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Supplementary Material S3. Prior analysis and model diagnostics

Prior testing

In the Bayesian analysis, choosing the prior is an important step in modeling, as this influences the
model results [45, 46]. We conducted an analysis over multiple priors, choosing for the G structure of
the models (random effects) two inverse Wishart priors [45] and a parameter-expanded prior [47]. For
the R structure of the models (the residual variance), we set a prior where we fixed the bottom right of
the diagonal matrix (fix = 2, zero-inflation variance).

library(MCMCglmm)

# Inverse-Wishart prior

prior_1 <-
list(
G = list(
Gl = list(V = diag(2), nu = 0.002),
G2 = list(V = diag(2), nu = 0.002),
G3 = list(V = diag(2), nu = 0.002)),

R = list(V = diag(2), nu = ©0.002, fix = 2)
)

# Inverse-Wishart prior (increased nu)

prior_2 <-
list(
G = list(
Gl = list(V = diag(2), nu = 0.02),
G2 = list(V = diag(2), nu = 0.02),
G3 = list(V = diag(2), nu = 0.02)),

R = 1list(V = diag(2), nu = 0.02, fix = 2)
)

# Parameter expanded prior (y?distribution)
prior 3 <- list(

G = list(
Gl = list(V = diag(2), nu = 1000, alpha.mu = c(0,0), alpha.V = diag(2)),
G2 = list(V = diag(2), nu = 1000, alpha.mu = c(0,0), alpha.V = diag(2)),
G3 = list(V = diag(2), nu = 1000, alpha.mu = c(9,0), alpha.V = diag(2))),

R = list(V = diag(2), nu = 1, fix = 2)
)

# Number of samples and iterations
sampling <- 3000

burn <- 5000

thin <- 2500

nitt <- burn + thin * sampling
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# Example of a multi-year model
mcy 1 <- MCMCglmm(
Cones ~ trait -1 + Provenance,
random = ~
idh(trait):Clone+
idh(trait):Year+
idh(trait):Clone:Year,
rcov=~idh(trait):units,
family = "zipoisson",
data = data,
prior = prior_1,
pr = TRUE,
pl = TRUE,
saveX = TRUE,
saveZ = TRUE,
nitt = nitt,
thin = thin,
burnin = burnin)

Year (P){ Random effects prior

Parameter expanded
“®- Inverse Wishart 2
@ Inverse Wishart 1

Clone (P)

tt

Clone:Year (P) 1

Residual (P) 1

Clone (zi) 4

.
Year (zi) 4

S S—
——
——
—_——
Clone:Year (zi) 1 —_—
———
Residual (zi) { —_—
e

0.00 0.25 0.50 0.75 1.00
Variance explained (%, latent scale)

Figure S3.1. Variance explained by random effects in the Poisson and zero-inflated components of the
multi-year model. The data in latent scale.

The comparison (Figure S3.1) indicated differences in the zero-inflated component of the multi-year
model (clone and clone-year interaction) due to the inverse Wishart priors. Similar findings were
reported before [48], and we preferred further the parameter expanded prior (x? distribution), as
reccommended for cases where the expected heritability values are small [47] to inverse Wishart priors
[49].



Diagnostic plots

Trace plots
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Figure S3. 2. The trace plot for each variable of the Bayesian multi-year model.
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Figure S3. 3. The trace plot for each variable of the Bayesian model - year 2013.
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Figure S3. 4. The trace plot for each variable of the Bayesian model - year 2015.
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Figure S3. 5. The trace plot for each variable of the Bayesian model - year 2018.
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Figure S3. 6. The trace plot for each variable of the Bayesian model - year 2020.
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Figure S3. 7. The trace plot for each variable of the Bayesian model - year 2021.

0 1000 2000 3000

0 1000 2000 3000 0 1000 2000 3000

Figure S3. 8. The trace plot for each variable of the Bayesian model - year 2022.



Autocorrelation plots
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Figure S3. 9. The autocorrelation plot for each variable of the Bayesian multi-year model.
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Figure S3. 10. The autocorrelation plot for each variable of the Bayesian model of year 2013.
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Figure S3. 11. The autocorrelation plot for each variable of the Bayesian model of year 2015.
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Figure S3. 12. The autocorrelation plot for each variable of the Bayesian model of year 2018.
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Figure S3. 13. The autocorrelation plot for each variable of the Bayesian model of year 2020.
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Figure S3. 14. The autocorrelation plot for each variable of the Bayesian model of year 2021.
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Figure S3. 15. The autocorrelation plot for each variable of the Bayesian model of year 2022.
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