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Abstract: Accurate mapping of tree species is critical for the sustainable development of the forestry
industry. However, the lack of cloud-free optical images makes it challenging to map tree species
accurately in cloudy mountainous regions. In order to improve tree species identification in this
context, a classification method using spatiotemporal fusion and ensemble classifier is proposed.
The applicability of three spatiotemporal fusion methods, i.e., the spatial and temporal adaptive
reflectance fusion model (STARFM), the flexible spatiotemporal data fusion (FSDAF), and the spatial
and temporal nonlocal filter-based fusion model (STNLFFM), in fusing MODIS and Landsat 8 images
was investigated. The fusion results in Helong City show that the STNLFFM algorithm generated the
best fused images. The correlation coefficients between the fusion images and actual Landsat images
on May 28 and October 19 were 0.9746 and 0.9226, respectively, with an average of 0.9486. Dense
Landsat-like time series at 8-day time intervals were generated using this method. This time series
imagery and topography-derived features were used as predictor variables. Four machine learning
methods, i.e., K-nearest neighbors (KNN), random forest (RF), artificial neural networks (ANNs), and
light gradient boosting machine (LightGBM), were selected for tree species classification in Helong
City, Jilin Province. An ensemble classifier combining these classifiers was constructed to further
improve the accuracy. The ensemble classifier consistently achieved the highest accuracy in almost
all classification scenarios, with a maximum overall accuracy improvement of approximately 3.4%
compared to the best base classifier. Compared to only using a single temporal image, utilizing dense
time series and the ensemble classifier can improve the classification accuracy by about 20%, and
the overall accuracy reaches 84.32%. In conclusion, using spatiotemporal fusion and the ensemble
classifier can significantly enhance tree species identification in cloudy mountainous areas with poor
data availability.

Keywords: time series; tree species mapping; image fusion; machine learning; Landsat 8 OLI; MODIS

1. Introduction

Tree species composition and species changes have widespread effects on forest
functions, such as soil and water conservation, biodiversity maintenance, and carbon
storage [1–3]. Knowledge about accurate tree species distribution is essential for the sus-
tainable development of forest ecosystems [4,5]. Forest species distribution data are mainly
provided by traditional forest inventories or remote sensing methods. Forest inventories
are labor-intensive, making it challenging to obtain spatially continuous information on
tree species in large areas. Remote sensing methods can make synchronous observations
over large areas compared to forest inventories. Various optical and radar data have been
utilized for tree species mapping with satisfactory accuracy [6–8]. Compared to airborne
data, satellite multispectral images are more suitable for mapping tree species in large areas
due to the spatial and temporal resolution, rapid wide coverage capability, and open access
to image archives.
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Currently, the data used to classify tree species based on satellite images mainly consist
of single-temporal, multitemporal, and time series data. First, single-temporal imagery,
which is mostly acquired when trees are in leaf, was used to classify tree species. The results
are unsatisfactory and do not meet the application requirements [9,10]. Each tree species
has unique phenological characteristics. These characteristics can be extracted from the
reflectance of images in different seasons. Some scholars have suggested that multitemporal
data should be introduced [11,12]. Four Sentinel-2 images from three seasons improved
the classification accuracy from 80.5% to 88.2% compared to single-temporal images [13].
However, multitemporal data usually consist of only a few images from different seasons
or seasonal composite images. This insufficient number of images may lead to a lack of
phenological information at key time nodes of tree species growth [14]. Recently, time
series data were composited for tree species identification [15–17]. Some relevant research
showed that tree species classification accuracy was improved from 76.14% to 79.4% when
using images with 10-day temporal resolution compared to monthly data [18], indicating
that denser time series may help to identify tree species more accurately. However, in
cloudy mountainous regions, dense time series are difficult to obtain directly for tree species
classification within and between years due to frequent cloud contamination.

The spatiotemporal fusion technique was developed to create time series with fine spa-
tial and temporal resolutions [19–21]. Relevant spatiotemporal fusion algorithms include
the following types: pixel unmixing-based, weighting function-based, dictionary learning-
based, Bayesian-based, and multiple hybrid methods [22]. Among them, the weighting
function-based and hybrid methods are the two most widely used methods, owing to their
advantages in computational cost and fusion accuracy. The spatial and temporal adaptive
reflectance fusion model (STARFM) is the most representative weight function-based algo-
rithm. It uses a weighting function calculated from the spectral differences between the data
and the information of neighboring pixels to predict pixels [23]. The recently proposed spa-
tial and temporal non-local filter-based fusion model (STNLFFM) algorithm extended the
STARFM fusion framework to improve the prediction performance [24]. Flexible spatiotem-
poral data fusion (FSDAF) is a typical hybrid model that combines pixel unmixing and a
weight function [25]. It can automatically identify gradual and abrupt surface reflectance
changes by analyzing the errors in the fusion process, predicting the high-resolution sur-
face reflectance with higher accuracy. The fused images generated by these methods have
been widely applied for crop growth monitoring, biomass estimation, and forest cover
classification, but rarely for tree species discrimination [26–28]. Therefore, these methods
are potential options for generating dense time series to map tree species. However, the
applicability of different fusion methods still needs to be systematically investigated.

