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Abstract: Decomposition is vital for nutrient cycling and is sensitive to atmospheric nutrient deposi-
tions. However, the influences and underlying mechanisms of nutrient deposition on the long-term
decomposition of leaves and absorptive roots remain unclear. Here, we explored the responses of
leaves and absorptive roots to nutrient deposition (control, +N, +P, and +NP) in Pinus massoniana and
Schima superba forests in subtropical China based on two stages (early-stage (1-year) and late-stage
(3-year)) of a decomposition experiment. The chemical factions (acid-unhydrolysable residue (AUR),
cellulose, and hemicellulose concentrations) and microbial enzymatic activities (hydrolase and ox-
idase) were also determined. The +N treatment had persistent negative effects on absorptive root
decomposition, except for P. massoniana during the late stage. The +P treatment had a positive effect
on leaf decomposition in all stages. The +NP treatment had a positive effect on leaf decomposition
during the late stage. The increasing decomposition rates of foliar under +P treatment were more
correlated with the increasing acid phosphatase activity than chemical factions, indicating a microbial
mechanism. The decreasing decomposition rates of roots under +N treatment were weakly correlated
with increasing AUR concentrations and strongly correlated with decreasing oxidase activity during
the late stage, indicating both chemical and microbial mechanisms. Overall, our findings highlight
that, despite contrasting responses to nutrient deposition, the mechanisms underlying aboveground
and belowground decomposition tend to converge as decomposition progresses.

Keywords: litter decomposition; nitrogen and phosphorus deposition; early- and late-stage; AUR;
microbial enzymatic activity; underlying mechanisms

1. Introduction

Decomposition is vital for nutrient cycling in terrestrial ecosystems and is sensitive
to global environmental change [1,2]. Leaf litter decomposition is a major contributor
to soil carbon (C) dynamics, organic matter formation, accumulation, and stability [3,4].
However, a high proportion of plant litter inputs, notably derived from belowground
fast-cycling organs, absorptive roots, has frequently been overlooked in the development
of research on soil C pools [5,6]. Although some studies have explored absorptive root
decomposition [6–8], how long-term ongoing nutrient (e.g., nitrogen (N) and phosphorus
(P)) deposition [9,10] drives this process remains unclear, which has impeded its inclusion
in global C models. Therefore, a comprehensive understanding of how nutrient deposition
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affects decomposition and its underlying mechanisms is crucial for improving the accuracy
of ecosystem C and nutrient budgets [11,12].

Evidence has demonstrated the strikingly different effects of increasing atmospheric N
deposition on litter decomposition [9,13,14]. This has been ascribed to microbial or chemical
mechanisms, depending on litter type [13,15]. For example, a simulated N addition can
slow absorptive root decomposition by increasing acid-unhydrolysable residue (AUR)
binding to N ions (a chemical mechanism) while having positive, neutral, or negative
effects on leaf litter decomposition by regulating microbial enzymatic activities (a microbial
mechanism) [9,13]. In contrast to the effects of N deposition on litter decomposition,
only a limited number of studies have directly investigated the response of aboveground
and belowground litter decomposition to enhanced P deposition, especially in P-limited
subtropical forests [9,10,16,17].

Notably, the predominant mechanisms underlying litter decomposition may change
over time as the chemical composition of litter and the community structure and enzymatic
activity of microorganisms constantly change [18,19]. For instance, labile substances are
easily degraded by microorganisms via the secretion of hydrolases [20,21] during the early
stages of decomposition. In contrast, macromolecular compounds (e.g., lignin and phenol)
can be utilised by microdecomposers that secrete oxidase [22,23] during the later stages
of decomposition. Thus, recalcitrant chemical substances and oxidase enzymatic activity
may be the main factors explaining the late-stage decomposition under nutrient deposition
conditions [23]. It is, however, unclear whether the dominance of chemical and microbial
mechanisms change over the course of decomposition under different scenarios of nutrient
deposition, particularly with increasing P deposition.

