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Abstract: The rapid quantitative assessment of soil organic carbon (SOC) is essential for understand-
ing SOC dynamics and developing management strategies in forest ecosystems. Compared with
traditional laboratory methods, visible and near-infrared spectroscopy is an efficient and inexpensive
technique widely used to predict SOC content. Herein, we compared three different spiking strategies.
That is, a large-scale global soil spectral library (global-SSL; 3122 samples) was used as the basis for
predicting SOC content in a small-scale local soil spectral library (local-SSL; 89 samples) in Wugong
Mountain, Jiangxi Province, China. Partial least squares regression models using global-SSL ‘spiking’
with local samples did not necessarily achieve more accurate predictions than models using local-SSL.
Using the developed strategy, a calibration set can be established by selecting the top N spectral
samples from global-SSL with high similarity to each local sample, together with the ‘spiking’ set
from local-SSL. It is possible to individually improve the prediction results based on local samples
(R2 = 0.90, RMSE = 7.19, RPD = 3.38) and still allow for quantitative prediction from fewer local
calibration samples (R2 = 0.83, RMSE = 8.71, RPD = 2.68). The developed method is cost-effective and
accurate for local-scale SOC assessment in target forest areas using a large soil spectral library.

Keywords: near-infrared spectroscopy; soil organic carbon; soil spectral library; spiking; forest
assessment

1. Introduction

Forest ecosystems, which account for 31% of the global land area, are the main reserve
of terrestrial carbon (C) stock. Given the large area and wide distribution of forests, forest
soil plays an essential role in the global C cycle [1]. Monitoring soil organic C (SOC)
dynamics in forests is necessary to address key environmental issues, such as improving
soil health and mitigating climate change [2]. However, traditional SOC measurement
methods are expensive and time-consuming, with complex analytical procedures [3]. The
development of reliable, accurate, rapid, and cost-effective methods for quantitative SOC
assessment would greatly assist in forest soil management.

Based on the relationship between soil spectral reflectance and the spectral response
of soil organic matter, visible and near-infrared (vis–NIR) spectroscopy has proven to be
a rapid, accurate, and cost-effective method for predicting SOC content [4]. Numerous
studies have reported on local-scale SOC prediction by vis-NIR spectroscopy [5–8], and
these predictions are usually accurate. The samples in the calibration and validation sets
have similar soil properties (e.g., parent material and soil type). However, it is not always
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feasible to measure soil properties in new target areas using existing locally calibrated
models because the prediction accuracy may be substantially reduced, and the cost of
modeling each study area separately is high [9–12].

Over the last decade, great efforts have been dedicated to building a large soil spectral
library covering as many soil types and properties as possible and developing modeling
strategies for new target areas [13]. Soil spectral libraries are developed at different scales,
ranging from field to local, national, continental, and global, while some are freely and
publicly available for research use [10,14–19]. However, predictions are often inaccurate
or biased when local calibration models are constructed using large soil spectral libraries
because the spectral characteristics of the local soil may not be appropriately reflected in
the calibration [10,20]. The most common strategies to improve the accuracy of regional or
local calibrations using soil spectral libraries are (i) selecting optimal calibration samples
from the soil spectral library and (ii) spiking the soil spectral library with representative
local samples.

To select optimal soil samples as the calibration set, researchers generally search the
soil spectral library for samples with similar properties (e.g., spectra, soil type, and land
use pattern) compared to local soils [4,14,18,21–24]. When spiking the soil spectral library,
several representative local samples are added to the calibration set to correctly reflect the
local soil properties. The main objective of spiking is to improve the prediction of soil
properties by including a small number of local samples in the calibration set [9,18,25–28].
The number of calibration samples also affects the prediction performance [29]; the larger
the number of local samples included in the ‘spiking’ set, the higher the prediction accuracy
of the soil properties [26,28]. However, setting the size of the ‘spiking’ set to large can
reduce the benefits of vis-NIR spectroscopy as an affordable and rapid analytical method.
On the other hand, setting the size of ‘spiking’ too small can reduce the amount of important
information available for modeling, resulting in less stable calibration [9].

