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Abstract

:

Many activities are conducted with the view of reducing CO2 emission from fossil fuels, but mining extraction will continue to be important for energy sources, mineral and metal ores, and the general economy. This activity has negative environmental consequences such as habitat loss, water scarcity, and soil degradation in novel ecosystems. Additionally, climate change, drought, and desertification accelerate important problems with water retention. From one point of view, identifying and conserving critical regions for ecological sustainability are issues of fundamental importance, but on the other hand, post-mine sites could provide additional carbon sinks and improve regional water retention (WR). This review paper analyses different studies focusing on the impact of the reclamation of mining sites on the water retention properties of soil. Water retention in reclaimed mining soil (RMS) increased considerably after various restoration efforts were implemented. The amount of water holding capacity in RMS was mostly affected by reclamation methods, soil properties, soil biota, restoration duration, and vegetation type. The major conclusions from the analysis were that (i) the bulk density of reclaimed mining soil ranges from 1.35 to 1.50 g/cm3 and decreases with restoration duration; (ii) Soil fauna increases soil water storage capacity and plant litter and earthworms convert litter to fecal pellets, which increases water field capacity; and (iii) water holding capacity increases with duration of reclaimed sites and type of plants, i.e., afforestation and tree communities have higher WR than younger grasslands. Therefore, identification of the suitable reclamation method, restoration duration, vegetation type, and soil fauna are important factors for increasing water retention capacity at a regional scale.






Keywords:


water retention; novel ecosystem; reclamation method; restoration duration; vegetation type; water field capacity












1. Introduction


Open coal mining is the preferred method for extraction because of its economic effectiveness, even though it results in significant disruption to the original landscapes due to massive and high-intensity mining operations (e.g., scraping, extraction, and hauling) [1]. In this type of mining, the “spoil” material topping the coal layers is separated and dumped in heaps on top-soil. Because spoil material is removed from considerable depths, it significantly differs from top soil [2,3,4,5,6]. Notably, highly land-consuming mining, both surface and underground, affects all ecosystem components. It turns the pre-mining landscape upside down and transforms it into a new technogenic environment called a “novel ecosystem,” which is often far from the state of equilibrium and therefore sensitive to failures [7,8]. The mine–soil system plays a crucial role in managing the mining area’s several subsystems, including the plant, water, and landscape components. Indeed, the quality of mine soil strongly influences the future direction of reclamation. Mine soils often have a coarser texture and a higher percentage of rock particles (sandy, loamy sand, and sandy loam) [5], which results in losses of water and nutrients from the root zone via deep percolation and preferential flow [6]. Many reclaimed mine soils have a high coarse particle content, which influences rooting depth, water holding capacity, and nutrient transport potential [7]. As a result, more research into the relationship between mine soil and water retention properties is required [8]. Reclamation and afforestation are considered to be the most successful methods for restoring the biological environment in mining sites [9,10,11,12,13,14,15]. Novel ecosystems [11] on spoil heaps are still an alien element in the landscape and a serious environmental challenge in many coal regions of Europe and the world. Knowledge in the field of technical handling of spoil heaps and their natural significance in urban and industrial areas facilitates the introduction and restoration of the ecological functions therein, including plant community succession, dynamics of soil processes, soil microbiological activity, afforestation efficiency, biomass, and carbon sequestration [10,11,16,17]. On the other hand, after reclamation, spoil heaps and the vegetation present thereon constitute the key forms of terrestrial ecosystems [17] for the provision of ecosystem services among which C sequestration and water retention are regarded as the most significant.



In post-mining soil, the quality of the litter has a major impact on the amount of carbon stored in the soil. Soil covered by vegetation with low litter C:N ratios generates organo-mineral aggregates that improve water storage, whereas plants with a high C:N litter ratio contain most of the organic matter in the Oe (partially decomposed litter horizon) and litter layers, which results in low soil-water storage [18]. Soil carbon and nitrogen are two significant components of soil organic matter pools. Unsustainable management in coal mining sites results in soil C and N depletion, and these sites are expected to become Greenhouse gases (GHGs) producers [15,19,20,21,22,23]. After mining and restoration, the concentration of soil organic carbon (SOC) in recovered mine soil decreases as compared to undisturbed soil [24,25,26,27,28]. At low organic carbon contents, the sensitivity of the water retention to changes in organic matter content was highest in sandy soils. Increased organic matter content resulted in increased water retention in sandy soils and decreased water retention in soils with a finer texture. Water retention increased in all soils when organic carbon levels were high [19].