Subtropical forests in China have experienced intense N and P deposition [24,25],
which can significantly influence litter decomposition [15]. We previously reported the
effects of N and P alone or combined additions on the early-stage (1 year) decomposition
of the leaves and absorptive roots of Pinus massoniana and Schima superba [9]. To explore
the long-term effects of nutrient deposition, here, we extended our observation time to late-
stage (3 years) decomposition based on the global-scale critical value of leaf litter mass loss
(i.e., >40%) [26]. We determined the chemical fraction (AUR, cellulose, and hemicellulose
concentrations) and microbial (hydrolase and oxidase) enzymatic activity associated with
the two litter types to identify a potential shift in the decomposition mechanisms over
time. We hypothesised that: (i) a N addition would inhibit both leaves and absorptive roots
decomposition during the late stage, mainly based on a chemical mechanism (i.e., more
binding of AUR to inorganic N ions). Simultaneously, we expected that a P addition
would stimulate the decomposition of all substrate types via the microbial mechanism
(i.e., increasing the P availability can promote the microbial oxidase activity closely related
to decomposition during the late stage); (ii) the combined addition of N and P would
have less of an effect on litter decomposition, because the positive effect of a P addition
would mitigate the inhibitory effect of a N addition; and (iii) the underlying mechanisms
controlling decomposition would shift from chemical and hydrolase effects in the early
stage to chemical and oxidase effects in the late stage of decomposition.

2. Materials and Methods
2.1. Site Description

This study took place at the Qianyanzhou Ecological Research Station (26◦44′ N,
115◦03′ E, 102 m above sea level), Chinese Academy of Sciences, Jiangxi Province, South-
east China. This site has a continental subtropical monsoon climate. According to weather
station data, the mean annual temperature and rainfall are 17.9 ◦C and 1475 mm, respec-
tively. The soil in this study site is categorised as an ‘Inceptisol’, principally weathering
from red sandstone and mudstone [12]. The plantations are dominated by Masson pine
(P. massoniana), slash pine (P. elliottii), Schima superba, and Chinese fir (Cunninghamia lanceolata).
Based on the dominant species and life histories, we selected needle-leaf P. massoniana (Pm)
and broad-leaf S. superba (Ss) for this study. The current rates of N and P depositions in
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this area are approximately 33 N kg ha−1 y−1 and 0.76 P kg ha−1 y−1, respectively, which
are considered intense deposition rates [25]. More details of the site and the plants were
reported by Jiang et al. [9].

2.2. Experimental Treatment

In each plantation, a 30 m× 30 m block was designed in January 2016 and then divided
into 16 plots (2.5 m × 2.5 m) with at least a 4 m buffer between each plot. The following
four treatments were randomly assigned in each block: (1) control (natural conditions,
referred to as ‘CK’); (2) N-addition (120 kg N ha−1 y−1, referred to as ‘+N’); (3) P-addition
(40 kg P ha−1 y−1, referred to as ‘+P’); and (4) NP-addition (120 kg N + 40 kg P ha−1 y−1,
referred to as ‘+NP’). Four replicates were randomly selected to receive each of these
treatments. Considering the possibility of cross-contamination among each plot within a
block, we inserted a rigid plastic baffle (3 m length and 30 cm width) into the soil (15 cm
depth) to avoid that. Stand-level fertilisation was initiated in July 2016. The reagent of N
(NH4NO3, 35.7 g) and/or P (NaH2PO4, 16.1 g) were fully dissolved in 2 L tap water and
applied to the corresponding nutrient-addition plots with a sprayer on rain-free days once
every 2 months. The control plots received 2 L of tap water each time. Before beginning the
experiment, we sampled soil from the two plantations and measured the background soil
properties. The soil nitrate nitrogen, ammonia nitrogen, and available phosphorus were
2.97 ± 0.47 mg kg−1, 18.79 ± 0.29 mg kg−1, and 4.61 ± 0.55 mg kg−1 for Pm plantation and
2.14 ± 0.59 mg kg−1, 14.16 ± 0.98 mg kg−1, and 4.00 ± 0.23 mg kg−1 for Ss plantation. The
total soil C, N, and P concentrations were 18.05 ± 2.16 mg g−1, 1.20 ± 0.12 mg g−1, and
0.29 ± 0.504 mg g−1 for Pm plantation and 17.80 ± 3.84 mg g−1, 1.18 ± 0.28 mg g−1, and
0.26 ± 0.03 mg g−1 for Ss plantation.

