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Abstract: Changes in temperature regime, and a higher frequency of extreme weather conditions due
to global warming are considered great risks for forest stands worldwide because of their negative
impact on tree growth and vitality. We examined tree growth and water balance of two provenances
of Norway spruce growing in Arboretum Borová hora (350 m a.s.l., Zvolen, central Slovakia) that
originated from climatologically cooler conditions. The research was performed during three meteo-
rologically different years from 2017 to 2019. We evaluated the impact of climatic and soil factors
on intra-species variability in radial stem growth and tree water status that were characterised by
seasonal radial increment, stem water deficit and maximum daily shrinkage derived from the records
of stem circumference changes obtained from band dendrometers installed on five mature trees of
each provenance. The impact of environmental factors on the characteristics was evaluated using
the univariate factor analysis and four machine learning models (random forest, support vector
machine, gradient boosting machine and neural network). The responses to climatic conditions
differed between the provenances. Seasonal radial increments of the provenance from cooler con-
ditions were greater than those of the provenance originating from cooler and wetter conditions
due to the long-term shortage of water the latter provenance had to cope with in the current envi-
ronment, while the provenance from the cooler region was more sensitive to short-term changes in
environmental conditions.

Keywords: dendrometer; tree water deficit; shrinkage; circumference changes; climatic water balance

1. Introduction

Climatic factors belong to important factors determining species composition of ecosys-
tems and driving ecophysiological processes that affect the overall functionality and stabil-
ity of ecosystems. High temperatures coupled with changes in the water cycle are most
frequent ecological limits of production potential of forest tree species that can worsen
the health status and may cause their die-back [1,2]. Drought and drying-out of central
European countries is one of the important bioclimatic elements, which is expected to
increase in the future [3].

The need to adapt forest ecosystems to future climatic conditions by changing tree
species composition is often in contrast to the lack of knowledge about the potential abilities
of individual tree species and provenances to resist changed environmental conditions [4].
Provenance experiments represent a suitable tool to assess the adaptation potential of
provenances under the conditions of climate change [5]. Due to the long-term adaptation
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to local conditions, the performance and vitality of populations remain related to ecological
characteristics of the place of their origin, even after their transfer to a new environment [6].
Considering the natural climatic changes in the direction from west to east, the population
of tree species originating from central and eastern Europe is becoming more prospective
due to the higher resistance to drought and low temperatures [7,8].

Norway spruce (Picea abies L. Karst) belongs to the tree species with the greatest
distribution range. It is a dominant tree species in the boreal forests covering Scandinavia
up to the Ural Mts., as well as in mountainous areas of the temperate zone with low temper-
atures and high precipitation amounts [9,10]. During the last 200 years, Norway spruce, as
economically the most important coniferous tree species in Europe, was frequently planted
outside its natural distribution range [11] i.e., in warmer and drier areas, where currently it
is under great pressure [12]. Due to the shallow root system, spruce is not well adapted to
the environment outside its natural distribution range, particularly at sites with extreme
climatic conditions [13,14], and its productivity is restricted by water availability [15]. The
ongoing changes in precipitation events significantly manifested in the reduction of soil
water and further increase the drought risk for spruce [16]. Many studies focused on spruce
growth rate and performance at different elevations, latitudes or along gradients [17,18].

Climatic characteristics are important factors affecting stem radial growth and wood
production. Changes in stem diameters are the results of formation of xylem tissues and
tree water balance that causes stem swelling and shrinking depending on water uptake and
outflow. From the point of daily changes in stem dimensions, the temporal development of
transpiration and soil water content is important [19,20]. As presented by Zweifel et al. [21],
sap flow transporting nutrients and water via xylem directly affect reversible changes
in stem circumference, i.e., its swelling and shrinking. The amplitude of daily shrinking
is a function of water loss from leaves and water absorption by roots. More detailed
information about xylem and phloem formation can be found in e.g., Mäkinen et a. [22],
Oberhuber et al. [23], Swidrak et al. [24].

Continual observations of stem radial changes during a year are useful for under-
standing tree reactions to short-term changes of environment. The reversible living cell
dehydration–rehydration processes are related to depletion and replenishment of stem
water stored in the inner bark tissues. These processes are detectable through high tem-
poral resolution measurements of stem radius variations with dendrometers [25,26]. This
approach has been increasingly used in plant physiology to analyse tree growth and water
status [27,28]. Stem water deficit (∆W) and maximum daily shrinkage (MDS) used in this
study represent indirect measures of plant water status compared to direct methods, such
as leaf water potential or relative water content. Continuous non-destructive measure-
ments of radial stem changes allow us to have closer looks and a deeper understanding of
tree water dynamics and growth without the need to perform a complicated sampling of
foliage from tree crowns to determine water potential [27,28]. Continuous observations of
stem radial changes provide us with the time series of tree water storage fluctuations at
different temporal scales including daily changes due to water depletion and refilling of
water storages [29,30] up to seasonal tree growth [31–33] and its relationship with changing
environmental conditions [27,34,35].

In general, stem growth follows a seasonal development and is strongly affected
by meteorological variables. Meteorological events fluctuate within and between years.
Therefore, detailed analyses focusing on the relationship between the climate and sea-
sonal tree growth are necessary to quantify potential tree growth reactions to changing
climate. Seasonal tree growth development depends not only on climate, but also on tree
species [20,24,36], tree social position [37], genetics [38], etc.

This study analysed tree growth reactions and tree water status of two Norway
spruce provenances growing outside the production optimum with regard to climate
of their original site and current site. Such an experiment allows the assessment of the
importance of adaptation to the site of origin and acclimation to new conditions. The
examined provenances have been growing under same conditions since their planting for
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several decades. Their seasonal growth was monitored with band dendrometers at high
temporal resolution for several years. The measurement period covered contrasting climatic
conditions including extremely dry and hot periods in the years 2018 and 2019 and relatively
wet conditions in the year 2017. The study analysed intra-species seasonal dynamics of stem
circumference changes and characteristics of stem water status: stem water deficit (∆W)
and maximum daily shrinkage (MDS) derived from band dendrometer records (hereafter
as BDR) considering selected factors of environment. Several authors [21,27,28] pointed
out that ∆W and MDS can be interpreted as a direct measure of drought stress in trees.

The study was conducted to establish a better understanding of the effect of changed
conditions on stem circumference changes and sensitivity of the tree species and prove-
nances to weather conditions. The primary question of our research was to examine if
the spruce trees of two provenances follow different physiological and growth patterns
that reflect their adaptation potential and to reveal which provenance tolerates changed
conditions more. We hypothesised that the provenance originating from the site charac-
terised with the lower mean temperature and the same precipitation total as the current site
would show enhanced regulatory mechanisms that help to improve its response capacity
and the adaptive potential to stress factors. We hypothesised that the provenance that
originated from the site at the higher elevation with the lower mean temperature and the
higher precipitation total than the current site would be more sensitive to warmer and
drier conditions.

2. Materials and Methods
2.1. Study Area and Plant Material

The experiment was performed in Arboretum Borová hora located in Zvolen valley,
central Slovakia (48◦35’ N, 19◦07’ E, elevation approximately 350 m a.s.l.). Arboretum
Borová hora is a specific facility aimed at growing native tree species, as well as species of
different geographical origins due to their intra-species and geographical variability with
the aim to preserve a gene pool of the Carpathian dendroflora ex situ [39]. The research site
is situated in a south-west facing slope with a mild 5%–10% inclination. The soil type is
cambisol (https://geo.enviroportal.sk/atlassr, accessed on 20 September 2021). The study
area is characterised by temperate central European climate and belongs to a warm and
a slightly warm region with cold winters. The long-term mean annual air temperature is
7.9 ◦C, and annual precipitation total is 651 mm. The long-term (1961–1990) average temper-
ature during a growing season (April–October) is 13.6 ◦C and the respective precipitation
total is 422 mm (derived from long-term measurements at a nearby meteorological station
of Sliač, 313 m a.s.l., managed by the Slovak Hydrometeorological Institute) (Table 1).