A large soil spectral library usually consists of samples associated with different soil-
forming factors (e.g., geographic settings, parent materials, and vegetation types), which
are considered heterogeneous. By contrast, soil samples from a target area are formed with
similar soil-forming factors. The local samples are a small regional homogeneous collection,
as revealed by vis-NIR spectroscopy and physicochemical analyses [30]. Although it is
advantageous to estimate soil properties after the stratification of soil spectral libraries
using soil types [4], field sampling imposes an additional cost burden and requires expert
knowledge to make accurate judgments about soil types. Similar samples can be selected
from a large soil spectral library and a local one based on the soil spectra only [31]. Several
studies have analyzed soil spectral similarities by using the spectral angle mapper (SAM)
algorithm [32–35]. SAM compares spectral similarities by calculating the angle between
samples in spectral space [36]. This algorithm is easy to execute and insensitive to the effects
of light and spectral reflectance magnitude, which facilitates in situ soil monitoring [37].

In the present study, we verified the feasibility of accurately predicting the local
SOC content in a target forest area using a global soil spectral library (global-SSL) spiked
with samples from a local soil spectral library (local-SSL). The objective of the study
was to compare various spiking strategies and determine the optimal strategy for local
SOC prediction in forests using global-SSL. We compared three modeling strategies: (i) a
modeling approach without a ‘spiking’ set, involving different numbers of local samples
in the calibration sets; (ii) a modeling approach involving a random selection of samples
from global-SSL as a calibration subset, combined with the ‘spiking’ set from local-SSL; and
(iii) a modeling approach involving the strategic selection of samples from global-SSL as a
calibration subset, along with the ‘spiking’ set from local-SSL.
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2. Materials and Methods
2.1. Soil Sampling and Laboratory Measurements

This study was conducted in Wugong Mountain in the northwestern Jiangxi Province,
China (27◦24′–27◦34′ N, 114◦05′–114◦15′ E). The study area has steep, vertical mountains
with high altitudes, with the highest point at Baihe Peak (Jin Ding) reaching 1918.3 m above
sea level. The vertical zonation of climate, soil, and vegetation is distinct here. The average
annual temperature is 14–16 ◦C, the highest summer temperature is 23 ◦C, the average
annual sunshine duration is 1580–1700 h, the average annual evaporation is 1360–1700 mm,
the average annual humidity value is 70%–80%, and the average annual precipitation is
1350–1570 mm. The vegetation of Wugong Mountain shows typical vertical zonation, and
the whole vertical zonation of the mountain shows the type of evergreen broad-leaved
forest that exists in the middle subtropics, which mainly shows an evergreen broad-leaved
forest, mixed evergreen deciduous broad-leaved forest, coniferous forest, mountain elfin
forest, bamboo forest, shrubbery, and meadow from the foot to the top of the mountain. The
rock types in the area are mainly granite, gneiss, phyllite, and arenite. The soil type at this
site is classified as Cambisols in the World Reference Base for Soil Resources (WRB). There
are abundant dead branches and leaves, yet the decomposition of organic matter is slow
due to local temperature and moisture conditions. Consequently, the soil is characterized
by a dark color and high organic matter content.

We collected soil samples from the study area in September 2021. Representative
sampling locations were selected by observing the surrounding environmental conditions
(e.g., slopes, ridges, backs of the mountains, and gullies) within an area with an elevation
difference of ~50 m and a certain horizontal distance. Five topsoil samples (depth 0–20 cm)
were randomly collected from each sampling location and mixed to form a composite
sample, which could reduce the sampling error and better reflect the average level of the
sampling location. A total of 89 soil samples were collected, and each sample was placed
in a re-sealable bag to facilitate storage and prevent cross-contamination. The longitude,
latitude, and altitude of each sampling location were obtained by using a GPSMAP 669S
handheld global positioning system (Garmin, Taiwan, China), while its environmental
characteristics were recorded.