2.3. Litter Material Preparation

In May 2016, we used litter traps to collect the freshly dropped intact leaves of Pm
and Ss species. For the belowground root samples, we excavated intact root segments
containing at least five branch orders from individual trees and then transported them to
the laboratory for no more than 2 h using an incubator. In the laboratory, fine roots were
carefully rinsed with deionised water to remove the adhering soil particles or extraneous
organic materials. Based on the protocol of fine root classification [27], a pair of forceps
was used to dissect the clean, intact, and live fine roots into different hierarchies (i.e., root
orders). The 1st and 2nd root orders were used to represent absorptive roots, which were
similar to leaves in function. Finally, we categorised the following four substrates, including
two species and two fast-cycling organs: Pm leaves, Ss leaves, Pm absorptive roots, and Ss
absorptive roots. To reduce the influence of the chemical composition of the tissues, we,
at a low temperature (40 ◦C), oven-dried the leaf and root samples to a constant weight
before the experiments.

2.4. Litterbag Deployment and Retrieval

The litterbag method was used to quantify the decomposition rates in the experimental
plots. Litterbags are standard tools in soil ecology [28] and have been used in a large number
of experimental field studies [29] despite the recognition that the mesh can prevent natural
shredding and mass loss during the in situ decomposition process. Here, 5.0003 ± 0.0002 g
dry weight of leaf litter were filled into a 10 cm× 20 cm litterbag (upper surface, 1 mm mesh;
lower surface, 0.1 mm mesh), and 2.0003± 0.0002 g dry weight of absorptive root litter were
filled into a 10 cm × 10 cm litterbag (upper and lower surface, 0.1 mm mesh). The mesh
sizes of litterbags can effectively avoid the physical loss of litter substrates [13] and allow
access by soil organisms [30]. To simulate the natural conditions of litter decomposition, on
28 July 2016, litterbags containing leaves were put on the soil surface and fixed using nails,
whereas litterbags containing roots were completely buried in the soil (10 cm depth). The
location of the study area and sampling sites in the P. massoniana and S. superba plantations
are shown in Figure 1.
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Figure 1. Location of the study area and sampling sites in the Pinus massoniana and Schima superba
plantations.

We selected two stages of litterbag retrieval to compare the early- and late-stage effects
of the nutrient addition. Thus, litterbags were retrieved on 28 July 2017 (after 1 year)
and 28 July 2019 (after 3 years). Intact and undamaged (e.g., animals, pine oil, or other
exudates) litterbags were chosen at both sampling occasions. Due to destruction by white
ants or turpentine contamination within some blocks, there was an insufficient number
of comparable litterbags for determining extracellular enzymatic activities (EEA) at the
3-year interval. Therefore, we collected soil under each decomposing substrate from each
plot to determine the EEA. The retrieved samples were immediately transported using an
incubator to the laboratory. The attached soil outside the litterbags was carefully cleared
before they were opened. The litter was obtained by removing the extraneous materials
using a brush and pair of forceps and then oven-dried (40 ◦C, 48 h) to determine the
residual mass.

2.5. Chemistry Analysis

For the litter chemical composition, the C and N concentrations were determined
with an elemental analyser (Vario MACRO cube; Elementar Analysensysteme GmbH, Lan-
genselbold, Germany). The P concentration was determined by microwave digestion of the
powder samples in concentrated HNO3 (ICPMS; Optima 5300 DV, Perkin Elmer, Waltham,
MA, USA). The cellulose, hemicellulose, and AUR concentrations were determined using
a modified method described by Jiang et al. [9]. Ground subsamples were extracted with
benzene-alcohol, and then, the residual part was hydrolysed using the digestion of H2SO4
(first 72% and second 4%) and filtered. The solid hydrolysate was oven-dried (60 ◦C, 48 h)
to determine the AUR concentrations. The cellulose and hemicellulose concentrations were
quantified using high-performance liquid chromatography (UltimateR 3000; Sunnyvale,
CA, USA). The ash content of the samples was determined by combusting the samples
(40–50 mg) in a muffle furnace (550 ◦C, 4 h). The values of the chemical traits and litter
mass were expressed on an ash-free, dry weight basis.