In tree species classification using time series images, existing classification methods
include parametric and non-parametric models. Parametric models usually assume that
the population obeys a certain distribution. This distribution can be determined by some
parameters. For example, the normal distribution is determined by the mean and standard
deviation. A model built on this basis is called a parametric model. Such assumptions do
not exist in non-parametric models [29]. A parameter classifier model, i.e., the maximum
likelihood method, was successfully utilized to map tree species in southern Sweden based
on 23 images from 2016 to 2018 [30], with an overall accuracy of 87%. However, parameter
models may underfit when dealing with complex classification problems, resulting in
unsatisfactory accuracy. Many non-parameter supervised classification algorithms have
recently been developed and applied. A total of 12 major tree species were classified in
southwestern France using 17-date Formosat-2 satellite image data acquired across one
year and three non-parametric classifiers [15], i.e., the K-nearest neighbor algorithm (KNN),
support vector machine (SVM), and random forest (RF) [31–33]. The kappa coefficient
of the three methods was higher than 0.9. More advanced classifiers, such as artificial
neural networks (ANNs) and light gradient boosting machine (LightGBM), have also
been applied to classification using remote sensing time series with ideal accuracy [34–36].
However, according to relevant studies, each classification method has its limitations
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and cannot meet all aspects of classification performance requirements simultaneously.
Therefore, combining various classifiers with complementary advantages is an effective
way to improve classification accuracy [37,38].

Existing ensemble strategies for combining different classifiers include four categories:
voting, bagging, boosting, and stacking. Voting is the most popular ensemble method [39].
It consists of hard voting and soft voting. In hard voting, the output result corresponds
to the class with the most allocation among multiple classifiers. In soft voting, the corre-
sponding weight is set for each classifier; then, a specific weight fusion is carried out to
obtain a better classifier [40]. A previous study showed that an ensemble model based on
a voting strategy enhanced the overall accuracy by 1%–5% relative the best single classi-
fier [41]. The voting strategy has also been applied in other classification studies, such as
for river detection, scene classification, and land cover mapping, with the ensemble model
always performing better than the best individual classifier [42–44]. However, to the best of
our knowledge, ensemble models have rarely been applied to tree species discrimination.
Therefore, the development an ensemble model to improve tree species mapping based on
dense time series is necessary.

In this study, the main aims are as follows: (1) to examine the performance of different
spatiotemporal fusion methods to generate high-quality time series, (2) to map tree species
more accurately in cloudy mountainous regions based on fused time series, and (3) to
explore the application potential of multiclassifier fusion in tree species identification.

2. Study Area

Helong City, located in southeast Jilin Province, with an area of 5068.62 square kilome-
ters, was used to test our proposed method (Figure 1). It has a mid-temperate, semi-humid
monsoon climate. The yearly average temperature, sunshine, and precipitation are 5.6 ◦C,
2387.2 h, and 573.6 mm, respectively. This region is located in the Changbai Mountains,
with more than 1000 peaks higher than 1000 m above sea level. The sufficient sunshine,
abundant rainfall, fertile soil, and mountainous terrain provide a suitable environment for
the development of forests. Forests cover more than 80% of Helong City. The dominant
tree species are oak, larch, Korean pine, Pinus sylvestris, and birch. Another important
reason for choosing this region is the poor availability of satellite data. For example, in
this region, there were only 3 Landsat 8 images with less than 10% cloud cover captured
in 2016. The availability of other satellite imagery is similar. Therefore, this region is very
suitable for testing our proposed classification procedure.

Figure 1. The study area. The forest area is overlaid with Shuttle Radar Topography Mission
elevation data.
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3. Data and Methods

Our workflow includes (1) data preprocessing, (2) comparison and selection of spa-
tiotemporal fusion methods, (3) generation of high-resolution time series images, (4) tree
species classification based on various feature combinations and different classifiers, (5) clas-
sification accuracy assessment, and (6) tree species distribution mapping (Figure 2).

Figure 2. Flow diagram of tree species classification. The content bordered by a short dotted line
represents the dominant tree species to be classified, and the content in the long dotted line box is
several machine learning methods for comparison.

3.1. Remote Sensing Data and Preprocessing

The spatial resolution of the Landsat data is 30 m. However, the 16-day revisit cycle
of Landsat has long limited its use for the study of global biophysical processes. MODIS
involves daily data collection, so the probability of collecting cloud-free images is many
times higher in MODIS compared to Landsat. However, the spatial resolution of MOIDS
data at 500 m is not sufficient for mapping of tree species. Therefore, MODIS data were
used to improve the temporal resolution of the available Landsat data for our study.

The only three cloud-free Landsat 8 OLI images in 2016 from different dates and
the MCD43A4 product from MODIS on the same day were applied to select the best
spatiotemporal fusion algorithm [45,46]. Each Landsat image consists of two adjacent paths
(paths/rows: 116/30, 116/31). The image pair on May 19 was defined as the reference
images of spatiotemporal fusion algorithms. The other two image pairs were used to assess
the accuracy of different fusion algorithms. Figure 3 shows the MCD43A4 images of the base
date (May 19) and two predicted dates (May 28 and October 19). The time series consisting
of 28 images from March 21 to October 28 in the MCD43A4 product was input into the
optimal spatiotemporal fusion algorithm to generate fine-pixel-resolution dense time series
with 8-day intervals. The imaging time range of these images covers the whole growth
period of various tree species. Table 1 lists the imaging date and spatiotemporal spectral
information of all images. In addition, the Shuttle Radar Topography Mission (SRTM) V3
product provided by NASA JPL was selected to extract topographic information [47].
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Figure 3. MCD43A4 images of the base date (May 19) and two predicted dates (May 28 and October 19).

Table 1. Detailed information on remote sensing data used in this study.