Fresh soil samples were transported to the laboratory, where they were air-dried.
After manually removing identifiable non-soil impurities, the samples were mixed thor-
oughly and reduced to 500 g by quartering. The samples were ground and divided into
two portions; one portion was sieved through a 2 mm sieve for spectral measurements,
and the other was sieved through a 0.149 mm sieve for SOC determination. SOC content
was analyzed using the potassium dichromate volumetric method with external heating
according to the Forestry Industry Standard of China—Determination of Soil Available
Nutrients (LY/T 1237—2015). Under external heating conditions (oil bath at 180 ◦C, boiling
for 5 min), the SOC was oxidized using a standard solution of potassium dichromate as
an oxidant, and the excess potassium dichromate was titrated with a standard solution
of divalent iron, and the SOC content could be calculated from the amount of potassium
dichromate consumed. Compared to the dry burning method, the results measured by
this method could only oxidize 90% of the SOC, so the final oxidation correction factor of
1.1 was multiplied to calculate the SOC content.

2.2. Spectra Acquisition and Data Pre-Processing

Soil spectral reflectance was measured using an ASD FieldSpec4 Pro FR spectrometer
(ASD Inc., Boulder, CO, USA) in the wavelength range of 350–2500 nm. The instrument
was warmed up for 30 min before data acquisition. It was calibrated with a 99% reflectance
Spectralon panel (Labsphere, North Sutton, NH, USA) before each scan to reduce measure-
ment errors. Spectral measurements were repeated 10 times for each sample and averaged
to generate a dataset [38].

Pre-processing spectra can reduce the influence of environmental factors and inter-
ference from the instrument system noise, thus yielding spectral data with a high signal-
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to-noise ratio and improving the stability and accuracy of the model. We corrected the
spectral data for splice points with abrupt spectral changes between different detectors
using the Splice Correction function in ViewSpec Pro software (version 6.0; Analytical Spec-
tral Devices, Malvern Panalytical, Boulder, CO, USA). In addition, the spectrum between
400 nm and 2450 nm was retained, and edge bands (350–399 nm, 2451–2500 nm) with
low signal-to-noise ratios were excluded to reduce the interference from high-frequency
noise [39]. Each reflectance spectrum was resampled by selecting every 10th nanometer to
reduce the dimensionality so that each spectrum consisted of 205 bands per sample.

2.3. Description of the Two Soil Spectral Libraries

The global-SSL used in this study is based on a soil spectral library developed by
the World Agroforestry Center (ICRAF; http://www.isric.org/data/ (accessed on 14 June
2022)). The spectral library consists of 4437 samples from 58 countries spanning Africa, Asia,
Europe, North America, and South America. Among them, 3122 samples containing both
SOC and spectral data were selected as global-SSL. The SOC content was analyzed using
the Walkley–Black method (World Agroforestry (ICRAF) and International Soil Reference
Information Centre (ISRIC)—World Soil Information System, 2010). SOC and spectral data
for 89 samples collected from Wugong Mountain were used as local-SSL.

2.4. Partial Least Squares Regression

Partial least squares regression (PLSR) is a powerful modeling tool that integrates the
features of principal component analysis and multiple regression. It reduces a large number
of measured cross-tabulated spectral variables to a small number of uncorrelated latent
variables [40]. PLSR is widely used in chemometrics and the quantitative analysis of soil
spectra, especially in the local range [41–43]. It also has a wide application in developing
local and regional calibration models for SOC prediction from soil spectra [25]. In the
present study, the optimal number of latent variables used for the PLSR model was selected
according to the lowest root mean square error (RMSE) in 10-fold cross-validation [44].