2.6. Microbial Extracellular Enzymatic Activity Assay

The litterbags were sampled at the 1-year stage, and the soil under each retrieval
litterbag in each plot was sampled at the 3-year stage to analyse the microbial EEAs. We
selected four hydrolytic enzymes and two oxidative enzymes that strongly influenced the
litter decomposition in the early and later stages. These hydrolytic enzymes are mainly
involved in microbial C, N, and P acquisition, namely β-1,4-glucosidase (BG), β-1,4-N-
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acetylglucosaminidase (NAG), cellobiohydrolase (CBH), and acid phosphatase (AP). For
the later (3-year) stage, we selected the same four hydrolytic enzymes plus two oxidative
enzymes, peroxidase (PER) and polyphenol oxidase (PPO), which influence the degradation
of phenolic compounds, lignin, and aromatic polymers. Before starting the EEAs test, the
leaves were cut into approximately 1 cm lengths (Pm) or 1 cm2 pieces (Ss), and the roots
were kept in their original conditions.

For each case, one-half of each residual litter sample, or approximately 20 g of fresh
soil, were oven-dried to determine the water content, and 0.5 g of litter or 0.1 g of fresh soil
were weighed and shocked with 125 mL of acetate buffer (50 mM, pH 5.0) to prepare the
sample, respectively. The sample suspensions, acetate buffer, methylumbelliferyl standard,
and substrate solutions were dispensed into 96-well microplates, accompanying eight
replicate wells as the treatment. All assays were incubated in the dark (20 ◦C, 4 h). To stop
the reaction, NaOH solution (1 M, 10 mL) was added to each well. Fluorescence at 365 nm
excitation and 450 nm emission filters was subsequently measured to achieve the original
data (unit, nmol h−1 g−1).

Oxidase activity was assayed spectrophotometrically. Briefly, the soil suspension
(600 µL) and substrate solution (150 µL) were dispensed into deep-well plates. For PER, a
H2O2 solution (30 µL, 0.3%) was added to each well. The oxidase plates were incubated
in the dark (20 ◦C, 5 h). The deep-well plates were centrifuged for 3 min, and then, the
supernatant was absorbed (250 µL) to measure the enzyme values (unit, nmol h−1 g−1) at
450 nm using a microplate fluorometer.

2.7. Statistical Analysis

The percentage mass loss after 1 and 3 years of decomposition was calculated as
follows: mass loss (%) = (massi − masst)/massi × 100, where massi and masst are the dry
weight (g) of leaves and absorptive roots at the initial and retrieval times, respectively.
The distribution of the values was tested for normality (Shapiro-Wilk test, α = 0.05) and
log-transformed when necessary for all the measured values. We used analysis of variance
(ANOVA) to identify the effects of species and organs on the initial chemical concentrations.
Repeated-measures (retrieval time as a factor) ANOVA were conducted to test the effects of
different treatments (CK, +N, +P, and +NP) on the mass loss. Two-way ANOVAs were used
to test the effects of different treatments on the cellulose, hemicellulose, AUR concentrations,
and microbial EEAs among the four substrates. Significant differences were determined
using Tukey’s honestly significant difference test. Linear regression analyses were used
to determine the relationships of ‘net’ values among the mass loss (after 3 years); residual
AUR (after 3 years); and EEA (after 3 years: BG, NAG, CBH, AP, PER, and PPO) among the
four substrates. The results were considered statistically significant at p < 0.05. Analyses
were performed using SAS software (version 9.4; SAS Institute Inc., Cary, NC, USA).

3. Results
3.1. Initial Chemical Parameters

The absorptive roots litter was relatively low quality, with higher N and AUR concen-
trations and AUR:P ratios, whereas the leaf litter was relatively high quality, with higher C,
cellulose, and hemicellulose concentrations and C:N and N:P ratios (Table 1). Regardless
of the substrate type, Pm had a lower N concentration and N:P ratio but higher C, AUR,
cellulose, and hemicellulose concentrations and lower C:N, AUR:N, and AUR:P ratios than
Ss (Table 1). The initial chemistry of the four decomposition substrates varied significantly
between the species and plant tissue types (Tables 1 and 2). Significant interactions between
species and plant tissues were observed for all measured parameters, with the exception of
the C:P ratio (Table 2).
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Table 1. Initial chemistry of the four substrates used in this study.