Table 1. Geographical and climatic descriptions of the study area and original locations of the
studied provenances of Norway spruce. The climatic data represent long-term mean values repre-
senting 1961–1990. Spruce provenances are labelled as CW_PV (provenance from cooler and wetter
conditions) and C_PV (provenance from cooler conditions), respectively. (PA (mm)—mean annual pre-
cipitation total, PGS (mm)—mean precipitation of growing season (April–October), TA (◦C)—mean
annual air temperature, TGS (◦C)—mean air temperature of growing season (April–October), long-
term averages of original locations represent the period 1961–1990).

Characteristics Study Area
Provenance

CW_PV C_PV

Orographic Unit Zvolen valley Podtatranská
valley

Archangel’skaja and
Volgogradskaja region

Elevation (m a. s. l.) 350 800 33–117
PA (mm) 651 833 587
PGS (mm) 422 603 404
TA (◦C) 7.9 5.3 2
TGS (◦C) 13.6 10.7 9.5

https://geo.enviroportal.sk/atlassr
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Two research plots, each representing a single provenance, were selected at sites
with similar environmental conditions. The climatological conditions of the study area
are warmer and drier than original natural habitats of the Slovak provenance labelled
as CW_PV (PV stand for a provenance, while CW indicates its origin from cooler and
wetter conditions) and warmer than original natural habitats of the Russian one labelled as
C_PV (the provenance from cooler conditions) (Table 1). The Slovak provenance originated
from the Podtatranská valley characterised with the long-term mean annual temperature
of 5.3 ◦C and precipitation total of 833 mm. Mean temperature and precipitation total
during a growing season (April–October) is approximately 10.7 ◦C and 603 mm, respec-
tively. Russian provenance originated from Archangel’skaja and Volgogradskaja regions
where the long-term mean annual temperature is approximately 2.0 ◦C and precipita-
tion total is 587 mm. Mean temperature and precipitation total during a growing season
(April–October) is approximately 9.5 ◦C and 404 mm, respectively (Table 1). The descrip-
tion of climatic conditions of provenance origins was derived from CRUTEM4 datasets [40]
and Panoply software.

At each plot, we chose five vital adult trees (49 and 53 years old) of similar dimen-
sions. The diameters at breast height of the CW_PV and C_PV were 25.3 ± 3.5 cm and
27.3 ± 1.4 cm, respectively, and their heights were 23.0 ± 2.4 m and 24.7 ± 0.6 m, respectively.

2.2. Environmental Data

During the study period, meteorological data were recorded with an automatic meteo-
rological station (EMS Brno, Brno, Czech Republic) installed at an open grass area situated
80–150 m from the research plots. The meteorological station recorded global radiation
(GR, W.m−2), air temperature (AT, ◦C), relative air humidity (RH, %), wind speed (WS,
m·s−1) and precipitation (P, mm) with automatic sensors every 10 min. The sensors for
global radiation (EMS11), air temperature and relative air humidity (EMS33) were placed
at a height of 2 m above the low-cut grass. Precipitation was measured using a rain gauge
Model MetOne370 (Met One Instruments, Inc., Grants Pass, OR, USA) located at a height of
1 m above ground. Automatically measured data were stored in the datalogger in 10-min
intervals. Daily and monthly values of mean air temperature, mean relative air humidity,
precipitation totals and global radiation sums were derived from recorded meteorological
measurements. Mean vapour pressure deficit in the air (VPD, Pa) was calculated as follows

VPD = es − ea (1)

where es (Pa) is the saturated vapour pressure at a given air temperature and ea (Pa) is the
vapour pressure of the free-flowing air.

Potential evapotranspiration (PET, mm) as a variable representing theoretical atmo-
spheric evaporative demands unaffected by soil water deficit was calculated according to
the Penman equation [41]

PET =
∆

∆ + γ
Rn +

γ

∆ + γ

6.43(1 + 0.536WS) VPD
λ

(2)

where ∆ is the slope of the saturation vapour pressure curve (kPa·K−1), Rn is the net
radiation (W·m−2) estimated as 77% of the global incoming solar radiation [42] and WS is
the wind speed measured at 2 m height. The psychometric constant (γ) was set to 66 Pa·K−1

and the latent heat of vaporisation (λ) was 2.45 MJ·kg−1 [42].
From the point of vegetation, it is insufficient to evaluate climatic conditions only using

the summary values of precipitation or temperature. Moisture conditions are frequently
described using the climatic water balance (CWB) characterised as a difference between
precipitation and potential evapotranspiration. Water availability was assessed with the
climatic water balance (CWB) defined as a difference between the precipitation (P) and
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potential evapotranspiration (PET during a specific period (Equation (3)). Negative values
of CWB indicate water deficit, while positive values indicate water surplus.

CWB = P − PET (3)

Daily CWB values were cumulated to obtain the cumulative water balance during a
growing season.

Soil water potential (SWP, bar) was measured under forest canopy at 15, 30 and 50
cm soil depths using MicroLog SP3 (EMS Brno Ltd., Brno, Czech Republic) with gypsum
blocks (Delmhorst Inc., Towaco, NJ, USA). SWP values varied between 0 and −1.5 MPa
(the lowest measurable limit of the equipment). Measuring intervals were set to 20 min.
For this study we used daily mean SWP values calculated from all depths separately for
each plot.

2.3. Band Dendrometer Records (BDR)

Stem circumference changes of each of 10 sample trees (five trees per provenance)
were monitored using high temporal resolution automatic band dendrometers (model DRL
26, EMS Brno, Brno, Czech Republic, accuracy ±1 µm) installed at a height of 2.5 m. To
ensure a close contact of dendrometer bands with tree stems and to reduce the influence of
hygroscopic swelling and shrinkage of the bark, the outermost part of the bark (periderm)
was removed prior to the installation of dendrometers. Circumference measurements were
recorded in 20-min intervals from April 2017 to October 2019.

2.4. Data Analysis and Statistical Evaluation

Basic data processing was performed with Mini32 software produced by EMS Brno
(Brno, Czech Republic) compatible with all used equipment.

To quantify tree water status, we applied two indicators derived from BDR. The first indi-
cator is stem water deficit (∆W in mm) defined by Zweifel et al. [21] and Ehrenberger et al. [43].
It defines the actual tree state in comparison to a fully hydrated state. It was calculated as
a difference between the actual BDR value and the growth line value, which represents a
tree state under fully hydrated conditions (i.e., when ∆W = 0) [27]. The growth line was
derived from BDR using a moving maximum of the current and previous dendrometer
readings. Hence, negative values of ∆W indicate the lack of water, i.e., drought stress.

The second indicator is maximum daily shrinkage (MDS in mm) defined as the
difference between daily maximum and minimum stem circumferences (BDR). Hence,
it quantifies the daily cycle of water uptake at night and water loss from elastic cambial
and phloem tissues during a day [26]. Both indicators (∆W and MDS) were calculated with
‘DendrometeR’ R package [44].

Daily stem radial increment (I) was calculated as a difference between the actual
daily maximum and the previous maximum in BDR. Following the concept of Zweifel
et al. [45], irreversible stem growth (I) is restricted to the period within a day, when the stem
shrinkage does not occur. Reversible stem shrinkage is in contrast with the irreversible stem
increment, which we call growth here (I) (following the methodologies of Downes et al. [31]
and Deslauries et al. [32]).

