) Spectral first derivative of the needle.

4.2. Existing Deficiencies and Future Prospects

We compared the spectral features between the canopy and needles based on single
samples. Further comparisons between the canopy and needles in extensive areas can im-
prove our understanding of spectral reflectance differences. However, some studies found
that image features, such as texture, play an important role in pest and disease monitoring
in multispectral imagery with high spatial resolution. Future studies are encouraged to
consider the integration of multi-source data, such as UAV-based hyperspectral images
and multispectral imagery. In addition, we only collected the samples damaged by Tomicus
spp., and the disparity in characteristics between the infected by Tomicus spp. and other
pests should be considered in future studies. Advanced machine learning algorithms, such
as deep learning algorithms, show great potential in plant disease detection. However,
due to the limited samples in this study, we did not compare their performances on our
dataset. We need to acknowledge the disparity in the growth levels of Pinus yunnanensis
in various regions. The sensitive spectral band of Pinus yunnanensis damaged by Tomicus
spp. may slightly differ. Therefore, the effectiveness of the monitoring model should be
further evaluated in more study areas. Finally, LIDAR data have been widely adopted
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in forestry. Therefore, we encourage future efforts to consider LIDAR data as auxiliary
sources to improve forest health monitoring.

5. Conclusions

In this study, we developed an innovative and precise approach to monitoring the
damage degree of Pinus yunnanensis infected by Tomicus spp. using hyperspectral UAV
(unmanned aerial vehicle) imagery with discriminant algorithms. We revealed the hyper-
spectral characteristics of Pinus yunnanensis from a UAV-based hyperspectral platform. We
extracted 22 vegetation indices (VI), 4 principal components, and 16 continuous wavelet
transform (CWT) features. We analyze the damage degree of Pinus yunnanensis canopies
infected by Tomicus spp. via three methods, i.e., discriminant analysis (DA), support vector
machine (SVM), and BP neural network. The results showed that the damage degree
detected from BP neural network, combined with 16 CWT features, achieved the best
performance (training accuracy: 94.05%; validation accuracy: 94.44%). We further observed
that the spectral reflectance in the canopy decreased significantly in the near-infrared band
with increased damage degrees.
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Appendix A

Figures A1 and A2 show the spectral reflectance and the first derivative curves of
Pinus yunnanensis by Tomicus spp. canopies with different damage degrees. Spectral
characteristics analysis of the damaged Pinus yunnanensis canopy is shown in Liu et al.,
2020 [19].
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Figure A1. Spectral reflectance curves of different damage degree Pinus yunnanensis canopy by
Tomicus. (a). the original curve, (b). the reflectance average curve.
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Appendix B

The spectral sensitive bands of Pinus yunnanensis by Tomicus spp. canopies with
different damage degrees are shown in supplementary materials (Figures A3 and A4
and Table A1). Detailed analysis of the damaged Pinus yunnanensis canopy is shown by
Liu et al., 2020 [19].

Table A1. Extraction of sensitive bands for spectral reflectance and the first derivative of Pinus
yunnanensis canopy.

Spectral Reflectance of
Pinus yunnanensis Canopy

The Spectral First Derivative of
Pinus yunnanensis Canopy

Sensitive
Wavelength

Correlation
Analysis

Stepwise Regression
Analysis

Sensitive
Wavelength

Correlation
Analysis

Stepwise Regression
Analysis

698 −0.199 * <0.001 ** 718 −0.660 ** <0.001 **
650 0.595 ** <0.001 **

806 −0.577 ** <0.001 ** 690 −0.495 ** <0.001 **
878 0.332 ** 0.007 **

858 −0.544 ** <0.001 **
754 −0.327 ** 0.013 *
662 0.430 ** 0.019 *
586 0.278 ** 0.039 *

Note: * and ** represent a significance level of 5% and 1%, respectively.
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Figure A4. Sensitive bands of spectral reflectance and the first derivative with the damage degrees
by Tomicus in Pinus yunnanensis canopy ((a) Spectral reflectance of 120 samples; (b) Mean spectral
reflectance; (c) Spectral first derivative curves of 120 samples; (d) Mean spectral first derivative).

We used the Pearson correlation to analyze the original spectral reflectance and the first
derivative with damage degrees (Figure A3). The spectral reflectance of Pinus yunnanensis
canopy at 522 nm, 566 nm, 698 nm, 526~562 nm and 702~946 nm, has a significantly
negative correlation with the damage degrees. It shows a significant positive correlation
with the damage degrees ranging from 654 to 678 nm.

The first derivative showed both positive and negative correlations with the damage
levels in the range 450 to 946 nm (Figure A3b). The spectral first-order derivative of the
Yunnan pine canopy showed a highly significant negative correlation with the damage
levels in ranges of 498–538 nm and 674–754 nm. A significant negative correlation was
observed at 542 nm and 758 nm. The spectral first-order derivative showed a significant
negative correlation with the damage levels at the ranges of 554–622 nm, 802–830 nm,
846–858 nm, 874–886 nm, 898–918 nm and 930–918 nm. A highly significant positive
correlation with the damage levels was displayed in the range of 554–622 nm, 802–830 nm,
846–858 nm, 874–886 nm, 898–918 nm, 930–946 nm, and at 470 nm, 550 nm, 666 nm, 798 nm,
834 nm, 862 nm, 870 nm, 890–894 nm and 922–926 nm. The first-order derivative showed a
highly significant negative correlation and decreased as the damage degree increased at the
“red edge” (670–750 nm). The results are consistent with the spectral first-order derivative
values at damage degrees (Figure A2).

Sensitive bands of spectral reflectance and the first derivative with the damage de-
grees by Tomicus in Pinus yunnanensis canopy shows in Figure A4. The original spectral
curves of the Pinus yunnanensis canopy are sensitive to the damage degree at 526–562 nm,
654–678 nm and 698–946 nm (Figure A4a,b). A stepwise regression analysis shows that the
most sensitive band with the damage degree are 698 nm, 806 nm and 858 nm (Table A1).
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The first-order derivative curves of the Yunnan pine canopy are sensitive to damage degree
in the bands 522–526 nm, 654–678 nm, and 698–946 nm (Figure A4c,d). The most sensitive
bands with damage degrees are 586 nm, 650 nm, 662 nm, 690 nm, 718 nm, 754 nm and
878 nm (Table A1).
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