Landsat 8 MODIS

Date (all in 2016) 05-19, 05-28, 10-19 05-19, 05-28, 10-19
03-21, . . . ,10-28

Wavelength (nm)

Blue
Green
Red
NIR

SWIR-1
SWIR-2

450–515
525–600
630–680
845–885

1560–1660
2100–2300

459–479
545–565
620–672
841–890

1628–1652
2105–2155

Resolution 30 m 500 m

Repeat cycle 16 days daily

The MODIS and Landsat 8 images were acquired through the Google Earth Engine
platform [48]. MODIS data preprocessing steps are as follows: (1) application of a forest
mask to extract forest pixels, (2) filling in of missing values in the MCD43A4 images with
image values from the same date in adjacent years [49,50], and (3) resampling of MODIS
images to 30 m resolution using bicubic interpolation in ArcGIS 10.8. The USGS Landsat 8
Tier 1 dataset on the GEE platform was calibrated to surface reflectance after atmospheric
and radiometric correction. Images taken on the same day were seamlessly mosaiced using
ENVI 5.3 software and clipped to the forest area. The spatial reference for all data was
unified to the WGS84 coordinate system.

3.2. Field Data

The reference data of land cover types and dominant tree species were derived based
on the forest inventory data of Jilin Province for 2016 (Figure 4). In GIS, the data divide
the study area into polygons representing separate, homogeneous stands. The training
and validation samples were generated according to these data. The feature data of forests
and five dominant tree species, i.e., oak, larch, Korean pine, Pinus sylvestris, and birch,
were extracted separately, and small polygons with an area of less than 0.01 hm2 were
removed. A 30 m inward buffer was applied to each polygon to minimize edge effects
between patches of different tree species [51]. The sample points of each tree species were
randomly sampled in the polygons (Figure 5). The minimum distance between adjacent
sampling points was required to be greater than 30 m. Table 2 lists the number of samples
for each tree species. Each category of sample points was randomly divided into a training
set and a validation set in a ratio of 8:2. The training and validation samples do not contain
the same sample points. The above process was completed using ArcGIS 10.8 software.
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Figure 4. Forest inventory data of the study area in 2016.

Figure 5. Distribution of sampling point data used in this study.
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Table 2. Number of sampling points for each tree species.

Tree Species Training Samples Validation Samples

Oak 8946 2236

Larch 6728 1682

Korean pine 2170 543

Pinus sylvestris 4944 1236

Birch 3145 786

3.3. Spatiotemporal Fusion

Three typical spatiotemporal fusion methods were selected, i.e., STARFM, STNLFFM,
and FSDAF. These fusion algorithms need at least one pair of high-resolution and low-
resolution images at base date t0 and a known low-spatial-resolution image at predicted
date tk; these images are then fused to obtain a high-spatial-resolution image for date tk.
The Landsat 8 image and the MODIS image of May 19 (base date) were applied to predict
the fused images on May 28 and October 19 (predicted date). The Landsat 8 images of
May 28 and October 19 were used to verify the accuracy. The algorithm with the highest
accuracy was selected to generate dense time series with 8-day intervals.

3.3.1. STARFM

The STARFM algorithm performs the fusion process using Equation (1) for MODIS
(M) and Landsat (L):

L
(

x w
2

, y w
2

, tk

)
=

N

∑
i,j=1

Wij ×
(

M
(
xi, yj, tk

)
+ L

(
xi, yj, t0

)
−M

(
xi, yj, t0

))
(1)

where w is the size of the moving window, N is the number of similar pixels filtered by
the local moving window, L

(
x w

2
, y w

2
, tk

)
is the value of the central pixel of the moving

window for the Landsat image at predicted date tk, and x w
2

, y w
2

is the central pixel within
the moving window. The spatial weighting function (Wij) determines how much each
neighboring pixel (xi, yj) in w contributes to the estimated reflectance of the central pixel.
M
(

xi, yj, tk
)

is the MODIS reflectance at the window location (xi, yj) observed at predicted
date tk, while L

(
xi, yj, t0

)
and M

(
xi, yj, t0

)
are the corresponding Landsat and MODIS pixel

values, respectively, observed on the base date (t0) [23].

3.3.2. FSDAF

FSDAF is a multisource remote sensing spatiotemporal fusion algorithm that combines
unmixing, spatial interpolation, and similar neighboring pixel smoothing to obtain robust
fusion results. It can be used to obtain land surface information of gradual changes or
sudden changes in land cover types in heterogeneous regions [25]. First, FSDAF estimates
the temporal variation of Landsat pixels

(
∆Ftp) based on the unmixing of the entire image

to generate a temporal prediction (Ftp
2 ). Secondly, using thin-plate spline interpolation to

generate spatial prediction (FSP
2 ), the residuals between the Landsat pixels and the MODIS

pixels are considered in FSDAF as [52]:

R(x, y) = ∆C(x, y)− 1
n

[
n

∑
i=1

Ftp
2 (xi, yi)−

n

∑
i=1

F1(xi, yi)

]
(2)

where R(x, y) is the residual in the MODIS pixel at a given location (x, y), n is the number
of Landsat pixels inside a MODIS pixel, and the Landsat pixel at location (xi, yi) is inside
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the MODIS pixel at location (x, y). In a homogenous area, spatial prediction performs well,
which is applied to calculate a new residual [52]:

Rh0(x, y) = FSP
2 (x, y)− Ftp

2 (x, y) (3)

A weighted function (wh) is used for a homogeneity index of residual compensation to
integrate the two residuals (i.e., Rh0 and R). The final prediction of FSDAF can be expressed
as [52]:

F̂2(x, y) = F1(x, y) +
ns

∑
i=1

Wi
(
∆Ftp(xi,yi) + n× R(xi, yi)× wh(xi, yi)

)
(4)

where Wi is the weight of similar pixels, and F̂2(x, y) is the predicted image.