The relationships of daily environmental variables (precipitation (P), relative air hu-
midity (RH), vapour pressure deficit (VPD), minimum, maximum and mean air tempera-
ture (ATmin, ATmax, ATavg), potential evapotranspiration (PET), climatic water balance
(CWB), cumulative water balance (CWBcum), soil water potential (SWP)) with daily param-
eters extracted from BDR (∆W, MDS) within the analysed period of the year (April–October)
were quantified with the Spearman rank-correlation coefficients in the statistical software
Statistica® 12 (Statsoft, Tulsa, OK, USA).

Besides the classical correlation analysis, we used machine learning methods (ML) to
examine the relations between tree water status characteristics (∆W, MDS) and environ-
mental conditions. We decided to use these methods to capture non-linear and complex
relationships and analyse the suitability of selected models for predictions. ML methods
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use the ability of computer algorithms to make unique decisions on their own, based on
the existing data and experience [46]. Machine learning techniques are widely used for
prediction and classification purposes. The advantage of machine learning techniques
is their robustness against correlation structures (multicollinearity) and the presence of
outliers. In our study we used the following four machine learning techniques:

• Random forest (RF) is a decision tree nonparametric algorithm for classification or
regression [47]. The algorithm selects a random number of samples from training
datasets, what is called a bootstrap aggregation [48]. Afterwards, the randomly chosen
samples are used to develop a decision tree based on the most important variables.
For each prediction, multiple decisions trees are constructed, and the average value
is outputted.

• Gradient boosting machine (GBM) is also based on decision trees. The main difference
to RF is that the random forest uses averaging, while the gradient boosting provides
additive (ensamble) modelling [49]. Moreover, the random forest combines results at
the end of the process, while the gradient boosting combines the results along the way.

• Support vector machines (SVM) are used both in classification and regression. In
support vector regression, the space that is required to fit the data is referred to as a
hyperplane [50]. A hyperplane is a subspace with the number of dimensions equal
to that of the original space minus one. The best fit is the hyperplane that contains
the maximum number of points within threshold values. This separates SVM from
other regression models which minimise errors between real and predicted values.
The hyperplane is determined using a kernel, which is a set of mathematical functions
that takes data as input and transforms it into the required form.

• Neural networks (NN), also known as artificial neural networks (ANNs), are composed
at least of three layers: input, output layers and one or more hidden layers. Each
neuron has a specific weight and a threshold value and is connected to other neurons.
If the output of a neuron exceeds the threshold value, the neuron is activated and
sends the signal (data) to the next layer of the network [51]. Deep neural network
(DNN) refers to the situation when more than one hidden layer is applied. The deeper
the DNN, the more complex patterns the network can learn [52].

To enhance the stability of the four mentioned ML models and to avoid overfitting, all
models were ten-fold cross-validated. To reach the optimal performance of models, specific
hyperparameters were tuned, or grid searched for random forest [53]. Support vector
machine models were constructed and tuned in R environment using the caret package [54].
NN and GBM were compiled and tuned in Python environment. After hyperparameter
tuning, created models were passed to Dalex package [55] which operates both in Python
and R. More details about the hyperparameter grid search, model selection and tuning of
models can be found in the Appendix A.

We randomly split the data into training (66%) and validation (33%) subsets prior to the
model development. The models were trained on the training dataset and their performance
was assessed using the validation subset. The same split was applied also to datasets which
were used for hyperparameter tuning. The results of ML models were interpreted on
the basis of (1) partial dependence plots (PDP) and (2) variable importance (VI). Partial
dependence plots show marginal effects of a single characteristic on the predicted outcome
of used machine learning models. VI was calculated by means of permutations using the
root mean square loss function [56] in Dalex environment.

We used 11 variables (day of the year (DOY), i.e., the sequential day number starting
from 1 on 1st January, and daily values of environmental factors of all study periods of the
years 2017–2019 together: global radiation (GR), average air temperature (ATavg), mini-
mum air temperature (ATmin), maximum air temperature (ATmax), relative air humidity
(RH), precipitation (P), vapour pressure deficit (VPD), potential evapotranspiration (PET),
soil water potential (SWP), climatic water balance (CWB) and cumulative water balance
(CWBcum)) in each model and analysed their influence on ∆W and MDS.
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3. Results
3.1. Environmental Variables during the Growing Seasons of the Years 2017–2019

The monitored period (2017–2019) was interesting because it included climatically
contrasting years, during which several climatic and meteorological extremes occurred
(Table 2, Figures 1 and 2). The mean air temperature of every season exceeded the long-term
mean value (1961–1990). The highest mean air temperature during the growing season
observed in the year 2018 (17 ◦C) was by 3.4 ◦C above the long-term average (1961–1990).
Air temperature in all individual months in the growing seasons (April–October) of the
years 2017 to 2019 except May 2019 was above average (Figure 1a). Precipitation events
were irregularly distributed in time (Figure 1b, Figure 3a), which affected the values of
SWP (Figure 3b). The lowest precipitation total in the growing season (320 mm) was
observed in the year 2018, when we also recorded the highest values of VPD, and the
lowest values of PET and CWB (Table 2). Monthly precipitation totals in all monitored
months except July of the year 2018 were below their long-term averages. In contrast, the
value of seasonal precipitation total exceeding the long-term average was observed in the
year 2017. Monthly precipitation totals in the year 2017 were greater than the long-term
averages in most months, excluding May and August (Figure 1b). In the year 2019, we
observed lower precipitation total than the long-term average (1961–1990). The seasonal
mean air temperature in the year 2019 was higher by 2.2 ◦C than the long-term average,
but lower compared to that in 2018 (Table 2).
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Table 2. Climatic description of April–October (A-O) periods of the years 2017–2019, where P is
seasonal precipitation total, ATavg is seasonal average air temperature, GR is seasonal global radiation
total, RH is seasonal mean relative air humidity and VPD is seasonal mean vapour pressure deficit of
the respective period, PET is total seasonal potential evapotranspiration, CWBcum is total seasonal
climatic water balance, SWP is seasonal soil water potential.

Year
(Months)

P ATavg GR RH VPD PET CWBcum SWP_CW_PV SWP_C_PV
(mm) (◦C) (kWh.m−2) (%) (kPa) (mm) (mm) (MPa) (MPa)

2017
(A-O) 501 15.2 977 81 0.500 825 −324 −0.463 −0.116
2018

(A-O) 321 17.0 985 80 0.557 877 −556 −1.045 −0.427
2019

(A-O) 387 15.8 927 81 0.480 805 −418 −0.996 −0.374
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Figure 2. Climatic water balance (CWB, mm) in individual months during the growing seasons
(April–October (A–O)) of the years 2017–2019.

Positive values of CWB indicate sufficient precipitation amount, while its negative
values indicate the lack of precipitation and drought risk. During the monitored period
from 2017 to 2019, we recorded only three months with moisture surplus (September
and October 2017, May 2019) (Figure 2). In general, CWB indicated insufficient moisture
conditions especially in the year 2018 followed by the year 2019. The highest but still a
negative CWBcum value was recorded in the year 2017 (Table 2).