2.5. Modeling Methods and Strategies

To determine the best calibration model for SOC prediction, three different strategies
were employed to build a useful and cost-effective model for predicting SOC content in
local-SSL (Figure 1). First, we used the Kennard–Stone algorithm to divide the 89 local
samples into a calibration set and a validation set [45]. Rather than a random selection, this
division was chosen to ensure that both the calibration and validation sets would cover
the spectral diversity in local-SSL. The calibration set consisted of 63 samples, and the
validation set contained 26 samples, with a 7:3 ratio based on Euclidean distances from each
other (Set1). We also set the calibration and validation sets ratio in local-SSL to 53/36 (Set2)
and 43/46 (Set3). This was conducted to verify the possibility of predicting more unknown
samples by using fewer local-SSL samples as a ‘spiking’ subset and selecting global-SSL
samples as the calibration set. To facilitate a comparison of the prediction performance
of the different modeling strategies, the same validation sets (Set1/Set2/Set3) were used
for all three strategies; the ‘spiking’ set used in Strategies II and III was the same as the
calibration sets (Set1/Set2/Set3) used in Strategy I.

Next, we used SAM to select samples from global-SSL that were spectrally similar
to samples in local-SSL as the calibration subset. Among the three proposed modeling
strategies, Strategy I uses samples from local-SSL to build the model, hereafter referred to
as the ‘no-spiking strategy’. Strategies II and III use samples from local-SSL as the ‘spiking’
subset and samples from global-SSL as the calibration subset, hereafter referred to as the
‘spiking strategy’.

http://www.isric.org/data/
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• Strategy I: Modeling approach with the ‘no-spiking strategy’

We used only local-SSL in the calibration set selection step to establish Calibration
Set1, Set2, and Set3. This was conducted to test the predictive performance of the model
using selected samples from local-SSL as a calibration set without a ‘spiking’ set.

• Strategy II: Modeling approach with the ‘spiking strategy’ (random selection of global-
SSL samples as a calibration subset)

We randomly selected the calibration subset using both local-SSL and global-SSL
in the calibration set selection step. To compare the advantages and disadvantages of
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the random samples selected from global-SSL as calibration subsets, the following three
different selection methods were used: (i) the unconstrained random selection of N samples
from global-SSL as calibration subsets; (ii) the random selection of N samples from global-
SSL with low spectral similarity to each sample in the local-SSL as calibration subsets;
and (iii) the random selection of N samples from global-SSL with high spectral similarity
to some samples in the local-SSL as calibration subsets. The calibration set of the model
consisted of the calibration subset from global-SSL and the ‘spiking’ set from local-SSL
(Calibration Set1/Set2/Set3). To reduce the influence of random factors, modeling was
repeated 100 times based on the random selection of samples, and the results were averaged.

• Strategy III: Modeling approach with the ‘spiking strategy’ (strategic selection of
global-SSL samples as a calibration subset)

We strategically selected the calibration subset using both local-SSL and global-SSL in
the calibration set selection step. Two selection methods were used: (i) selecting the top N
spectral samples from global-SSL that were the most similar to each sample in local-SSL
as the calibration subset, and (ii) selecting the high-similarity samples based on method
(i) as the calibration subset. The calibration set of the model consisted of the calibration
subset from global-SSL and the ‘spiking’ set from local-SSL (Calibration Set1/Set2/Set3).
Here, N was artificially selectable, and the number of calibration samples extracted from
global-SSL was uncertain. The N value was based on the spectral similarity of the samples
in global-SSL and local-SSL and was not artificially controllable.

For example, there were m samples in the local-SSL, and if the top N samples from
global-SSL with the highest spectral similarity to each local sample were selected as the
calibration subset, theoretically, there would be m × N samples selected into the calibration
subset. Owing to the similarity between the samples in local-SSL, a sample in global-SSL
was inevitably similar to multiple samples in local-SSL, and the actual number of samples
selected into the calibration subset would be less than or equal to m × N. Despite its
uncertainty, this sample number ensured that the most similar samples of each sample in
local-SSL were selected from global-SSL as a calibration subset.