3.3.3. STNLFFM

STNLFFM extends the STARFM fusion framework. Based on the basic assumption
of scale invariance between the temporal relationship of low-resolution images and the
temporal relationship of high-resolution images, it solves the linear temporal relationship
between the known low-resolution images of the base date and the predicted date and maps
it to the high-resolution image to generate fusion results. This process can be expressed
by Equation (5):

F
(

x, y, tp
)
=

M

∑
k=1

N

∑
i=1

W(xi, yi, tk)× [a(xi, yi, ∆tk)× F(xi, yi, tk) + b(xi, yi, ∆tk)] (5)

where F
(

x, y, tp
)

is the predicted image of the target pixel (x, y) for the predicted date
tp; M is the number of base (reference) dates; N is the total number of similar pixels (of
the same type as the target pixel) in the image; (xi, yi) is the position of the ith similar
pixel; a(xi, yi, ∆tk), b(xi, yi, ∆tk) are the linear fit coefficients of the MODIS similar pixel
set between the reference moment tk and the predicted moment tp, which are calculated
using the least squares method; and W(xi, yi, tk) is the weight of the ith similar pixel of the
Landsat image for the reference date (tk).

3.4. Tree Species Classification

The spectral reflectance (6 bands) and topographic features (3 variables) of elevation,
slope, and aspect constitute input features that are combined in sets of up to 171 depending
on the experiment [53]. The time series consists of 28 fused images. Each image contains
6 spectral bands. These variables and the three topographic features comprise up to
171 variables.

Seven experiments were set up to explore the effects of multitemporal spectral and
topographic features on tree species classification. The input feature of experiment 1 was
the single-temporal image surface reflectance. Experiment 2 added topographic features
based on Experiment 1. Because the time series contains 28 images, both Experiment 1
and Experiment 2 needed to be performed 28 times. The input features of Experiment 3,
Experiment 4, and Experiment 5 were the spectral features of spring, summer, and autumn
images, respectively. The rest of the experiments were classified based on all spectral
features. In addition, three experiments using real observation Landsat data were designed
as a baseline to compare with experiments using fused images. These three experiments
used the only three cloud-free Landsat images from 2016, the seasonal composite images
of spring, summer, and autumn from 2016; and the seasonal composite images of spring,
summer, and autumn from 2015, 2016, and 2017. Each composite image was obtained
by averaging all available imagery throughout the season. The feature combinations for
each experiment are shown in Table 3. All experiments used the same training and testing
sampling points.



Forests 2023, 14, 107 9 of 24

Table 3. The feature combinations of seven scenarios.

Experiment Input Data Number of Feature Variables

1 Single-temporal surface reflectance (28 groups) 6

2 Single-temporal surface reflectance, topographic features (28 groups) 9

3 10 fused images in spring 60

4 9 fused images in summer 54

5 9 fused images in autumn 54

6 All fused images in the time series 168

7 All fused images in the time series, topographic features 171

8 3 cloud-free Landsat images on May 19, May 28, and October 19 2016 18

9 3 seasonal composite images of spring, summer, and autumn 2016 18

10 9 seasonal composite images of spring, summer, and autumn 2015, 2016, and 2017 54

Four supervised classification methods, i.e., KNN [31], RF [33], ANN [34], and Light-
GBM [34], were selected in this research. In addition, a new ensemble model based on the
soft voting strategy was proposed. The soft voting rule of an ensemble model on decision
problem x works as follows [41]:

Dx = maxidx

L

∑
i=1

widx,i (6)

where Dx is the selected class number of hard voting on decision problem x, L is the number
of voters (base classifiers), dx,i is the binary vector output (e.g., [0, . . . , 0, 1, 0, . . . , 0]) of
the classifier on decision problem x, wi is the weight of the ith base classifier, and maxidx is

the index for which the maximum value was obtained in the summation vector (
L
∑

i=1
widx,i).

Multiple maximum values return the index of first occurrence.
In our ensemble model, the results of KNN, RF, ANN, and LightGBM are fused

with the same weights. The deep forest algorithm proposed by Zhou et al. was used for
comparison with our proposed ensemble model [54]. This algorithm is a deep ensemble
model. Its core technology is cascade forest and multigranularity scanning. This method
requires little parameter tuning and performs better than traditional machine learning
methods on many datasets.

The abovementioned algorithms were implemented using the scikit-learn and Light-
GBM libraries in Python [55]. Bayesian optimization was used to tune the main parameters
of each method [56]. Table 4 lists the main parameter settings for base classifiers.

3.5. Accuracy Assessment

Five metrics were chosen to assess the performance of the three spatiotemporal fu-
sion algorithms, i.e., correlation coefficient (CC), root mean square error (RMSE), struc-
tural similarity index (SSIM), spectral angle (SAM), and global relative error (ERGAS)
(Equations (7)–(11)) [57–59]. A total of 10,000 pixels were randomly selected, and the cor-
relation coefficients (Equation (12)) between the predicted images (pixel values) and the
actual Landsat 8 image in the red and near-infrared bands on the two predicted dates were
calculated. Relevant studies have shown that the red band and the near-infrared band are
most related to the chlorophyll content and water content of vegetation, respectively [55].
The Landsat image on the base date was compared to Landsat images on the two pre-
dicted dates as a control. The correlation coefficients between each band and their average
were calculated.