3.2. Stem Radius Changes and Stem Water Status

Band dendrometer records (BDR) and seasonal increments differed between prove-
nances and years (Figure 3a–c, Table 3). Trees of the C_PV had a more intense growth with
smaller fluctuations than the CW_PV (Figure 3a–c). However, there was an interannual
synchronous course of BDR, ∆W and MDS between provenances (Figures 3 and 4). In all
monitored years, seasonal radial increments of the C_PV were greater than those of the
CW_PV (Figure 3a–c, Table 3). The highest seasonal radial increments of both provenances
were recorded in the year 2017 (Figure 3a, Table 3). In contrast, the radial increment in
the year 2018 was only a half of the increments achieved in the year 2017, while we also
revealed the smallest difference between the provenances (Figure 3b, Table 3). The greatest
proportion of radial increments was usually formed at the beginning of the growing season,
mainly in May. In the year 2017, we observed more intense radial growth also in June and
July (Figure A1). On the contrary, at the beginning and the end of June 2019 we recorded
substantial stem shrinkages of both provenances due to the low precipitations and highly
above normal air temperatures. Growth stagnation of both provenances was observed
from the beginning of August onwards in all seasons. In the year 2018, radial growth
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started to stagnate at the end of May because of the above-normal air temperature and low
precipitation total (Figure 3b).
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Figure 3. Daily climatological characteristics: P (mm)—precipitation, ATavg (◦C)—average air
temperature, VPD (kPa)—vapour pressure deficit) and soil water potential SWP (MPa) and seasonal
daily course of cumulative band dendrometer records (BDR) of stem circumference over bark of
the provenance from cooler and wetter conditions (CW_PV) (grey line) and the provenance from
cooler conditions (C_PV) of P. abies and their growth lines (red thin lines) in the study period
(April–October) of the individual years 2017–2019 (a–c). Each line represents an average from five
trees of the same provenance.

Table 3. Seasonal characteristics of growth and stem water status dynamics of the investigated
provenances (the provenance from cooler and wetter conditions (CW_PV) and the provenance from
cooler conditions (C_PV)) of P. abies, where Icum is average cumulative increment (mm), ∆Wcum is
average cumulative stem water deficit (mm), MDScum is average cumulative maximum shrinkage
(mm), and SD is standard deviation of the respective characteristics.

CW_PV C_PV
Icum SD± ∆Wcum SD± MDScum SD± Icum SD± ∆Wcum SD± MDScum SD±

2017 6.3 3.8 −43.2 13.7 31.2 14.6 8.6 3.0 −30.4 13.3 30.9 9.9
2018 3.7 2.5 −95.7 35.1 29.2 13.6 4.2 2.8 −107.8 63.2 35.5 11.4
2019 3.2 1.7 −118.9 25.6 29.7 12.2 6.0 3.8 −60.0 30.2 32.4 13.7

2017–2019 13.2 −257.8 90.1 18.8 −198.2 98.8

Derived ∆W and MDS of both provenances showed synchronous fluctuations in all
monitored seasons (Figure 4). The increase in negative values of ∆W indicates the increase
of water shortage in storage tissues. During the monitored seasons, stem water deficit grad-
ually decreased (Figure 5). This trend was occasionally disrupted by precipitation events,
after which stem water deficit reached values close to zero (Figures 3 and 4). When we ex-
amined total cumulative changes in stem water content in individual seasons, we found that
the cumulative ∆W of the CW_PV was the lowest in the year 2019 (−118.87 ± 25.64 mm)
and the highest in the year 2017 (−95.66 ± 35.05 mm). The C_PV had the lowest and the
highest values of the cumulative ∆W in the years 2018 (−107.80 ± 63.18 mm) and 2017
(−30.37 ± 13.30 mm), respectively (Table 3, Figure 5). Cumulative values of stem water
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deficit for the whole seasons were greater for C_PV in comparison to CW_PV in the years
2017 and 2019, while in the year 2018 the values of ∆Wcum of C_PV were lower than
those of CW_PV from the beginning of July until the end of the growing season (Figure 5b,
Table 3). In June and July 2018, air temperature substantially dropped and was followed
by higher precipitation in July (Figure 1). Later, air temperature increased while precipita-
tion was low (Figures 1 and 3), ∆W of C_PV provenance decreased more than of CW_PV
(Figures 4b and 5b). The greatest difference in ∆Wcum between provenances was recorded
during the whole growing season in 2019 (Figures 4c and 5c, Table 3).
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Figure 4. Maximum daily shrinkage (MDS) and stem water deficit (∆W) of the investigated prove-
nances (the provenance from cooler and wetter conditions (CW_PV) and the provenance from cooler
conditions (C_PV)) of P. abies in the studied periods (April–October) of the years 2017–2019 (a–c).

The seasonal cumulative shrinkage (MDScum) of provenances in individual years
increased in the following order: 2018, 2019, 2017 in the case of the CW_PV, and 2017,
2019, 2018 in the case of C_PV (Figure 5, Table 3). In drier years of 2018 and 2019, the
C_PV provenance had higher values of MDScum, while in the year 2017, which was
more favourable from the point of water, higher MDScum was observed for the CW_PV.
The greatest difference in MDScum between provenances was recorded in the year 2018
(Figures 4b and 5b).

3.3. Influence of Environmental Variables on Growth and Tree Water Status

We analysed the impact of monitored environmental factors on daily changes of
tree water status (stem water deficit and maximum daily shrinkage) during individual
growing seasons (1 April–30 October) as well as in the whole monitored period 2017–2019
(Figures 6 and 7) with Spearman correlation coefficients. The analysis revealed negative
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correlations of stem water deficit of both provenances to ATavg, ATmax, VPD and PET in
the years 2017 and 2019, but not in the year 2018. High and significant values of correlation
coefficients were revealed between ∆W and CWBcum as well as SWP for both provenances
in almost all periods (Figure 6). The results of a single factorial correlation analysis showed
that during the whole period 2017–2019, stem water deficit of either provenance was not
significantly affected by GR or PET. ATmin was significant only for the C_PV.
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Figure 5. Cumulative stem water deficit (∆Wcum) and cumulative maximum daily shrinkage
(MDScum) of the investigated provenances (the provenance from cooler and wetter conditions
(CW_PV) and the provenance from cooler conditions (C_PV)) of P. abies in the studied periods
(April–October) of the years 2017–2019 (a–c).

The daily values of GR, ATavg, ATmin, ATmax, VPD and PET significantly positively
correlated with daily values of MDS regardless of the provenance, while higher values
of correlation coefficients were observed for the C_PV. Significant negative correlations
of MDS were observed with RH and CWB in all seasons. The relationships with RH
were usually tighter for the CW_PV. The correlations between daily precipitation and
MDS were low and significant only for the C_PV in the year 2018 and the whole period
2017–2019. The correlation between SWP and MDS changed in time. In the year 2017, the
correlations of both provenances were negative and significant. On the contrary, in the year
2018 the correlations between SWP and MDS were positive for both provenances. In the
year 2019 we observed a significant positive correlation for the CW_PV provenance, and
an insignificant negative correlation for the C_PV. When analysing the whole monitored
period, SWP values were not significantly correlated with MDS of either of the provenances
(Figure 7).
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Figure 6. Spearman rank-correlation coefficients between environmental characteristics and stem
water deficit (∆W) of provenance from cooler and wetter conditions (CW_PV) and provenance
from cooler conditions (C_PV) of P. abies in individual years and the whole studied period of the
years 2017–2019: global radiation (GR), average air temperature (ATavg), relative air humidity (RH),
minimum air temperature (ATmin), maximum air temperature (ATmax), precipitation (P), vapour
pressure deficit (VPD), potential evapotranspiration (PET), climatic water balance (CWB), cumulative
water balance (CWBcum), soil water potential (SWP). Significance levels: * 95% significance; ** 99%
significance; *** 99.9% significance.
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and provenance from cooler conditions labelled as C_PV of P. abies in individual years and the
whole studied period of the years 2017–2019: global radiation (GR), average air temperature (ATavg),
relative air humidity (RH), minimum air temperature (ATmin), maximum air temperature (ATmax),
precipitation (P), vapour pressure deficit (VPD), potential evapotranspiration (PET), climatic water
balance (CWB), cumulative water balance (CWBcum), soil water potential (SWP). Significance levels:
* 95% significance; ** 99% significance; *** 99.9% significance.