Species Type C
(mg g−1)

N
(mg g−1)

P
(mg g−1)

AUR
(mg g−1)

Cellulose
(mg g−1)

Hemicellulose
(mg g−1) C:N C:P N:P AUR:N AUR:P

Pinus
massoniana

Leaves 506.90 a

(2.83)
8.07 c

(0.51)
0.59 a

(0.03)
460.43 b

(3.62)
212.40 a

(1.65)
201.34 a

(2.91)
63.50 a

(3.49)
874.12 a

(54.13)
13.83 c

(0.82)
57.66 a

(3.09)
793.72 b

(47.86)
Absorptive

roots
426.68 c

(7.19)
11.88 b

(0.43)
0.55 a

(0.01)
589.13 a

(9.91)
90.71 c

(2.70)
112.44 c

(5.70)
36.06 b

(1.52)
782.46 a

(24.91)
21.77 b

(0.88)
49.77 a

(1.93)
1080.25 a

(33.06)

Schima
superba

Leaves 436.43 c

(3.39)
15.13 a

(0.45)
0.56 a

(0.02)
381.74 c

(10.54)
183.85 b

(5.45)
174.29 b

(4.78)
28.92 b

(0.86)
788.63 a

(31.99)
27.26 a

(0.67)
25.31 b

(1.12)
690.80 b

(39.71)
Absorptive

roots
463.44 b

(2.63)
14.59 a

(0.28)
0.63 a

(0.01)
429.14 b

(4.46)
201.12 a

(2.81)
179.33 ab

(7.22)
31.79 b

(0.55)
734.07 a

(10.45)
23.10 b

(0.36)
29.43 b

(0.39)
679.68 b

(10.16)

Values are presented as the mean with standard error in parentheses. Ratios are mass-based. Significant differences
between means were determined using Tukey’s honestly significant difference test. Different letters in a column
indicate significant differences among treatments (n = 4, p < 0.05). AUR, acid-unhydrolysable residue.

Table 2. Results (p-values) of the two-way ANOVA showing the effects of species, tissue, and their
interactions on the initial chemical properties of four decomposition substrates.

Source of
Variation

C
(mg g−1)

N
(mg g−1)

P
(mg g−1)

AUR
(mg g−1)

Cellulose
(mg g−1)

Hemicellulose
(mg g−1) C:N C:P N:P AUR:N AUR:P

Species 0.003 <0.001 0.199 <0.001 <0.001 0.003 <0.001 0.074 <0.001 <0.001 <0.001
Tissue <0.001 0.002 0.396 <0.001 <0.001 <0.001 <0.001 0.054 0.021 0.344 0.002

Species × Tissue <0.001 <0.001 0.016 <0.001 <0.001 <0.001 <0.001 0.598 <0.001 0.009 0.001

AUR, acid-unhydrolysable residue.

3.2. Effects of Different Treatments on the Mass Loss of Four Substrates

For absorptive roots litter, +N significantly inhibited the early-stage mass loss of Pm
and early- and later- stage mass loss of Ss (Figure 2c,d and Tables 3 and S1). +P significantly
stimulated the root decomposition of the two species in the late stage (Figure 2c,d and
Tables 3 and S1). The +NP treatment had a negative effect on the Ss root decomposition
in the late stage (Figure 2c,d and Tables 3 and S1). For the leaf litter, +N significantly
stimulated the early-stage decomposition of Pm (Figure 2a,b and Table S1). Compared to
the CK treatments, the foliar mass losses in both species were significantly higher in the +P
and +NP treatments throughout the decomposition process (p < 0.05), except for the early-
stage decomposition of Ss leaf litter in the +NP treatment (Figure 2a,b and Tables 3 and S1).
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+NP, combined additions of nitrogen and phosphorus; Pm, Pinus massoniana; Ss, Schima superba.
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Table 3. Results (p-values) showing the effects of nutrient addition on the 3-year decomposition of
leaves and absorptive roots of Pinus massoniana and Schima superba.

Substrates
+N vs. CK +P vs. CK +NP vs. CK

Effect F P Effect F P Effect F P

Pinus massoniana leaves ns 5.30 0.061 + 83.99 <0.001 + 53.98 0.000
Pinus massoniana absorptive roots ns 5.55 0.057 + 14.56 0.009 ns 4.89 0.069

Schima superba leaves ns 3.24 0.122 + 95.35 <0.001 + 11.86 0.014
Schima superba absorptive roots − 88.35 <0.001 + 8.38 0.028 − 7.01 0.038

CK, control; +N, nitrogen addition; +P, phosphorus addition; and +NP, combined additions of nitrogen and
phosphorus. For effect, ‘+’, ‘−’, and ‘ns’ indicate positive, negative, and no effect of the nutrient addition on the
decomposition compared with CK, respectively.