Several combinations of calibration and validation sets for the different modeling
strategies (Figure 1) were used to construct PLSR models. All the pre-processing and
modeling steps were performed using MATLAB (version R2021a; The MathWorks Inc.,
Natick, MA, USA).

2.6. Model Evaluation

Three statistical metrics were used to evaluate the SOC prediction models developed
with different spiking strategies. The coefficient of determination (R2) reflects the stability
of the model: the closer R2 is to 1, the better the stability and goodness-of-fit the model
demonstrates [46]. RMSE indicates the deviation between the predicted value and the
original data; the lower the RMSE value, the smaller the prediction error and the higher the
accuracy [47]. The calibration performance of the two methods was compared by using the
ratio of performance to deviation (RPD), which is the ratio of the standard deviation of the
original data to the RMSE of validation. RPD values were divided to indicate six levels of
prediction accuracy as follows: RPD < 1.0 indicates very poor predictions, and their use is
not recommended; 1.0 < RPD < 1.4 indicates poor predictions where only high and low
values are distinguishable; 1.4 < RPD < 1.8 indicates fair predictions which may be used for
assessment and correlation; 1.8 < RPD < 2.0 indicates good predictions where quantitative
predictions are possible; 2.0 < RPD < 2.5 indicates very good, quantitative predictions; and
RPD > 2.5 indicates excellent predictions [48]. In contrast to RPD, the ratio of performance
to InterQuartile distance (RPIQ), which used interquartile ranges rather than standard
deviations to account for the population distribution of the skewed data sets, is also widely
used as an evaluation metric, with larger values indicating better model prediction.
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The three statistical metrics were computed according to the following Equations (1)–(4):

R2 = 1−

n
∑

i = 1

(
ymi − ypi

)2

n
∑

i = 1
(ymi − ym)

2
(1)

RMSE =

√
1
n

n

∑
i = 1

(
ymi − ypi

)2 (2)

RPD = SD/RMSEV (3)

RPIQ = (Q3 − Q1)/RMSEv (4)

where n is the number of samples, ymi is the measured SOC content of sample i, ypi is the
predicted SOC content of sample i, ym is the mean of the measured SOC content, SD is the
standard deviation of the measured SOC content, and RMSEv is the RMSE of the validation
set. Q3 is the third quartile of the SOC content, and Q1 is the first quartile of the SOC
content. Descriptive statistical analysis was performed using SPSS Statistics (version 20;
IBM Corp., Armonk, NY, USA).

3. Results and Discussion
3.1. Descriptive Statistics of the SOC Content

The descriptive statistics of the measured SOC content in the study area are sum-
marized in Table 1. In local-SSL, SOC levels ranged from 18.44 to 134.32 g·kg−1, with
a mean value of 56.12 g·kg−1 and a standard deviation of 25.54 g·kg−1. There was an
excess kurtosis value of 1.10, which indicates a slight tendency for outliers in the dataset.
The skewness was 1.23, which demonstrates that the data were skewed and normally
distributed. Due to geospatial proximity, soil samples in local-SSL were developed under
similar soil-forming conditions (e.g., parent material and vegetation type), with a minor
variation in soil properties [49].

Table 1. Statistics for soil organic carbon content (g·kg−1) measured in the laboratory.

Soil Spectral Library N Min Median Mean Max SD Ske EK

Local-SSL 89 18.44 48.94 56.12 134.32 25.54 1.23 1.10
Global-SSL 3122 0.10 0.30 13.69 627.80 13.68 10.23 137.66

Min—Minimum; Max—Maximum; SD—standard deviation; Sk—Skewness; EK—Excess kurtosis.