CC(F, G) =
1
B

B

∑
b=1

cov(Fb, Gb)

σFb σGb

(7)
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where F and G represent the fusion image and the real image, respectively; cov (·) is the
covariance; σ represents the standard deviation of the image; b is the band number; and B
is the total number of bands.

RMSE(F, G) =
1
B

B

∑
b=1

√
‖Fb − Gb‖2

N1N2
(8)

where N1 and N2 are the height and width of the image, respectively.

SSIM(F, G) =
1
B

B

∑
b=1

(
2µFb µGb + C1

)
(2cov(Fb, Gb) + C2)(

µFb
2 + µGb

2 + C1
)(

σFb
2 + σGb

2 + C2
) (9)

where µ represents the mean value of a given band of the image.

SAM(F, G) =
1

N1N2

N1 N2

∑
i=1

arccos

(
VT

Fi
VGi

‖VFi‖2·‖VGi‖2

)
(10)

where VFi and VGi are the spectral vectors of the ith pixel of images F and G, respectively.

ERGAS = 100
h
l

√√√√ 1
B

B

∑
b=1

RMSE2
b

µGb
2 (11)

where h is the spatial resolution of the high-resolution image, and l is the spatial resolution
of the low-resolution image.

r(X, Y) =
Cov(X, Y)√
Var[X]Var[Y]

(12)

where X and Y are the pixel-value vectors of the fusion image and the real image, respec-
tively; Cov(X,Y) is the covariance of X and Y; Var[X] is the variance of X; and Var[Y] is the
variance of Y.

Table 4. Main parameter settings of the base classifiers.

Base Classifier Parameter Value

KNN N_neighbors
N_jobs

3
−1

RF

N_estimators
criterion

Max_depth
Min_samples_split
Min_samples_leaf

Max_features
N_jobs

870
‘gini’
None

2
1

‘sqrt’
−1

ANN Hidden layer sizes
Learning rate

(400, 200, 100, 50)
0.0005

LightGBM

N_estimators
Learning_rate
Num_leaves
Max_depth

N_jobs

1527
0.098

19
−1
−1
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The overall accuracy of tree species classification was assessed using the overall accuracy
(OA) and kappa coefficient (Equations (13) and (14)). The class-wise accuracies were evaluated
by the producer accuracy (PA), user accuracy (UA), and F-value (Equations (15)–(17)) [60].

OA =
TP + TN

TP + TN + FP + FN
(13)

Kappa =
P0 − Pe

1− Pe
(14)

PA =
TP

TP + FN
(15)

UA =
TP

TP + FP
(16)

F1 =
2×UA× PA

UA + PA
(17)

where TP is true positive, representing the number of correct predictions for positive
samples; TN is true negative, showing the number of correct predictions for negative
samples; FP is false positive, indicating the number of incorrect predictions for positive
samples; FN is false negative, denoting the number of incorrect predictions for negative
samples; Po is the number of correctly predicted samples divided by the total number
of samples; and Pe is equal to (a1 × b1 + a2 × b2 + . . . + am × bm)/n × n, where a1 to
am represent the number of true samples for each tree species, and b1 to bm indicate the
number of samples predicted for each tree species.

4. Results
4.1. Image Fusion and Evaluation

The STARFM, FSDAF, and STNLFFM were applied to generate the fused images of
May 28 and October 19. Figure 6 shows a comparison of the Landsat image of the base date
and the Landsat images of the two predicted dates. Table 5 shows the correlation coefficients
of each band and their mean values between the Landsat images of the base date and the
predicted date. Compared with the Landsat image of October 19, the reflectance of the
Landsat image on May 28 was closer to the Landsat image of the base date. The correlation
coefficient of each band on May 28 was also higher, which was an average of 0.12 higher
than that on October 19. The Landsat images between the two prediction dates and the base
date were significantly correlated, and the correlation coefficients were both greater than
0.8. MODIS pixels, which is equivalent to aggregating multiple Landsat pixels at the same
location. This temporal correlation also exists on MODIS images. Therefore, high-quality
Landsat-like images can be generated through spatiotemporal fusion technology based
on MODIS.

Figure 6. Real Landsat images on the base date and predicted dates.
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Table 5. Comparison of original Landsat imagery on the base date and predicted date.

Date
Correlation Coefficient

Blue Green Red NIR SWIR1 SWIR2 Average

28 May 2016 0.9689 0.9842 0.9717 0.9750 0.9862 0.9720 0.9763

19 October 2016 0.8123 0.9120 0.8051 0.8712 0.9121 0.8251 0.8563

Figure 7 shows a typical region of these fused images. Table 6 shows the metrics of
different methods. It can be seen that the fusion accuracy of the two dates varies greatly.
The fusion results of different algorithms on May 28 are very similar and satisfactory. The
high accuracy metrics indicate very little difference between fused and reference images.
On October 19, the performance of the three algorithms was significantly worse than that
on May 28. The levels of several metrics were also significantly lower but still acceptable.
Among the three algorithms, STNLFFM achieved the highest accuracy. The STARFM model
performed slightly worse than STNLFFM. FSDAF is the most unsatisfactory algorithm
because the fusion results were severely blurred, and a considerable amount of spatial
information was lost.

Figure 7. RGB composition of the fusion results. The first and second rows are the MCD43A4,
Landsat 8 OLI imagery, and the fused images of the three different methods (STARFM, FSDAF, and
STNLFFM) on May 28 and October 19, respectively.

Table 6. Quantitative evaluation of spatiotemporal fusion accuracy.