3.3. Carbon Fractions and Microbial Enzymatic Activity

Compared with the CK treatment, +N significantly increased the residual AUR con-
centration in Pm and Ss roots and increased the residual cellulose concentration in Ss roots
throughout the decomposition process (Figure 3 and Table S2). +P had a negative effect on
the residual cellulose and hemicellulose concentrations in Pm roots, and +NP had a posi-
tive effect on the residual AUR concentration in Ss roots during late-stage decomposition
(Figure 3). For leaf litter, the residual AUR, cellulose, and hemicellulose concentrations
had no significant differences among the four treatments throughout the decomposition
process (Figure 3 and Table S2).
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Figure 3. Concentrations of residual carbon fractions in four substrates under different treatments
in the 3-year stage of decomposition. Carbon fractions include AUR, cellulose, and hemicellulose.
Values are the mean ± SE (n = 4). Significant differences between means were determined using
Tukey’s honestly significant difference test. Different letters indicate significant differences among
treatments (p < 0.05). CK, control; +N, nitrogen addition; +P, phosphorus addition; +NP, combined
additions of nitrogen and phosphorus; AUR, acid-unhydrolysable residue; Pm, Pinus massoniana; Ss,
Schima superba.
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For the Pm leaf litter, the levels of the four hydrolytic enzymes were significantly
higher during the early stage of decomposition under the +N treatment than under the
CK treatment (Table S3). For the Ss leaf litter, +P treatment significantly decreased the AP
activity in the early stage of decomposition (Table S3), and the +P and +NP treatments
significantly increased the NAG, CBH, and AP activities in the late stage of decomposition
compared with the CK treatment (Figure 4). For the root litter, the +NP treatment in
Pm increased throughout the decomposition process, while the +N and +NP treatments
decreased the AP activity in Ss during the late stage of decomposition (Figure 4 and
Table S3). The +N and +NP treatments significantly decreased the oxidase activity in Pm
and Ss roots during the late stage of decomposition. The nutrient addition had no effect on
PPO and PER activities in the Ss leaf litter but had a negative effect on PER activity in the
Pm leaf litter (Figure 5).
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Figure 4. Activity of four microbial hydrolase extracellular enzymes in four substrates under differ-
ent treatments in the 3-year stage of decomposition. Values are the mean ± SE (n = 4). Significant
differences between means were determined using Tukey’s honestly significant difference test. Dif-
ferent letters indicate significant differences among treatments (p < 0.05). CK, control; +N, nitrogen
addition; +P, phosphorus addition; +NP, combined additions of nitrogen and phosphorus; BG, β-1,4-
glucosidase; NAG, β-1,4-N-acetylglucosaminidase; CBH, cellobiohydrolase; AP, acid phosphatase;
Pm, Pinus massoniana; Ss, Schima superba.

3.4. Relationships among Mass Loss, AUR Concentration, and Enzymatic Activity

The absorptive root mass loss was significantly correlated with the AUR concentra-
tion, whereas leaf decomposition was not (Figure 6). Specifically, the root mass loss was
significantly related to microbial oxidase activity during the late stages (Figures 5 and 6).
Foliar mass loss was significantly related to microbial hydrolytic enzyme activities in both
the early and late stages of decomposition (Figure 7).
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Figure 5. Activity of two microbial oxidase extracellular enzymes in four substrates under different
treatments in the 3-year stage of decomposition. Values are the means ± SE (n = 4). Significant differ-
ences between means were determined using Tukey’s honestly significant difference test. Different
letters indicate significant differences among treatments (p < 0.05). CK, control; +N, nitrogen addition;
+P, phosphorus addition; +NP, combined additions of nitrogen and phosphorus; PER, peroxidase;
PPO, polyphenol oxidase; Pm, Pinus massoniana; Ss, Schima superba.
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Figure 6. Relationships between the net residual AUR concentration and net mass loss for decompos-
ing leaves and absorptive roots in the 3-year stage of decomposition. ‘Net values’ were calculated
by deducting the residual AUR concentration or mass loss of the control treatment from that of
the nutrient-addition treatments. Different nutrient treatments were pooled, n = 12, p < 0.05. AUR,
acid-unhydrolysable residue.
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Figure 7. Relationships between the net microbial enzyme activity and net mass loss for decomposing
leaves and absorptive roots in the 3-year stage of decomposition. ‘Net values’ were calculated by
deducting the enzyme activity or mass loss of the control treatment from that of the nutrient-addition
treatments. Different nutrient treatments were pooled, n = 12, p < 0.05. BG, β-1,4-glucosidase; NAG,
β-1,4-N-acetylglucosaminidase; CBH, cellobiohydrolase; AP, acid phosphatase; PER, peroxidase;
PPO, polyphenol oxidase.