In global-SSL, a large variation in SOC content was observed among the samples
(0.10–627.80 g·kg−1), with a mean value of 13.69 g·kg−1 and a standard deviation of
13.68 g·kg−1. The skewness and excess kurtosis of the SOC levels were as high as 10.23
and 137.66, respectively. This is due to the fact that global-SSL contains soil spectra from
different locations in multiple countries. In both spectral libraries, the distribution of the
SOC content was concentrated below the mean value.

3.2. Soil Spectra

Figure 2 shows that the SOC content was divided into six groups according to the
level of <35 (a), 35–50 (b), 50–65 (c), 65–80 (d), 80–95 (c), and >95 (f) g·kg−1. The local
dataset had a high SOC content. Stoner et al. classified soil spectral curves into five types,
and this soil spectral curve type were the organic-dominated form [50]. The soil spectral
reflectance decreased as the SOC content increased. The shapes of the spectral curves
for different SOC contents did not differ prominently with the increasing SOC content.
However, the SOC content <35 g·kg−1 (a) had a slight upward convexity near 800 nm
compared to the other curves (b–f). This may be due to its low organic matter content,
which does not completely mask the minerals. In the visible wavelength band, the soil
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reflectance values in groups (c) and (f) were close, those in groups (c) and (d) were closer,
and those in groups (a) and (b) differed significantly. In the near-infrared band, the soil
reflectance values differed considerably in all the groups. Soil spectral curves have distinct
absorption valleys near 1400, 1900, and 2200 nm. The bands near 1400 and 1900 nm are
associated with water vibrations. The band near 2200 nm is related to the intensity of
kaolinite with the dioctahedral layer of a mineral structure.
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3.3. SOC Prediction Accuracy with Strategy I

The modeling results of the SOC content with Strategy I are shown in Figure 3. When
using only local-SSL samples as the calibration set, the model based on Set1 (R2 = 0.83,
RMSE = 9.25, RPD = 2.63, RPIQ = 4.60) yielded better predictions than the models based on
Set2 (R2 = 0.76, RMSE = 10.59, RPD = 2.21, RPIQ = 3.29) and Set3 (R2 = 0.53, RMSE = 14.19,
RPD = 1.62, RPIQ = 1.95). In terms of RPD values, the PLSR models achieved excellent,
quantitative, and fair predictions with calibration/validation Set1, Set2, and Set3, respec-
tively. The value of RPIQ also decreased gradually. The predicted results for SOC content
were related to the proportion of the samples used for calibration, in agreement with previ-
ous findings [30]. Similarly, Guerrero et al. found that when the size of the spike subset
increased (i.e., having a larger number of samples in the calibration), it had a positive effect
on the model prediction accuracy [9].
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3.4. SOC Prediction Accuracy with Strategy II