The movement of water in mining sites depends on the soil development and the vegetation development [20]. Soil holds the water in the ecosystem, whereas vegetation is a consumer of water. However, the soil water transport mechanism is influenced by vegetation, which affects the soil mobility between compartments of the ecosystem and the external environment and determines the soil formation process. Plants and soil biota have a significant impact on water transport and storage through processes such as aggregate development, the establishment of a porosity matrix, plant water absorption, and rain interception by the vegetation. The development of vegetation cover reduces water intake to the soil through infiltration, increases the rate of moisture loss through transpiration, and decreases evaporation from the top soil [22,23]. Other ways for plants to influence water movement in the system include varying the permeability and the degree of water trapped by interception, as well as varying water intake and transpiration rates [26]. Rapidly growing vegetation results in substantial bioturbation by soil fauna and produces a deep organo-mineral soil horizon, which reduces total soil organic matter storage and also reduces soil water storage [18]. There are numerous studies that investigated the alteration of hydrological properties, soil properties, and vegetation by the impact of open-cast mining [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39]. It is clear from Gilewska et al. [40] that restoring the chemical and physical qualities of the reclaimed soil is important for higher yield plant growth.



So far, no comprehensive information is available in the literature on the ecological correlations between the biotic elements of the post-mining ecosystem and the retention properties of soils in relation to the duration of the reclamation, soil fauna, and vegetation cover. Thus, it is important to review how water retention properties are affected by mine soil in novel ecosystems. Since there is very little research available, we review various factors influencing water retention properties in post-mining sites. Therefore, the objective of this review is (i) to compile an overview of the effect of soil properties and vegetation cover on water retention; (ii) to summarize the effect of mine age on the reclaimed and unreclaimed mine sites; and (iii) to provide future research scope.




2. Factors Influencing the Retention Properties of Novel Ecosystems


Parameters that affect the water retention of soil in novel ecosystems include vegetation cover, soil properties, and soil biota [22,37,38,39,40,41]. Hence, it is important to ensure the significant recovery of compacted subsurface soil and plant cover on recovered mine areas for regional water retention.



2.1. Effect of Soil Properties and Soil Biota on Water Retention


Loose placement of mining soils is used in order to restore hydrological flow channels that allows for water infiltration, storage, abstraction, and groundwater charging [37]. The amount of available soil water is determined by the link between rainfall and the rate of penetration of recovered mine soils and ground water conditions [38]. Water penetration is affected by a number of factors such as soil structure, coarse particles, and soil stability. Soil organic matter and soil biota activity, in turn, influence soil stability [39]. Poor conditions of the recovered mine soil, including soil compaction and a shortage of flora, lead to organic matter shortfalls, creating a negative feedback loop.



Soil aggregates are intermediate grains developed when major mineral particles are rearranged and fixed with soil organic matter [41,42,43]. They are commonly classified as large-sized aggregates (251–1999 μm) and small-sized aggregates (51–249 μm). [38,40,41] presented an extremely influential model for the creation of aggregates, subsequently revised by [44]. According to these theories, large-sized aggregates develop initially, mostly as a result of particle entanglement by fungal hyphae and stems (transitory bonding forces) and around new organic matter intakes. When these transitory bonding forces and particulate organic matter in large-sized aggregates decay into particles coated in saponins developed at time of decomposition, they become encrusted with mud grains and hence serve as the core for small-sized aggregates contained inside large-sized aggregates [45]. By transforming organic compounds, soil can also stimulate particles development and, thus, increases water retaining capacity [46].