Date Method
Metrics

CC RMSE SSIM SAM ERGAS

28 May 2016
FSDAF 0.9730 0.0165 0.9901 0.7942 2.3177

STARFM 0.9744 0.0158 0.9907 0.7915 2.2258

STNLFFM 0.9746 0.0156 0.9904 0.7921 2.2794

19 October 2016
FSDAF 0.9153 0.0258 0.9766 0.8344 3.2679

STARFM 0.9135 0.0260 0.9764 0.8427 3.2861

STNLFFM 0.9226 0.0248 0.9781 0.8329 3.1740

The scatter plots in Figure 8 show the correlation of the red and near-infrared bands
between the fused and reference images. The STNFLLM correlation coefficient is always the
highest, which indicates that the fusion results correlate more with the actual observations.
The average correlation coefficient of STARFM is close to that of STNLFFM and higher than
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that of FSDAF. In conclusion, STNLFFM performed best in both qualitative and quantitative
evaluations. Therefore, the STNLFFM algorithm was selected to generate dense time series
images for tree species classification.

Figure 8. Correlation between the red and near-infrared bands on May 28 and October 19. (a) Corre-
lation coefficient of the red band on May 28. (b) Correlation coefficient of the NIR band on May 28.
(c) Correlation coefficient of the red band on October 19. (d) Correlation coefficient of the NIR band
on October 19.
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4.2. Classification and Mapping of Tree Species
4.2.1. The Overall Accuracy of Five Tree Species

Four existing machine learning algorithms and our proposed ensemble algorithm
were used to classify tree species in ten experiments. Lollipop plots were generated to
display the accuracy for different dates in Experiment 1 and Experiment 2 (Figure 9). Table 7
shows the kappa coefficients and overall accuracy for all experiments. The accuracy of
Experiment 1 and Experiment 2 is the mean value of the whole experiment.

Figure 9. Cont.
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Figure 9. Overall accuracy and kappa coefficient of Experiments 1 and 2. (a) Experiment 1 (spectral
features only). (b) Experiment 2 (spectral plus topographic features).

Figure 9 shows that the classification accuracy is not satisfactory based only on a single
image. The kappa coefficient is only around 0.55, and the overall accuracy is approximately
65%. The introduction of topographic features in Experiment 2 significantly improved the
classification accuracy by approximately 6% overall, with a kappa coefficient improvement
of approximately 0.07. Table 7 shows that multitemporal images can significantly enhance
classification precision compared with single-temporal classification. Satisfactory accuracy
can be achieved using images from only one season. When using the ensemble classifier
based on images of different seasons, the kappa coefficients were all higher than 0.75, and
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the overall accuracy was higher than 0.8. The classification based on spring images had the
highest accuracy among the three seasons, with 82.41% OA and a 0.765 kappa coefficient.
Adding topographic features to time series data improved classification accuracy, but the
effect was not as pronounced as adding it to single-phase images. Compared with using
only three Landsat images and seasonal composite images from one year and three years,
the overall accuracy classification using the full time series, topographic variables, and the
ensemble classifier was improved by 11.4%, 12.48%, and 4.87%, respectively. Therefore, the
complete fused time series with topographic features as auxiliary variables constitutes the
optimal feature combination.

Table 7. Classification accuracy of different classifiers.

Experiment
Kappa Coefficient Overall Accuracy

KNN RF ANN Light
GBM Ensemble KNN RF ANN Light

GBM Ensemble

1 0.5227 0.5561 0.5695 0.5252 0.5811 0.6456 0.6732 0.6783 0.6493 0.6895

2 0.5809 0.6276 0.6117 0.6229 0.6529 0.6884 0.7254 0.7086 0.7207 0.7420

3 0.6950 0.7141 0.7528 0.7367 0.7650 0.7710 0.7877 0.8144 0.8035 0.8241

4 0.6965 0.6826 0.7455 0.7111 0.7565 0.7726 0.7655 0.8083 0.7853 0.8178

5 0.6736 0.6879 0.7340 0.7066 0.7504 0.7556 0.7690 0.7991 0.7818 0.8092

6 0.7202 0.7303 0.7639 0.7601 0.7821 0.7897 0.7998 0.8215 0.8208 0.8368

7 0.7262 0.7338 0.7720 0.7693 0.7897 0.7943 0.8025 0.8290 0.8276 0.8432

8 0.5509 0.5915 0.5890 0.6121 0.6323 0.6702 0.7016 0.6915 0.7146 0.7292

9 0.5239 0.5581 0.5839 0.5727 0.6180 0.6497 0.6803 0.6879 0.6881 0.7184

10 0.6337 0.6317 0.6751 0.6736 0.7217 0.7275 0.7331 0.7596 0.7606 0.7945

The performance of the evaluated classifiers differed significantly. In Experiment 1,
ANN and RF significantly outperformed KNN and LightGBM. After adding topographic
features, the model with the highest average overall accuracy was RF, followed by Light-
GBM, ANN, and KNN. In multitemporal classification, ANN and LightGBM achieved
significantly higher classification accuracy than KNN and RF. However, the ensemble
classifier achieved the highest accuracy in almost all experiments. Compared to the best
base classifier, the most significant improvements in overall accuracy and kappa coeffi-
cients were around 3.4% and 0.047, respectively. When classifying based on the optimal
feature combination in Experiment 7, compared with KNN, RF, ANN, and LightGBM, the
classification accuracy of the ensemble classifier was improved by 4.89%, 4.07%, 1.42%,
and 1.56%, respectively. Therefore, the ensemble classifier was ultimately selected for tree
species mapping.