Figure 4 shows the SOC prediction results from models based on Set1, Set2, and Set3,
which contained a calibration subset with N randomly selected samples from global-SSL
(Strategy II-i). The prediction performance of the models decreased with an increasing
N value. Moreover, R2 values of the models based on Set1 (0.72–0.80), Set2 (0.66–0.73),
and Set3 (0.55–0.57) decreased sequentially. This trend is similar to that observed for the
predictions of Strategy I when using the same N values. Excluding Set3, the models based
on Set1 and Set2 performed worse for the prediction with Strategy II than with Strategy I.
This may be due to the introduction of some samples that were spectrally different from the
samples in local-SSL when the calibration subset was randomly selected from global-SSL.
The model based on Set3 performed better for prediction with Strategy II than with Strategy
I, which may be due to the low ratio of the calibration/validation set (43/46) in Strategy
I compared with Strategy II (53/46, 93/46, and 143/46). The predicted SOC content of
Set1, Set2, and Set3 all show a tendency for the predicted values to be higher than the
measured SOC content, and the overall range of the predicted SOC content is smaller than
the measured SOC content. Thus, the model based on the sample number of the calibration
set in Strategy I did not perform well in SOC prediction.
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Figures 5 and 6, respectively, depict the validation results of Strategies II-ii and II-iii
that randomly select N global-SSL samples with low and high spectral similarity to local-
SSL samples as the calibration subset. We compared the corresponding results between
the two modeling approaches. Excluding Figures 5g and 6g with equal R2 values (0.58), all
cases showed that the modeling approach with Strategy II-iii achieved better predictions
than the modeling approach with Strategy II-ii in terms of improved R2, RMSE, and RPD,
RPIQ. In the case of N = 10, the models based on Set1, Set2, and Set3 in Strategy II-iii
(Figure 6a,d,g) performed slightly better for prediction than the corresponding models
with Strategy II-ii (Figure 5a,d,g). In the case of N = 100, the prediction performance of the
models based on Set1, Set2, and Set3 in Strategy II-iii (Figure 6c,f,i) was much better than
that of the corresponding models with Strategy II-ii (Figure 5c,f,i).
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Figure 5. Validation results of strategies II-ii for soil organic carbon (SOC) prediction. (a–c) Set1
with 10, 50, and 100 samples selected from global-SSL, respectively. (d–f) Set2 with 10, 50, and
100 samples selected from global-SSL, respectively. (g–i) Set3 with 10, 50, and 100 samples selected
from global-SSL, respectively. Each plot is marked with a 1:1 line.
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50, and 100 samples selected from global-SSL, respectively. (g–i) Set3 with 10, 50, and 100 samples
selected from global-SSL, respectively. Each plot is marked with a 1:1 line.

The dispersion of the predicted SOC values obtained by modeling with Strategy
II-iii was more pronounced than the results of the other two modeling approaches with
Strategies II-i and II-ii; R2 whose values were lower for the latter two approaches than
for the former approach (Figures 4–6). Modeling with high-similarity samples produced
better prediction results than modeling with randomly selected samples. Accordingly,
selecting samples with high spectral similarity should be undertaken as the calibration
subset contributes to the improved modeling accuracy of SOC. Similar results were reported
by Viscarra Rossel et al., who found that for some attributes (e.g., SOC, pH, clay, and sand
content), modeling accuracy was improved overall by classifying spectral similarities from
the global spectral library and then modeling them separately [15]. Araújo et al. found
that dividing the global dataset into more mineralogically uniform clusters, regardless of
geographical origin, effectively improved the prediction [22]. However, in these instances,
excluding Set3, modeling with Strategy II did not improve the prediction performance



Forests 2023, 14, 118 12 of 16

compared with Strategy I. This observation may be due to the fact that the high spectral
similarity is based on an overall evaluation of the entire global-SSL versus local-SSL. It
is possible that global-SSL samples with moderately high spectral similarity to local-SSL
samples were selected in the actual random selection, while all high-similarity samples
were discarded, resulting in a loss of useful information. There is also a possibility that
only certain global-SSL samples with high spectral similarity to some local-SSL samples
were selected so that part of the valid information was masked.

The modeling results obtained with Strategy II were based on the mean of 100 repli-
cates. It is, therefore, reasonable to conclude that although the post-mean results do not
show the advantage of using high-similarity samples selected from global-SSL as a refer-
ence calibration set, there must be cases where the predicted results are greater than the
mean. Similarly, Guerrero et al. [9] compared the predictive accuracy of PLSR models for
SOC content before and after ‘spiking’, finding that in three of the four target sites, the
predictive accuracy improved after ‘spiking ‘. Based on these results, global-SSL samples
with high spectral similarity to local-SSL samples were selected as a calibration subset
in Strategy III. We, therefore, conjecture that the modeling approach with Strategy III is
responsible for prediction accuracy improvement.