Analyses of soil samples containing plant litter and earthworms demonstrated that even litter-feeding fauna may significantly improve the capacity of the soil to store water simply by converting litter to fecal pellets, which doubles the water field capacity (WFC) [47]. Even more significant is the development of aggregate particles by earthworms, which can significantly increase the soil’s water-holding capacity. Additionally, earthworms impact the size distribution of soil aggregates. De-compacting earthworms (e.g., Millsonia anomala) destroyed the macro-aggregates created by compacting earthworms, whereas compacting earthworms had a similar effect on the casts of de-compacting earthworms. This suggests that earthworms’ influence on soil structure dynamics is highly variable. Water retaining capacity is associated with an increase in wilting point in each of the aforementioned circumstances. Therefore, we can conclude that in both situations described above, soil fauna increased the soil’s capacity to store water, which was then theoretically available to the plants, as the rise in WFC was greater than the rise in wilting point [48].



When discussing the mining and restoration effects on RMS, it is necessary to cover all mechanical, chemical, and biological characteristic alterations. Although the sources of recovered mine soil vary significantly, resulting in bigger variances in the identical characteristic between different studies, the values of the same attributes continue to exhibit comparable patterns under similar reclamation circumstances. These characteristics display growing or declining patterns over time, which might serve as clear indicators of the reclamation impacts and viable restoration strategies (Table 1). Previously, researchers have proposed soil quality indices, vital for the reclamation of mine land [23,46,47,48,49,50,51,52]. The age sequence method is crucial for understanding the alteration in soil properties of the mine land ecosystem [18,23,53].



As the reclamation duration of mine soil increases, the field capacity increases and the wilting point decreases. Reclaimed mining soil (RMS) often has higher bulk densities because of the use of heavy machinery during mining and reclamation work [32]. As reclamation advances, the bulk density of RMS is reduced as a result of greater root penetration and soil porosity [54,55,56,57,58,59,60]. After one to three decades, soil bulk density can decrease to more acceptable values from ~1.49 to ~1.65 g/cm3 for roots and plants. After ten years of reclamation, the RMS bulk density of a dump site falls from 1.42 to 1.29 g/cm3 [37]. After mining and restoration, the concentration of soil organic carbon in the reclaimed soil decreases. Except in one case, the C:N ratio decreased when we compared undisturbed and disturbed soil. Soil organic carbon pools in reclaimed mine soils decreased quickly following mining operations, and the surface layer of the reclaimed mine soil had more soil organic carbon losses than the deep layer of the reclaimed mining soil, owing to the surface layer’s increased activity, dynamic nature, and exposure to adverse weather conditions.



The average volume of mesopores corresponding to the contents of potential water capacity (PWC) and water available capacity (AWC) to plants in anthropogenic humus horizons was 11.16 percent volume by volume and 6.95 percent volume by volume, respectively, and statistically significantly higher than the values in deeper soil horizons. In humus layers of reclaimed soils, there was more water capacity (43.42 mm), more water that could potentially be available (32.31 mm), and more water that plants could easily access (20.16 mm) than in natural soils [61].