3.4. Machine Learning Techniques for Detecting the Influence of Environmental Factors on the
Predicted Tree Water Status Characteristics

The ability of the four derived machine learning models to predict ∆W or MDS based
on selected environmental characteristics was good as they explained more than 50% of
the variation in stem water deficit (Table 4). Based on the partial dependence plots and
performance of ML models we divided predictors of ∆W into strong (presented in Figure 8)
and weak (Figure A2). Under strong predictors we understand most important predictors
in each model that have a nonlinear effect on ∆W and had high variable importance
values. The predictors SWP, DOY and CWBcum were strongest in RF and GBM models
(Figure 9). In SVM and NN models, CWBcum was the only strong predictor with a higher
variable importance value. Other predictors did not have a pronounced effect on the model
performance (Figure 9). The CW_PV provenance had greater values of the residual error
after permutation in comparison to C_PV (Figure 9).

Table 4. Performance of machine learning models, where SVM = support-vector machine,
RF = random forest, GBM = gradient boosting machine, NN = neural network, MDS = maximum
daily shrinkage, ∆W = stem water deficit, CW_PV = provenance from cooler and wetter conditions,
C_PV= provenance from cooler conditions, MSE is mean squared error, RMSE is root mean squared
error, R2 is coefficient of determination and MAD is mean absolute deviation.

RF GBM SVM NN

∆W_”CW_PV”

MSE 0.005 0.0002 0.040 0.040
RMSE 0.070 0.0159 0.201 0.200

R2 0.956 0.963 0.638 0.642
MAD 0.023 0.002 0.045 0.117

∆W_”C_PV”

MSE 0.002 0.0001 0.009 0.013
RMSE 0.039 0.011 0.097 0.113

R2 0.979 0.97 0.868 0.818
MAD 0.017 0.002 0.027 0.051

MDS_”CW_PV”

MSE 0.001 0.0002 0.002 0.003
RMSE 0.028 0.0164 0.054 0.055

R2 0.902 0.968 0.629 0.610
MAD 0.013 0.002 0.018 0.028

MDS_”C_PV”

MSE 0.001 0.0003 0.002 0.003
RMSE 0.025 0.019 0.050 0.051

R2 0.898 0.952 0.607 0.587
MAD 0.011 0.004 0.017 0.024

Partial dependence plots of all models derived for both provenances follow the same
course (Figure 8). The intra-annual changes of ∆W were provenance- and model-specific
(Figure 8). The SVM and NN models usually showed a more smoothed performance of ∆W
along the range of predictors than the GBM and RF models, which captured subtler changes.
Moreover, the models revealed different intra-annual trends between the provenances.
While ∆W of CW_PV had an overall slightly decreasing trend in the growing season across
three derived models, the temporal changes of ∆W of C_PV were smaller and the trends
were inconsistent between the models (Figure 8). In the case of SWP, all models predict a
continuous decrease in ∆W with the increasing lack of soil water, while the reduction of
CW_PV was less distinct than for C_PV. (Figure 8). Similarly, the decrease in CWBcum
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resulted in a continuous decrease of ∆W irrespective of the provenance, while CWBcum
lower than 360 mm or 430 mm cause a more substantial reduction of ∆W for CW_PV and
C_PV, respectively (Figure 8).

The other predictors (GR, VPD, AT (avg, max, min), P, PET, CWB, VPD) showed
‘flatter’ courses of ∆W along their ranges indicating lower sensitivity of ∆W to the varying
predictor state. We can also observe an increasing discrepancy in offsets between tight
(GBM, RF) and loose (SVM, NN) models (Figure A2).

When evaluating MDS we could not identify key factors influencing MDS behaviour
based on the results from the machine learning models (Figures 10 and 11). All predic-
tors had relatively uniform effects on reducing root mean square error after permutation
(Figure 11). The most important variables in all models for C_PV were DOY, P and GR,
while CWBcum was important in the GBM and ATavg in the RF models. The MDS of the
CW_PV was most affected by CWB followed by DOY, ATmin and P.
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Figure 8. Partial dependence plots of derived machine learning models (RF = random forest,
GBM = gradient boosting machine, SVM = support-vector machine, NN = neural network) for the
values of stem water deficit (∆W) of the examined provenances (from cooler and wetter conditions
(CW_PV, left) versus the one from cooler conditions (C_PV, right)) of P. abies and the day of the year
(DOY) and selected environmental factors of all study periods of the years 2017–2019 together: soil
water potential (SWP), cumulative water balance (CWBcum).
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Figure 9. Means (over 10 permutations) of permutation-based variable-importance measures for
the explanatory variables included in the derived machine learning models (RF = random forest,
GBM = gradient boosting machine, SVM = support vector machine, NN = neural network) for stem
water deficit (∆W) of the provenance from cooler and wetter conditions (CW_PV) (left) and the
provenance from cooler conditions (C_PV) (right). The abbreviations of variables: day of the study
period (DOY), global radiation (GR), average air temperature (ATavg), minimum air temperature
(ATmin), maximum air temperature (ATmax), relative air humidity (RH), precipitation (P), vapour
pressure deficit (VPD), potential evapotranspiration (PET), soil water potential (SWP), climatic water
balance (CWB), cumulative water balance (CWBcum).
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Figure 10. Partial dependence plots of derived machine learning models (RF = random forest,
GBM = gradient boosting machine, SVM = support-vector machine, NN = neural network) for the
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values of maximum daily shrinkage (MDS) of provenance from cooler and wetter conditions (CW_PV)
and provenance from cooler conditions (C_PV) of P. abies and day of the study period (DOY) and
selected environmental factors of all study period of the years 2017–2019 all together: global radiation
(GR), average air temperature (ATavg), minimum air temperature (ATmin), maximum air temperature
(ATmax), relative air humidity (RH), precipitation (P), vapour pressure deficit (VPD), potential
evapotranspiration (PET), soil water potential (SWP), climatic water balance (CWB), cumulative
water balance (CWBcum).
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Figure 11. Means (over 10 permutations) of permutation-based variable-importance measures for
the explanatory variables included in the derived machine learning models (RF = random forest,
GBM = gradient boosting machine, SVM = support-vector machine, NN = neural network) for
maximum daily shrinkage (MDS) of provenance from cooler and wetter conditions (CW_PV) (left)
and provenance from cooler conditions (C_PV) (right). The abbreviations of variable: day of the study
period (DOY), global radiation (GR), average air temperature (ATavg), minimum air temperature
(ATmin), maximum air temperature (ATmax), relative air humidity (RH), precipitation (P), vapour
pressure deficit (VPD), potential evapotranspiration (PET), soil water potential (SWP), climatic water
balance (CWB), cumulative water balance (CWBcum).
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The models of intra-annual temporal development revealed that in the case of CW_PV
its values slightly increased over time, while three out of four derived models showed the
opposite trend for C_PV (Figure 10).

All models predict an increase of MDS with the increasing ATmin, AT avg, GR and
P regardless of the provenance, while the trend with ATmax was the opposite. Both
provenances showed synchronous, more less flat courses indicating lesser sensitivity of
MDS values to VPD, PET, CWBcum and SWP. The relationship of MDS with precipitation
and CWB was found to follow an exponential pattern. Hence, their impact on MDS
substantially increased if their values exceeded 10 mm or 3.5mm, respectively (Figure 10).