3.5. SOC Prediction Accuracy with Strategy III

The prediction results of the two methods used in Strategy III are shown in
Figures 7 and 8. The Nth point represents the result of selecting the top N spectral samples
from global-SSL that were the most similar to each local-SSL sample as the calibration
subset, and the x-axis coordinate represents the number of reference global-SSL samples.
Given the small number of local-SSL samples, we only considered the case of selecting
<100 reference samples. R2, RMSE, RPD, and RPIQ values did not show clear patterns with
an increasing N value, and the reasons have been explained in detail in Section 2.5.
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III-ii produced the best validation results when ~50 global-SSL samples were selected as
the calibration subset. Wetterlind et al. examined the performance of a small farm-scale
calibration (25 samples) versus a larger national soil library (396 samples) for within-field
soil characterization based on vis-NIR spectroscopy. They tested whether site-specific
sample sets selected from the national library, including a spectral library consisting of the
50 samples most similar to the local-site samples, could improve the prediction performance.
It was found that trends in the clay and SOC content were better predicted using a reduced
national soil library compared with using the entire national library. In some cases, the
model even outperformed predictions using local calibration [27].

The model with Strategy III-ii also yielded better validation results than the model with
strategy III-i when the same number of samples were selected as the reference calibration
set. Compared with Strategies I and II, the model validation results were improved for
both methods selecting the calibration subset in Strategy III. In the best case, the prediction
with Strategy III-ii achieved the highest accuracy: Set1 (R2 = 0.90, RMSE = 7.19, RPD = 3.38),
Set2 (R2 = 0.83, RMSE = 8.71, RPD = 2.68), and Set3 (R2 = 0.64, RMSE = 13.34, RPD = 1.72).
Compared with Strategy I, Strategy III-ii improved R2 by 0.07, 0.07, 0.11, decreased RMSE
by 2.06, 1.88, 0.85, and improved RPD by 0.75, 0.47, 0.1, for Set1, Set2, and Set3, respectively.

Overall, our results suggest that the use of soil samples with similar properties from
the target area facilitates accurate SOC predictions due to the similarities in environmental
factors, such as geographic settings and parent material [49]. However, we found that the
model performed very well when the calibration set was established with a calibration
subset from global-SSL (with top N spectral samples similar to each local sample) and the
‘spiking’ set from local-SSL (generally RPD > 2.5). Thus, it is a feasible modeling method to
improve SOC prediction and reduce the sample number of the ‘spiking’ set from local-SSL.

4. Conclusions

This study compared the performance of three different modeling strategies for soil
organic carbon (SOC) prediction in target forest areas based on local and global soil spectral
libraries (local-SSL and global-SSL, respectively). These strategies used a calibration set
consisting of (i) only local-SSL samples, (ii) a randomly selected calibration subset from
global-SSL and the ‘spiking’ set from local-SSL, and (iii) a deliberately selected calibration
subset from global-SSL and the ‘spiking’ set from local-SSL.

We found that when randomly selecting calibration samples from global-SSL combined
with a small set of ‘spiking’ samples from local-SSL, this did not necessarily achieve
consistently better SOC predictions. By contrast, the use of spectrally similar global-SSL
samples provided better predictions. Using the optimal modeling strategy, the top N
spectral samples with high similarity to each local sample were extracted from global-SSL
as the calibration subset. This calibration subset from global-SSL and the ‘spiking’ set from
local-SSL were used as the calibration set, which improved the prediction results in the
target area.

We suggest that when selecting spectrally similar samples from global-SSL, each of the
samples in local-SSL should be taken into account without losing sight of the others and
favoring a few specific samples. This strategy is inexpensive and beneficial when expert
knowledge about soil classification is lacking. If one cannot afford the high cost of laborious
testing or intensive sampling in mountainous forest areas with challenging terrains, our
proposed modeling approach, combined with an existing soil spectral library, is an effective
way to obtain sufficiently reliable SOC data. Determining the optimal sample number for
the reference calibration sets selected from the soil spectral library and identifying them
within it should be carried out in future work.
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