Water retaining capacity of the reclaimed soil is higher than the retaining capacity of degraded mining soil, and the younger mine sites have low hydraulic conductivity [62]. The most important parameters that influence erosion intensity and are used to estimate soil loss rates during erosion process include soil erodibility (K) and saturated hydraulic conductivity (Ks). K reflects how sensitive the soil is to external erosivity forces and is considered to be mostly affected by the structural stability of soil aggregates. On the other hand, Ks may have a significant effect on soil erosion by controlling the infiltration and drainage of surface runoff. It is one of the key characteristics of a soil’s infiltration capability [63,64,65,66,67,68,69,70,71,72,73]. Saturated hydraulic conductivity (K) is a key characteristic of soil, describing the rate of water flow, pathways of water movement partitioning precipitation water into surface runoff, and retention in the soil [64,65]. In contrast to low K, which increases surface runoff and erosion, high K speeds up water penetration and drainage and shortens the time it takes for agrochemicals to be retained in the soil matrix [69]. These parameters are also important for the evaluation of soil reclamation [58,61,62,63]. Espigares et. al. [74] monitored these parameters and found that when the rill erosion rate is 17 t/ha/year and the plant cover is 30%, vegetation regrowth is severely hampered, but this impact vanishes when the plant cover is more than 60%. The study also shows that when the plant cover percentage is increased from 30% to 60%, the surface runoff and sediment load decreases. As a result, when rill erosion networks are formed, human intervention will be required to limit water loss and to enhance plant colonization [75]. Wang et al. [76] demonstrated water retention characteristics of biopolymer-treated soil in a wide suction range and different biopolymers’ effects on vegetation growth in treated soil, and found that the water retention capacity of treated silt increases as the ratio increases. The water retention capacity of gellan gum was better than xanthan gum and guar gum. The rate of wilting in treated soil was significantly lower than in untreated soil. Water loss is reduced and water retention is enhanced as these gums have direct contact with the surface of charged clay particles in the soil pore space to intimately link the particles. Increased germination and plant development are both correlated with increased water retention capacity in the soil. In a study by Zhang et al. [77], a series of microscopic tests, water retention characteristics tests, and shear tests were carried out on silt, which is known to have poor engineering properties, to explore the effect and mechanism of xanthan gum treatment on the water retention and shear strength characteristics of silt during the wetting process. The data revealed that the treated silt’s water retention capacity improves as xanthan gum concentration rises; moreover, a hysteresis effect is evident. As the silt’s moisture content rises, its cohesiveness and internal friction angle sharply drop, and its strength dramatically declines. The influence of initial water content on swelling potential may be attributed to the microstructure feature and hydration development that results in different degrees of macro-microstructure coupling [78].



Over the years, many scientists have examined the property of soil erodibility and the factors that affect it (e.g., soil physicochemical properties, vegetation, and soil organic matter) [55,56,57,58,59,79,80,81,82,83,84,85,86]. In their study, Liu et al. [87] demonstrated that K at 0–10 cm is lower than K in subsequent soil levels due to the external supply of organic matter. In topsoil (0–20 cm), the typical K varies from 0.0252 to 0.0519, with an average value of 0.0403. The Ks values differ considerably, (0.006–2.278 m/day) and they tend to decrease along with soil depth. Horizontally, the K factor at 0–10 cm and 50–60 cm exhibits a decreasing tendency, whereas in other soil strata, it does not seem to display any spatial distribution pattern. On the other hand, the Ks at 0–10 cm has a striped distribution pattern, whereas in later soil strata it follows an uneven pattern.




2.2. Effect of Vegetation Cover and Reclamation Duration on Water Retention


Vegetation cover grows as reproductive age progresses. The rates of this growth will undoubtedly vary according to the kind of flora. For instance, Frouz [18] discovered that although biomass developed quicker in reclaimed alder plantations than in unclaimed post-mining sites early on, the gap between the reclaimed and the unclaimed sites declined with time, and the older unclaimed areas had even greater biomass than the reclaimed sites. Increased plant cover resulted in an increase in water usage via transpiration [71,81,88,89,90,91,92]. The soil substrate’s composition coupled with the deficiency of water and nitrogen have generally been regarded as possible explanations for the challenges encountered in developing plant cover in Europe’s populated and industrialized and metropolitan regions [75,80,92].



The persistent levels of nutrients for plant development are a critical component governing the cycling of nutrients in soils for primary production in plant communities [90,93,94,95,96]. Frouz [18] uses two examples, as demonstrated in the development of site A and site B, 30-year-old soils at two neighboring locations. Site “A” had been recovered and leveled before seedlings of alder (Alnus glutinosa) were planted. Alder is a N2-fixing tree that yields litter with a low carbon–nitrogen proportion. As a result, the alder site supported a diverse macrofauna population with a greater density of earthworms (Lumbricina). In comparison, site B remained unreclaimed and retained the wavy format created by heaping; it became overgrown with an unexpected regeneration dominated by Salix caprea, Betula pendula, and Populus tremula, and had a less abundant macrofauna, with the absence of Lumbricina species, which are responsible for mixing litter with soil. The absence of earthworms (Lumbricina) mixing on the natural regeneration plot resulted in broad fermenting on the soil’s surface. On Site A, the litter was rapidly fractured and mixed with the soil in the alder crop, generating an organo–mineral layer. After 30 years of development, both locations had a comparable water regime, but the alder plantation had more moisture and hence more soil-water storage.