4.2.2. The Class-Wise Accuracies of Five Tree Species

The user accuracy, producer accuracy, and F-value of each classifier in Experiment 7
are reported in Table 8. As a control, the mean user accuracy, producer accuracy, and
F-value of the other nine experiments are reported in Table 9. The confusion matrix for
each classifier is shown in Figure 10. The F-value was chosen to measure the classification
accuracy of each category. The ensemble method achieved the highest accuracy in all classes
of tree species. Except for Korean pine, the classification accuracy was satisfactory, and the
F-value was above 80%. Birch had the highest classification accuracy at 90.71%. In contrast,
Korean pine had the lowest classification accuracy, with an F-value of 72.21%. However, the
ensemble classifier exhibited the most significant improvement in classification accuracy of
this category, with the F-value improved by approximately 2.5% compared with ANN.



Forests 2023, 14, 107 17 of 24

Table 8. Producer precision, user precision, and F-value (%) for each category for different methods
in Experiment 7 (italics indicate the best result).

Class Accuracy KNN RF ANN LightGBM Ensemble

Oak

UA 77.385 75.930 79.908 80.906 82.315

PA 81.021 86.670 86.263 86.353 86.444

F-value 79.161 80.945 82.964 83.541 84.329

Larch

UA 82.104 81.596 85.498 83.333 87.130

PA 76.207 76.880 79.405 80.247 80.920

F-value 79.045 79.168 82.339 81.761 83.910

Korean
Pine

UA 69.351 83.934 70.161 79.003 79.903

PA 61.876 51.098 69.461 60.080 65.868

F-value 65.401 63.524 69.809 68.254 72.210

Pinus
sylvestris

UA 79.596 79.348 86.080 81.511 81.521

PA 82.494 84.818 83.346 86.057 88.846

F-value 81.019 81.992 84.691 83.723 85.026

Birch

UA 85.436 94.016 89.932 92.034 91.460

PA 89.024 80.894 89.566 87.669 89.973

F-value 87.193 86.963 89.749 89.799 90.710

Table 9. Producer precision, user precision, and F-value (%) for each category for different methods
in the other nine experiments (italics indicate the best result).

Class Accuracy KNN RF ANN LightGBM Ensemble

Oak

UA 69.479 69.533 76.182 72.064 75.114

PA 77.03 83.57 76.713 81.652 82.612

F-value 72.998 75.854 76.361 76.519 78.651

Larch

UA 74.059 75.173 76.068 75.198 78.092

PA 69.193 71.237 74.251 73.31 74.994

F-value 71.536 73.145 75.097 74.236 76.494

Korean
Pine

UA 58.703 74.728 60.113 68.342 71.236

PA 44.408 35.337 55.413 41.164 49.706

F-value 50.241 47.48 57.227 51.062 58.237

Pinus
sylvestris

UA 74.778 75.212 75.968 76.23 77.876

PA 74.241 77.551 79.81 78.524 81.245

F-value 74.463 76.274 77.759 77.323 79.493

Birch

UA 76.916 85.99 81.762 83.96 85.898

PA 77.176 68.956 80.386 73.012 78.842

F-value 77.018 76.452 81.002 78.032 82.189
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Figure 10. Confusion matrix for various classification methods: (a) KNN; (b) RF; (c) ANN; (d) Light-
GBM; (e) ensemble.

4.2.3. Comparison with Other Ensemble Models

Table 10 shows the classification accuracy of the deep forest algorithm and our pro-
posed ensemble method with the optimal feature combination (Experiment 7). The overall
accuracy of our ensemble model was about 2% higher than that of the deep forest model,
which indicates that our proposed model is more advanced.

Table 10. Comparison of our proposed ensemble classifier with the deep forest algorithm.

Method Overall
Accuracy

Kappa
Coefficient

Deep Forest 0.8256 0.7662

Ensemble Classifier 0.8423 0.7911
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4.2.4. Tree Species Mapping

A tree species distribution map of the study area (Figure 11) was produced using the
ensemble classifier based on spectral and topographic features. The most common species
were oak (39.15%) and larch (39.87%), whereas the other three species were relatively less
distributed, with area proportions of 4.65% (Korean Pine), 5.40% (Pinus sylvestris), and
10.93% (Birch).

Figure 11. Classification results of forest tree species in Helong City based on the ensemble classifier
and the optimal feature combination.

5. Discussion
5.1. Error Sources in Spatiotemporal Fusion Algorithms

The three spatiotemporal fusion methods are mathematically different. By assuming a
linear relationship between fine and coarse images or between coarse prediction and base
date images, STARFM uses a linear regression model to describe this linear relationship,
followed by prediction through the application of the linear regression model to the coarse
image on the prediction date or the fine image on the base date. However, the performance
of STARFM for reflectance change areas and heterogeneous landscapes is not satisfac-
tory [61]. The flexible spatiotemporal data fusion (FSDAF) model is a method involving
the use of one pair of fine- and coarse-resolution images and one coarse-resolution image
acquired on the prediction date. This method integrates unmixing-based methods, spatial
interpolation, and STARFM into one framework. However, this method is computationally
expensive, and the prediction accuracy greatly depends on the extent of land cover changes
between the two dates of the input images [62]. In STNLFFM, the coefficients of the linear
equation of a given pair of coarse-spatial-resolution pixels can be acquired using the least
squares method based on the neighboring pixels and the given pixels themselves. Then,
the coefficients can be used for the observed fine-spatial-resolution image to acquire a
prediction. To decrease the effects of heterogeneous landscapes, STNLFFM uses neighbor-
ing spectrally similar pixels to make a more accurate prediction [63]. The accuracy of the
three fusion algorithms is similar and acceptable. STNLFFM performs best because it pays
more attention to changes in the reflectance of multitemporal images [64]. However, it is
necessary to point out that the fusion precision of all methods on October 19 was lower
than that on May 28 because the time interval between the prediction and reference dates
was longer. The difference in phenology was more significant, leading to a decrease in
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fusion accuracy [21]. In cases in which the reference and prediction dates are closer and
the correlation between the images is strong, the prediction results are generally more reli-
able [65]. Another limitation of the three algorithms described above is that these methods
only use information from images obtained on the two individual dates and ignore the
temporal information of time series with different resolutions. The use of additional images
can help to improve fusion results [66].