4. Discussion

Norway spruce is known to be a plastic coniferous tree species growing in different
environmental conditions [57,58]. Since its plasticity has its limits, the impact of climate
change is unsure [59]. The assisted transfer of genetic material suitable for future environ-
mental conditions may reduce the negative impact of climate change [60]. The research of
tree growth response to different environmental conditions provides us with the informa-
tion on the mutual effect of the genotype and the environment, adaptability of tree species
and their provenances, and enables us to predict the impacts of the climate change [61–63].
The ongoing climate change, especially the temperature increase during the second half of
the 20th century cause drought stress in spruce stand [64]. Stands growing outside their
natural distribution region are especially sensitive to these impacts. Previous studies of
spruce growth response to increasing temperatures presented contradictory results includ-
ing a higher productivity particularly at higher elevations [1,65,66] and a decreasing trend
in growth especially at lower altitudes [67–69]. Some research indicated that spruce can
profit from warmer but not drier conditions [65,70]. [71] found that spruce trees at higher
elevations were growing more slowly than those at lower elevations. Experiments showed
that the phenology of provenances remains unchanged even after they are transferred from
sub-alpine locations to lower elevations with more favourable growing conditions [71].
However, general trends found for a continental scale do not have to apply to all popula-
tions and local environmental factors need to be accounted for [72,73]. Based on model
simulations, [74] predicted that an increase of air temperature by 1 ◦C would cause an
increase in the average annual increment of spruce at the age of 100 years by 5.9%, while
the increase by 3 ◦C could result in its reduction by 8.9%.

Several dendroecological studies (e.g., [4,67,75,76] confirmed a greater susceptibility
of Norway spruce to drought in comparison with other tree species. It is particularly
limited by drought in summer, most probably due to its shallow root system [77,78] and
the majority of fine root located in the upper soil layers [79].

To better understand Norway spruce sensitivity to drought stress, hydraulic and
physiological mechanisms of tree species reaction to environmental conditions need to
be examined. The World Meteorological Organisation (WMO) reported that the period
2015–2020 as well as the whole last decade 2011–2020 in Europe was historically the
warmest period over the last 140 years. The climatic data measured at our site revealed
that the air temperature during the growing season was the highest in the year 2018 (by
3.4 ◦C more than the long-term value), while the precipitation total was the lowest and
below the long-term normal (1961–1990) (Figure 1, Table 2). In the year 2018, central Europe
experienced one of the most severe and longest summer heat and drought periods. As
presented by [80], drought events in the year 2018 were climatically more extreme and
had a greater impact on the European forest ecosystems than the drought in the year 2003.
Due to the extreme drought, many species experienced high tree mortality in the whole
Europe [80].

The changes in climatic factors during the growing season cause changes in the
growing abilities of tree species, which are directly linked to biomass accumulation [21].
In addition, tree growth is also driven by its size, age, competition, and site conditions.
Previous studies showed that in some regions, competition is the driving factors, while
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the climate impact is secondary [37,81]. This trend was particularly evident for dominant
species [82], while in plantation forests, the relative influence of competition decreased but
that of climate increased [83]. In our case, research plots resemble plantations since trees
are of the same age and were planted at regular distances at the same time. Hence, we
focused on selected climatic and soil conditions, and disregarded other growth conditions.

The spruce provenance originating from cooler conditions (C_PV) had a better grow-
ing performance than the provenance from cooler and wetter conditions (CW_PV) in all
investigated growing seasons (Figure 3, Table 3) indicating that the reduction of the avail-
able water resulted in less growth. The cumulative radial increment of CW_PV during the
whole period 2017–2019 represented 70% of C_PV increment (Table 3). The substantial
increase in air temperature by 5 ◦C in comparison to the site of the origin coupled with
the sufficient amount of precipitation in the year 2017 (by 100 mm, i.e., 20%) resulted in
the greatest radial increment of C_PV during the investigated period indicating that the
water is the driving factor. The response of CW_PV was more complex, since the lowest
radial increment (although not significantly different from other years) was observed in
the year 2019, which was not the least favourable one in the three years from the point of
climatic conditions.

The smallest difference in the annual radial increment between the provenances was
recorded in the year 2018 (Figure 3, Table 3), which was characterised by highly above
average values of air temperature and low precipitation totals during the whole growing
season. In that year, the radial increments of C_PV and CW_PV represented only 22% and
28% of the total increment for the analysed period, respectively (Figure 3, Table 3).

Norway spruce is very sensitive to soil water supply (see e.g., [37,67,84]), which was
also observed in our results. Greater values of MDS and lower values of ∆W were found
when SWP was low (Figures 3–5). Decreasing stem water deficit indicates the reduction of
water potential in stem tissues, which can result in stem shrinkage lasting up to several
days or weeks [20]. In the years 2017 and 2019, the lack of water was more pronounced
for the CW_PV provenance, while in the year 2018 the situation was the opposite due to
climatically more extreme conditions compared to 2017 and 2019. In the year 2018, the
precipitation total below the long-term precipitation of the C_PV original location (Tables 1
and 2) coupled with the highest recorded mean air temperature in the observed period
caused a greater reduction of radial increment and Wcum than in the case of CW_PV
(Figures 3–5, Table 3). We assume that this result is caused due to the fact that CW_PV had
to cope with more extreme conditions (Tables 1 and 2) at the current site throughout its
whole growth, and that is why it reacted to a lesser extent than C_PV. Spearman correlations
for the year 2018 revealed opposite relationships of ∆W with several environmental factors
than in the other two years (Figure 6). These results reflect the changes in the tree reaction
to the lack of water availability. After reaching a threshold of stem shrinkage, trees were
not able to reduce their radial dimensions further. The positive correlations of stem water
deficit with GR, AT and PET in the year 2018 (Figure 6) may result from the isohydric
behaviour of spruce [85], and the reduction of stomatal conductance in the early stages of
soil drought, which affected the overall growth performance (Figure 3b). Norway spruce
has a more risk hydraulic strategy than e.g., white fir [86,87]. If the hydraulic system is
damaged, water transport can be reduced for a longer time despite the sufficient amount
of available water [88]. The protracted lower post-drought growth of spruce may indicate
that a tree was damaged during a drought event, which has subsequent longer-term legacy
impacts (cf. [62,80]).

The driving impact of water availability on ∆W was confirmed by the highest values of
Spearman correlation coefficients of stem water deficit with CWBcum and SWP (Figure 6),
as well as by models derived by machine learning methods (Figures 8 and 9). CWBcum
combines the impact of multiple variables (precipitation, air temperature, radiation, air
humidity), and is a cumulative characteristic similarly as ∆W, which explains the greatest
influence of CWBcum on ∆W (Figures 8 and 9).
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Several authors (e.g., [21,89,90]) found that ∆W is closely related to drought stress, and
is determined by a combination of atmospheric and soil conditions, which was confirmed
also by our results. The values of SWP at CW_PV site were usually lower than at CV_PV site
(Figure 3), which can explain the higher sensitivity of ∆W to SWP (Figure 6) and a smaller
radial increment of CW_PV (Table 3). Models also showed a significant impact of SWP
on ∆W, while the response of CW_PV to SWP was greater (Figure 8). These observations
coincide with the previous research that showed a close relationship between a diameter of
coniferous tree species and soil water availability or evaporation demands [21,91].