In a study conducted by Cejpek et al. [88], various soil parameters (bulk density, porosity, water holding capacity) were analyzed in unreclaimed sites (5, 15 and 25-year-old). The unreclaimed areas were colonized by shrubs, whereas the reclaimed areas were planted with pine, spruce, oak, alder, or grassland (the meadows were created by the spreading of topsoil and grass seed). The main source of soil organic matter in the artificially recovered spoils is the vegetation introduced via reclamation, and its bio productivity determines organic soil inputs. The positive effects of forestation on early soil-forming processes have been confirmed on reclaimed coal mine spoils planted for 25 years. This results in the faster decomposition of tree litter, creating more mobile organic compounds that move deeper into the mineral profile. Changes in organic matter content are considered the primary factor in the observed variances in soil physical characteristics such as bulk density, specific gravity, porosity, and soil aggregation in recovered mining spoil.



The RMS bulk density varied between 1.35 to 1.50 g/cm3. It decreased with age and was identical for the reclaimed and the unreclaimed soil, except for the bulk density in the reclaimed sites that had been the spread with top soil and planted with grass 20 years before the study: had the highest bulk density [89,97]. The lowest bulk density was recorded at the reclaimed site planted with alder. Water retaining capacity varied between 45% and 63%, and it was higher in old sites than in younger sites. Water retention capacity was greatest in the reclaimed soil planted with alder and lowest in grass seeded site with top soil spread. Field capacity and wilting points ranged from 35% to 57% and from 26% to 29% respectively, and both were higher in the reclaimed soil than in the unreclaimed soil. Hydraulic conductivity varied between 0.0037 and 0.0076 m/s, and it was lower across all sites. The values of hydraulic conductivity were highest in the young, unreclaimed sites and lowest in the reclaimed sites planted with oak.



From the various studies [31,53,69,73], we can conclude that although the reclaimed post-mining sites had a larger water holding capacity than the unreclaimed sites, water limitation did not differ significantly between these two types of sites because the wilting threshold occurred at a higher percentage of soil water content in the reclaimed sites. Because plant biomass is much higher in reclaimed post-mining areas than in unreclaimed post-mining areas, the amount of water consumption should be higher in the reclaimed post-mining areas.
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Table 1. Effect of reclamation process and mining on soil properties.
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Characteristics

	
Depth of Soil (cm)

	
Undisturbed Soil/Control Group

	
Reclaimed Soil

	
Mining Effects

	
Effect

	
Time Period (Year) after Reclamation

	
Land Use/Plant

	
References






	
Coarse fragment (%)

	
0–45

	
2.4 (Undisturbed Soil)

	
52.4

	
Rise

	

	
19

	
Forest–shrub–grass

	
[95]




	
0–12

	
9.3 (Undisturbed Soil)

	
40.5

	
Rise

	

	
25

	
Nonagricultural land use

	
[96]




	
Bulk density (gm/cm3)

	
0–15

	
1.5 (Undisturbed Soil)

	
1.29–1.42

	
Rise

	
Fall

	
30

	
Pasture, hay, forest

	
[37]




	
0–20

	
1.67 (Control Group)

	
1.35–1.50

	

	
Fall

	
20

	
Forbland

	
[97]




	
0–10

	
1.50 (Control Group)

	
1.53

	

	
Fall

	
40

	
Vegetation

	
[98]




	
0–15

	
1.20 (Control Group)

	
1.46

	

	
Rise

	
>19

	
Vegetation

	
[98]




	
0–15

	
1.35 (Undisturbed Soil)

	
1.69

	
Rise

	

	
<2

	
Grassland

	
[97]




	
Permeability (%)

	
0–40

	
38.30–40.15 (Control Group)

	
40.92–50.19

	

	
Rise

	
12

	
Forbland

	
[97]




	
0–40

	
52 (Control Group)

	
62

	

	
Rise

	
25–30

	
Forbland

	
[89]




	
Water retaining capacity

(%)

	
0–10

	
31.38 (Control Group)

	
34.95

	

	
Rise

	
Not Available

	
Vegetation

	
[99]




	
0–20

	
32.4 (Control Group)

	
35.1

	