5.2. The Influence of Different Features on Classification Accuracy

In different feature combinations, the classification accuracy increases continuously
with the number of images because multitemporal or time series data contain phonological
and tree species growth information, and growth characteristics differ depending on the tree
species [13,51,67]. Tree species are difficult to classify in a single temporal image, but time
series growth information benefits tree species discrimination [68]. Among topographic
features, elevation is highly correlated with tree species distribution. Larch and birch trees
are mainly distributed in high-altitude regions. In contrast, the other three tree species are
distributed primarily in flat areas. Therefore, when the input data are only a single temporal
image, topographic features can complement single-temporal spectral information and
significantly improve classification accuracy. However, when the input features contain
enough temporal-phase spectral features, topographic features can only slightly improve
the accuracy because the classification is mainly based on spectral features [69].

5.3. The Advantages and Limitations of Ensemble Classifiers

The proposed ensemble classifier combining KNN, RF, ANN, and LightGBM con-
sistently achieved the best accuracy. By introducing the advanced classification methods
of ANN and LightGBM, the ensemble model we proposed not only performed well on
low-dimensional data but also on high-dimensional data such as time series. Compared
with other studies, our reported classification accuracy is similar [70]. The classification
accuracy of Korean pine was the least satisfactory, possibly owing to the small number of
samples and the uncertainty of the reference data. The confusion matrix shows that the
ensemble model reduced the occurrence of misclassification and underclassification. Our
results reflect the effectiveness and generalizability of ensemble learning in tree species
classification. However, compared to ANN, the number of correctly classified pixels of
Korean pine was reduced in the ensemble method because KNN, RF, and LightGBM have
lower classification accuracies for Korean pine. These classifiers did not help the classifi-
cation of Korean pine in the ensemble model but reduced its classification accuracy. The
soft voting strategy is simple and easy to implement, but there are still some limitations in
selecting its base classifiers. First, the classification results between base models should not
differ too much. When a base model works poorly relative to other models, the results are
likely to become noise and affect the ensemble effect, and there should be less homogeneity
among the base models [71].

5.4. Comparison with Other Studies

We compared our results with those reported in similar studies. In terms of spatiotem-
poral fusion, the fusion accuracies were close to those of the associated developers [23–25].
Cheng et al. showed that STNLFFM always outperforms STARFM. The correlation coeffi-
cients between the fusion image and the real Landsat image of STNLFFM in the two test
areas were all higher than 0.9 [24]. In a study by Li et al., FSDAF predicted blurred image
texture information with unclear edges [72]. These results are consistent with our findings.
In terms of tree species classification, Wang et al. fused GF-1, Landsat 8, and MODIS NDVI
data to obtain enough spatial and temporal resolution for six forest types distinguished
in Duchang County by utilizing the STNLFFM model and support vector machines [64],
achieving an overall accuracy of 82%, which is slightly lower than that reported in our
study. The tree species classification system proposed in a study by Joongbin Lim et al.
is similar to ours [70]. They developed a model to classify the five dominant tree species
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in North Korea (Korean red pine, Korean pine, Japanese larch, needle fir, and oak) using
Sentinel-2 data and machine learning techniques. In the Gwangneung Forest area, the
proposed model achieved an overall accuracy of 83%, which is at the same level as our
results (84.32%). However, the spatial resolution of the Sentinel-2 images they used was
10 m. This is higher than the 30 m of the Landsat-like time series we used in the present
study. The above comparisons show the reliability and advances achieved in our research.

6. Conclusions

Owing to the poor availability of remote sensing data, tree species classification in
cloudy mountain areas remains a challenge. In this research, we improved tree species
mapping in cloudy mountainous regions from the perspectives of remote sensing data,
classification features, and classification algorithms. Three spatiotemporal fusion methods,
i.e., FSDAF, STARFM, and STNLFFM, were compared. The best-performing STNLFFM
algorithm was applied to generate a dense time series with 8-day intervals. In addition
to the spectral features of the fused time series, topographic features were also added
to the classification procedure. KNN, RF, ANN, LightGBM, and our proposed ensemble
classifier were selected for tree species classification. The results show that the fused
time series improved the classification accuracy by approximately 20% compared with the
single-phase images. The ensemble classifier consistently achieved the highest accuracy,
with a maximum improvement of approximately 3.4% compared to the best base classifier.
The final classification accuracy reached 84.32%. In conclusion, it is necessary to use
spatiotemporal fusion to generate dense time series to alleviate the problem of poor image
availability in cloudy mountainous areas. Topographic features also help to enhance the
classification precision of tree species in mountainous areas. The ensemble classifier, which
combines the results of multiple classifiers, is suitable for classification based on time series
images and can effectively reduce the misclassification of pixels. This study illustrates a
tree species classification method integrating temporal and spatial information from remote
sensing data with differing resolution in areas with poor data availability and represents a
valuable reference for improved tree species mapping.
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