Three models based on artificial intelligence (RF, GBM and SVM) revealed a significant
impact of DOY on ∆W. The relationship between DOY and ∆W reveals the seasonal
development of ∆W. DOY can also be considered as a proxy of tree phenology. PDP shows
the impact of individual predictors on the dependent variable, e.g., ∆W, while the effect
of all other independent variables is excluded. The NN model was not sensitive enough
to capture the impact of DOY (Figure 8). The seasonal development of ∆W indicated that
C_PV had a higher ability to cope with the water deficit in the season (Figure 8).

In the wetter year 2017 (Figures 1 and 3a, Table 2), we recorded the lowest differences
in cumulative MDS between provenances compared to all analysed years. Although SWP at
C_PV site was almost during the whole examined period greater than at CW_PV (Figure 3),
in drier years of 2018 and 2019 smaller cumulative values of MDS were observed for CW_PV
(Figure 5, Table), which may indicate that C_PV was more sensitive to atmospheric factors.
This assumption was confirmed by the correlation analysis, since the coefficients of MDS to
climatic variables were greater for C_PV (Figure 7). Considering the fact that the maximum
daily shrinkage quantifies stem shrinking for one day [26], it is an indicator of real tree
plasticity to current environmental conditions including atmosphere and soil [92,93]. Due
to this, its relationship to independent characteristics is more balanced than in the case of
∆W, which was affected mainly by DOY, SWP, CWBcum (Figures 8–11). Moreover, extreme
values of MDS occurred more rarely than in the case of ∆W, which has a cumulative
character. Periods of missing stem rehydration are represented in ∆W but not in MDS.
The duration of reversible changes of stem diameters (contraction, expansion) depends
mainly on the transpiration of the whole plant [25]. As presented by Giovanneli et al. [90],
the increase in MDS is the first visible morpho-physiological signal of changes in tree water
status. Greater MDS values indicate large gradients between water demand and supply [94],
and/or days with open stomata and hence with high transpiration and assimilation. If water
potential falls below a certain threshold [95], photosynthesis and structural growth [23,77]
are substantially reduced. The accumulation of above-ground biomass is affected more [96],
and photosynthetic activity is usually maintained at a lower level to ensure the survival
of the whole organism. Isohydric species, such as Norway spruce, reduce their water
consumption and growth already at an early stress phase by closing stomata, which reduces
the risk from drought stress. Considering this knowledge, the lower radial increment of
CW_PV than of C_PV indicates that trees of CW_PV close their stomata sooner to reduce
their water demand due to the long-term insufficient water supply at the current site in
comparison to the site of the provenance origin. On the other hand, C_PV originating
from the site with the same precipitation amount is adapted to such conditions and thus,
its radial growth was more intense. Considering the hypotheses about the sensitivity of
investigated provenances that were planted under different environmental conditions,
our results suggest that the temporal aspect needs to be accounted for. The provenance
CW_PV originating from more extreme conditions had lower absolute radial increments in
comparison to C_PV, but it was less sensitive to short-term changes of climatic conditions.
To formulate a general conclusion, more detailed analyses including more provenances
and/or longer time series covering more years are required.

In this paper we applied four machine learning models, which can be utilised for
the prediction of daily drought indices: ∆W and MDS from environmental variables
(Figures 8–11). We must be aware that climatic predictors are highly correlated. The
emerging multicollinearity is well handled by RF and GBM [97,98]. However, there is an
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emerging danger in overfitting the model when correlation structures between features in
the training set do not generalise the unseen data. In general, this is not our case except
for precipitation which is characterised by the random pattern of precipitation events.
Nevertheless, precipitation had the lowest importance from predictors in the models for
∆W (Figure 9).

Neural networks do not suffer from multicollinearity, as the parameters are estimated
using the backward propagation, which eliminates this problem. In the models derived
based on the support vector machine algorithm, we found that target values were less
sensitive to the predictor change than other machine learning algorithms, thus resulting in
poor performance.

Neural networks also showed a relatively poor performance despite the fact that one
can train relatively complex models on smaller datasets obtaining generalisable results [99].
Following Nakkiran et al. [100], we kept fitting the neural net for a large number of epochs
(>5000) trying to reach a so called ‘second decrease in the generalisation error’. On the
other hand, according to [101] large datasets are needed to train deep neural networks to
prevent overfitting. In our case, the smaller dataset incorporating only several hundreds of
datapoints was not sufficient to optimise the DNN. In contrary, ensemble learning methods
which involve combining and building broad arrays of learning algorithms (GBM and RF)
obtained a better predictive performance compared to a single learning algorithm (ANN
and SVM) and are especially useful on small datasets [49]. The bagging technique appears
to have a slightly better predictive performance in terms of stability over the boosting
technique (Table 4).

5. Conclusions

The work revealed different growth patterns of two Norway spruce provenances both
originating from cooler conditions and one also from wetter conditions than their current
location. The annual radial increments of the provenance from cooler and wetter conditions
(CW_PV) were lower than those of C_PV in all examined years (2017–2019), while the
fluctuations of increment between the years were slightly greater for the provenance from
cooler conditions. This indicates that C_PV was more sensitive to changes in environmental
conditions, which was confirmed by the correlation analysis. Lower radial increments of
CW_PV suggest that this provenance adapted to new less favourable moisture conditions in
comparison to the site of its origin, and used a water-saving strategy, which includes early
closure of stomata sooner to reduce its water demand, and subsequently less production.
For C_PV, moisture conditions at the current site resembled those at the site of its origin.
Hence, the provenance from cooler conditions did not encounter the long-term water stress
and its growth could be more intense.

The application of four machine learning methods: random forest (RF), support vector
machine (SVM), gradient boosting machine (GBM) and neural network (NN) to explain
the relations between tree water status characteristics (∆W, MDS) and environmental
conditions confirmed the strong impact of SWP and CWBcum on stem water deficit.
Ensemble machine learning methods which involve combining and building broad arrays
of learning algorithms (GBM and RF) obtained a better predictive performance compared
to single learning algorithms (NN and SVM) and are especially useful to be applied on
small datasets as it was in our case.

Our results demonstrate that the origin plays a crucial role in the response of trees
to new environmental conditions. Further data about the tree growth and water status
at an intra-annual scale covering more years with different climate may enlighten these
processes and their drivers, which may enhance our understanding of plant strategies
to cope with changes, and subsequently support decision-making about mitigation and
adaptation measures.
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Appendix A

Random forest model development

When designing random forest models, we used four different algorithms available
in the caret package 6.0-93 in R 4.2.1 environment, specifically: 1. conditional inference
random forest, 2. oblique random forest and 3. random forest using method ‘ranger’
and 4. random forest using method (RF). The performance of individual approaches was
evaluated by mean square error (however RMSE, R2 and MAD were also considered). The
best model (3. Ranger) was selected based on the model performance and used in further
analyses. Data were not scaled nor centred before the analysis. First, we considered the
number of trees within the random forest. The number of trees needs to be sufficiently large
to stabilise the error rate. We set the number of trees to 100, 1000 and 10,000. More trees
provide more robust and stable results, but the computation time increases linearly with
the number of trees. The hyperparameter mtry (number of randomly drawn candidate
variables) controls how many of the input features a decision tree has available to consider at
a given point in time [102]. Mtry helps to balance ‘low tree correlation’ with the reasonable
predictive strength. The default value of mtry is N/3 (N-number of predictor variables).
In the case of noisy data (fewer relevant predictors or autocorrelation), higher values of
mtry provide better predictions. In our study we used 4, 5, 7 and 9 as mtry values. The
default sampling scheme in the ranger package is bootstrapping with replacement (in
this case all observations are samples). To create a more diverse tree, the sample size
needs to be reduced. The effect of sample size reduction is lower ‘between tree correlation’
with a positive impact on the prediction accuracy. We sampled 70%, 80% and 90% with
and without replacement. The node size is probably the most common hyperparameter,
which controls the tree complexity, and most implementations use a value of 5 as a default
value for regression. If the data have many noisy predictors, greater mtry values with
the increased node size perform better. It specifies the minimum number of observations
in a terminal node The minimum node size was set to values: 3, 5, 7 and 10. Splittrule:
‘variance’, ‘extratrees’, ‘maxstat’ and ‘beta’ were considered.