	
Rise

	
16

	
Forest

	
[98]




	
0–40

	
62.5 (Control Group)

	
55

	

	
Fall

	
25–30

	
Forbland

	
[89]




	
Wilting point (%)

	
0–40

	
28.7 (Control Group)

	
39

	

	
Rise

	
25–30

	
Forbland

	
[89]




	
Soil infiltration rate (cm)

	
0–10

	
6.45 (Control Group)

	
25.23

	

	
Rise

	
>19

	
Vegetation

	
[100]




	
C:N ratio

	
0–10

	
10.81 (Control Group)

	
10.99

	

	
Fall

	
>19

	
Vegetation

	
[96]




	
0–15

	
12.2–15.2 (Undisturbed Soil)

	
8.4–12.0

	
Fall

	

	
<2

	
Grassland

	
[21]




	

	
0–15

	
3.4 (Control Group)

	
11.9

	

	
Rise

	
60

	
Grassland

	
[101]




	
Soil organic matter (gm/kg)

	
0–20

	
2.15 (Control Group)

	
9.23

	

	
Rise

	
15

	
Forbland

	
[97]




	
Hydraulic Conductivity (Ks)

(m/d)

	
0–11

	
4.0 (Control Group)

	
4.5

	

	
Rise

	
40

	
Vegetation

	
[98]




	
11–80

	
3.2(Control Group)

	
0.3

	

	
Rise

	
5

	
Vegetation

	
[99]




	
Iron (mg/kg)

	
0–10

	
7.96 (Control Group)

	
8.39

	

	
Fall

	
Not Available

	
Vegetation

	
[99]




	
Zinc (mg/kg)

	
0–10

	
14.98 (Control Group)

	
14.79

	

	
Fall

	
Not Available

	
Vegetation

	
[99]




	
0–15

	
100.9 (Undisturbed Soil)

	
43.49

	
Fall

	

	

	
Vegetation

	
[99]




	
Lead (mg/kg)

	
0–10

	
1.98 (Control Group)

	
2.52

	

	
Fall

	
Not Available

	
Vegetation

	
[99]




	
0–15

	
29.9 (Undisturbed Soil)

	
7.03

	
Fall

	

	

	
Vegetation

	
[99]




	
Chromium (mg/kg)

	
0–15

	
167.5 (Undisturbed Soil)

	
1112.33

	
Rise

	

	

	
Vegetation

	
[99]











3. Conclusions and Future Studies


Numerous studies have concluded that soil fauna such as alder (Alnus glutinosa) plays an important role in increasing water retention capacity. Soil’s capacity to sustain constant soil moisture levels throughout the year is better in the reclaimed sites with rich soil fauna, litter intake, and weathering intensity than in the unreclaimed post-mining sites. Soil moisture levels were very variable in the unreclaimed areas where the original diversity was retained. Water retaining capacity of the reclaimed soil is higher than retaining capacity of degraded mining soil, and the younger mine sites have low hydraulic conductivity. However, the soil water content at the wilting point was greater in the reclaimed soils than in the unreclaimed ones, indicating that water availability for plants was comparable in the reclaimed and unreclaimed soils. These findings also reveal that the effect of changes in organic carbon content on soil water retention depends on the proportion of soil texture. Soil aggregate and soil microbiology, in particular, are strongly affected by the plant’s species. Soil field capacity, aggregate, microbiological composition, and total microorganisms were all significantly improved in areas that were covered by the shrub species.



Changes in soil texture and other physicochemical characteristics occur throughout time, resulting in a merging of diverse ecosystems. A variety of plant species can develop in such settings. They consist of species (mostly dominant ones) that represent a diversity of life forms, life strategies, and ecological groupings. Due to the complexity and susceptibility of mining regions, it is difficult to research and perform reclamation; hence, more extensive studies are necessary. Even though there is a lot of information about the effects of mining and reclamation, there is an urgent need to add new ideas and different measurements to the reclamation research and practices.



In the near future, scientifically sound publications on (i) novel ideas and techniques for assessing mining-induced soil degradation; (ii) innovative strategies for mitigating soil degradation; and (iii) systematic investigations into reclaimed mining soil are especially needed.
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