4. Discussion

Previously, we reported the negative effects of simulated N deposition on absorptive
root mass loss in the early stages of decomposition (after 1 year) at this experimental site [9].
Using the same set of samples, we sought to understand whether this effect persisted after
3 years. Consistent with our first hypothesis, the decomposition rates of the absorptive
roots after 3 years were significantly or marginally lower under the +N treatment than
under the CK treatment. The inhibited decomposition of roots after 3 years in the presence
of N could be related to the quality of the substrate, such as a high concentration of
AUR/lignin or polyphenols [8,31], which can easily combine with soil inorganic N ions to
form recalcitrant compounds [13,32]. The residual AUR concentration in the absorptive
roots was significantly higher after 3 years of decomposition under the +N treatment than
under the CK treatment. In addition, we found positive relationships between the net
residual AUR and net mass loss of root litter after this period. These findings indicate that
the chemical mechanisms still play a dominant role in the underlying inhibitory effect of N
deposition on root decomposition in the late stage of decomposition, as was observed for
the early stage.

Except the chemical mechanism, a microbial mechanism may play an important role
in underpinning the negative effect of an exogenous N addition on root decomposition. In
our study, oxidase (PER and PPO) activities were significantly reduced in the +N treatment
compared to that in the CK treatment. These results were consistent with the previous
research showing that the suppressive effects of a N addition on diameter-based/branch-
order fine root decomposition are closely related to decreases in the peroxidase and phenol
oxidase activities [33,34]. The degradation of lignin/AUR are mainly driven by white rot
fungi, which can secrete oxidases and peroxidases to catalyse the cleavage of carbon-carbon
bonds and ether linkages [35,36]. Additionally, the mass loss of roots after 3 years was
also significantly related to oxidase activities, demonstrating that the suppression of lignin-



Forests 2023, 14, 130 11 of 15

degrading enzymes also contributes to the inhibitory effect of a N addition on absorptive
root decomposition. Thus, our findings suggest that chemical and microbial mechanisms
jointly contribute to the suppressive effect of a N addition on absorptive roots during
late-stage decomposition.

Partly inconsistent with our first hypothesis, we found that the N addition did not
change the decomposition rate of the leaves at the later stage. This may be related to inter-
actions between the abiotic and biotic, such as N enrichment, litter quality and the enzyme
activities of microbial degradation [37,38]. It is widely accepted that low-quality litter has
lower decomposition rates under higher N deposition conditions (larger N enrichment)
based on the microbial N-mining theory [1,39]. However, we found that the N addition did
not decrease the Pm and Ss leaf decomposition, even though Pm leaf litter had a lower initial
AUR content than Ss leaf litter. This highlights that the initial lignin/AUR content might
not always explain the effects of a N addition on litter decomposition [37,38]. Additionally,
the lignin/AUR enrichment during late stage may limit the shift from lignin-encrusted
carbohydrates to hydrolases due to the microbial N-mining effect [39,40]. This may weaken
the energy source available for microbial productivity [40]. Interestingly, the PER activity in
the soil under the Pm leaf litterbags was significantly decreased in the N addition compared
to the CK treatment. However, there was not a significant effect of N addition on leaf litter
decomposition, which may be related to the contrasting effects of nutrient deposition on
plant litter degradation and soil organic matter storage [41].

In contrast to the effects of N addition on leaf litter decomposition, the P addition
consistently stimulated leaf litter decomposition. This positive effect is likely related
to the growth of roots and soil P limitations in subtropical forests [5,42,43]. Generally,
microbes acquiring P via the decomposition of organic matter are suppressed when there
is a sufficient P supply [44]; however, an exogenous P addition may not always meet
the microbial needs, particularly as the decomposition progresses. In the later stages of
decomposition, the leaf substrates in the litterbags primarily contained recalcitrant chemical
components [3]. In addition, fresh live roots around the leaf litterbags could easily mobilise
inorganic P ions via enhancing the activity of soil microorganisms [45], especially under
the +P treatment, for example, and contribute to the release of large amounts of acid
phosphatases into the litter layer [46]. This results in a persistent P limitation of microbial
decomposers in the litter [47,48]. We found that AP activities in the leaf litter of two species
were significantly increased in the late stage of decomposition, which further indicated that
the P limitation was the main factor driving leaf litter decomposition, i.e., the microbial
mechanism still underlying leaf litter decomposition during the later stage.