The form of the final model was as follows: 1000 trees with the splitting rule: ‘variance’,
optimal sampling design for the purpose of this study was 80% of observations randomly
taken with replacement, minimal node size of 7, and mtry equals 9.

Gradient boosting machine model development

First, an intensive grid search was performed in Python environment (3.10.5) on
several parameters listed below.

Min_child_weight is the minimum weight required for creating a new node in the tree
and is used to control overfitting. A smaller min child weight allows more complex trees,
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but they are more likely to be overfitted. Higher values prevent a model from learning
highly specific relations related only to a particular sample selected for a tree.

‘eta’:[0.01, 0.1, 0.3] ‘eta’, alias learning rate shrinks the feature weights to make the
boosting process more conservative. The lower the eta, the more robust the model is to
overfitting, but more rounds of boosting are needed.

‘max_depth’:[1, 3, 10]. Maximum depth of a tree controls overfitting. It expresses the
number of nodes which are allowed from the root to the farthest leaf of a tree. Shallow
trees are more robust than deeper trees which are prone to overfit.

’subsample’:[0.65, 0.8, 0.9] estimates a fraction of observations to be randomly sampled
for each tree.

‘colsample_by_tree’:[0.8, 0.9, 1.0] is the ratio of columns that are used for the construc-
tion of each tree. Value 1 means that all features are used by the algorithm.

‘n_estimators’:[300, 200, 150, 100, 50, 10, 5] is a hyperparameter that controls the
number of trees. When the boosted tree model is constructed, each new tree tries to
improve the performance of the previous tree and the limit is reached relatively fast after
new trees fail to improve the model. For the purpose of this study, a script which combines
the cross-validation with the grid search was developed.

The final parameters used for the analysis are colsample_by_tree: 0.9, ‘eta’: 0.3,
‘max_depth’: 3, ‘min_child_weight’: 5, ‘n_estimators’: 150, ‘subsample’: 0.8. Libraries
xgboost 1.61, scikit-learn 1,12 Pandas 1.4.3 and Numpy 1.23 were used in the analysis. The
estimated hyperparameters were passed to R environment library(xgboost) and then to
DALEX. Data were not scaled nor centred.

Support Vector Machine model development

For the purpose of this study, three different SVM kernel functions were applied: radial,
polynomial and linear. Data were split into the training and test set. In the case of the linear
method, hyperparameters ‘cost’ and ‘loss’ were tuned, in the case of polynomial kernel
‘degree’, ‘scale’ and ‘cost’ were estimated, and in the case of the nonlinear (exponential)
approach, kernel parameters ‘lambda’ and cost were estimated. The analysis was performed
in caret package. Data were centred and scaled prior to modelling.

Neural network model development

In contrary to GBM where the grid search was performed on the whole dataset,
hyperparameters were assessed per partes because of the computational time. First the
baseline model was created. The original structure had three hidden layers, each containing
12 neurons, the optimiser was set to a stochastic gradient descent. As in the case of GBM, a
script has been developed which combines cross-validation with the hyperparameter grid
search. The batch size (10, 20, 30, 40) is a hyperparameter that controls the number of the
training sample that goes through the model before internal parameters are updated. The
number of epochs (50, 100, 200, 40, 10) is a hyperparameter which controls the number
of complete passes through the dataset. The dropout rate (1.0, 0.9, 0.8, 0.7) is a ratio of
neurons which are disabled on purpose with their corresponding connections in hidden
layers. This feature prevents overfitting of neural networks. The learning rate (0.001, 0.01,
0.1) is a measure of the model change in response to the estimated error each time the
model weight is updated. The activation_function [‘softmax’, ’relu’, ’tanh’, ’linear’] defines
how the weighted sum of the input is transformed into an output from neuron, or neurons
resp., in a layer of the neuron network. The kernel init = [‘uniform’, ’normal’, ’zero’] maps
data from its original space to a higher dimensional feature space. The number of hidden
layers (1, 2, 3, 4) is the number of layers between the input and output layers. The number
of neurons in each layer (4, 8, 16, 32, 64) is the number of neurons in each layer. For tuning
of a hyperparameter, Python 3.10 was used with libraries pandas numpy sklearn, keras
tensorflow. The final model with the optimised parameter was run in R and passed to Dalex
package. The whole analysis was performed in R 4.1.2 with Tensorflow 2.8.0 [103] and
Keras 2.8.0 libraries. Tensorflow is an open-source program for multiple machine learning
tasks and Keras is a neural network library, which serves as a Tensorflow interface.



Forests 2023, 14, 156 24 of 29

Appendix B

Forests 2023, 14, 156  26  of  31 
 

 

Appendix B 

 

Figure A1. Monthly circumference increment and relative monthly circumference increment. Figure A1. Monthly circumference increment and relative monthly circumference increment.

Forests 2023, 14, 156  27  of  31 
 

 

 

Figure A2. Partial dependence plots of derived machine learning models (RF = random forest, GBM 

= gradient boosting machine, SVM = support‐vector machine, NN = neural network) for the values 

of stem water deficit (ΔW) of provenance from cooler and wetter conditions (CW_PV) and prove‐

nance from cooler conditions (C_PV) of P. abies and selected environmental factors of all study pe‐

riod of the years 2017–2019 all together: global radiation (GR), average air temperature (ATavg), 

minimum  air  temperature  (ATmin), maximum  air  temperature  (ATmax),  relative  air  humidity 

(RH), precipitation (P), vapour pressure deficit (VPD), potential evapotranspiration (PET), climatic 

water balance (CWB). 

References 

Figure A2. Cont.



Forests 2023, 14, 156 25 of 29

Forests 2023, 14, 156  27  of  31 
 

 

 

Figure A2. Partial dependence plots of derived machine learning models (RF = random forest, GBM 

= gradient boosting machine, SVM = support‐vector machine, NN = neural network) for the values 

of stem water deficit (ΔW) of provenance from cooler and wetter conditions (CW_PV) and prove‐

nance from cooler conditions (C_PV) of P. abies and selected environmental factors of all study pe‐

riod of the years 2017–2019 all together: global radiation (GR), average air temperature (ATavg), 

minimum  air  temperature  (ATmin), maximum  air  temperature  (ATmax),  relative  air  humidity 

(RH), precipitation (P), vapour pressure deficit (VPD), potential evapotranspiration (PET), climatic 

water balance (CWB). 

References 

Figure A2. Partial dependence plots of derived machine learning models (RF = random forest,
GBM = gradient boosting machine, SVM = support-vector machine, NN = neural network) for the
values of stem water deficit (∆W) of provenance from cooler and wetter conditions (CW_PV) and
provenance from cooler conditions (C_PV) of P. abies and selected environmental factors of all study
period of the years 2017–2019 all together: global radiation (GR), average air temperature (ATavg),
minimum air temperature (ATmin), maximum air temperature (ATmax), relative air humidity (RH),
precipitation (P), vapour pressure deficit (VPD), potential evapotranspiration (PET), climatic water
balance (CWB).
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