Consistent with the positive effects of a P addition on leaf litter decomposition in
the late stage, +P stimulated the later absorptive root decomposition. Interestingly, the
P addition did not influence the early root decomposition. The hysteresis effect of the
P deposition on root decomposition may be attributed to two factors. First, the effects
of an exogenous P addition on early litter decomposition may be limited by the soil-
buffering effects [49] or immobilization by microorganisms in the leaves [50,51] in P-limited
forests. Second, although there is continuous P input into the soil, this exogenous P
may be first used by live roots or microbes, especially mycorrhizal fungi [52], for growth,
leading to a persistent P-limitation effects on microorganisms for root litter decomposition.
Coincidentally, the AP activities of the absorptive roots of Pm and Ss were significantly or
marginally higher under the +P treatment than under the CK treatment, to some extent
indicating that P was still the limited element during the later stage decomposition of
the roots.

We expected that both the addition of N and P would have neutral effects on above-
ground and belowground litter decomposition, because the addition of these nutrients
individually had contrasting effects, i.e., positive vs. negative, respectively. However, the
effects of the +NP treatment varied with the substrate type. In the late stage, the +NP
treatment increased the leaf litter decomposition but decreased the absorptive root decom-
position. The positive effects of the +NP on leaf litter decomposition were consistent with
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the effects of the +P treatment, with higher AP activities under the +NP treatment than
under the CK treatment, similar to the patterns under the +P treatment. These results imply
that microbial mechanisms play a key role in leaf decomposition, even with a N input. By
contrast, the negative effects of the +NP treatment on root decomposition were in line with
the negative effects of the +N treatment. This indicates that, in the late stage, the chemical
mechanisms (i.e., binding of inorganic N ions to recalcitrant compounds) dominated over
the microbial mechanisms (i.e., microbial enzymatic activities) in the decomposition of
roots under the +NP treatment. Notably, our study took the microbial enzymes as the index
to represent the microbial mechanisms, while the microbial community structure was also
an important factor in regulating the effects of nutrient deposition on litter decomposi-
tion [53,54]. Consequently, future studies should pay particular attention to the microbial
mechanisms when exploring the responses of root and leaf decomposition to long-term N
and P additions for expanding our understanding of C and nutrient cycling in the context
of global changes [48,55].

5. Conclusions

A full random experiment was conducted to examine the responses of leaves and
absorptive roots to nutrient deposition (control, +N, +P, and +NP) in P. massoniana and S.
superba forests in subtropical China during early- (1-year) and late-stage (3-year) decomposi-
tion. We found that (1) the +N treatment decreased the early- and late-stage decomposition
of absorptive roots, and the +P treatment accelerated leaf decomposition throughout the
decomposition process, as well as the late-stage root decomposition. (2) The positive
effects of the +NP on leaf litter decomposition were consistent with the effects of the +P
treatment, while the negative effects of the +NP treatment on root decomposition were in
line with the negative effects of the +N treatment. (3) The decreased decomposition rate of
absorptive roots under +N was related not only an increase in the AUR concentrations but
also a decrease in the oxidase enzyme activity, indicating that both microbial and chemical
mechanisms contribute to late-stage root decomposition. Compared to the positive effects
of the P addition on leaf litter decomposition, the P input showed hysteresis effects in
accelerating the root decomposition, likely due to P limitations and biological (roots and
microorganisms) immobilization in the studied subtropical forest. Overall, our findings
emphasise that, despite the contrasting responses of root and leaf litter decomposition
to nutrient deposition, the chemical and microbial mechanisms tend to converge over
decomposition processes.
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and Schima superba. Table S2 Residual carbon fractions of leaves and absorptive roots decomposing
after 3 years of decomposition since litterbag placement. Table S3 Microbial extracellular enzy-
matic activities of leaves and absorptive roots decomposing after 3 years of decomposition since
litterbag placement.
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22. Gołębiewski, M.; Tarasek, A.; Sikora, M.; Deja-Sikora, E.; Tretyn, A.; Niklińska, M. Rapid microbial community changes during
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