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Abstract: The landscape pattern of Xinjiang’s wild apple forest (Malus sieversii) area has undergone
substantial change due to human activity disruption and frequent natural catastrophes. This change
has a significant influence on the biodiversity and stability of the ecosystem. This study aimed to
evaluate the spatial and temporal evolution in habitat quality and landscape pattern changes to
analyze the underlying factors affecting habitat quality in the Malus sieversii forest (MF) area in the
Mohe watershed of the western Tianshan Mountains. Here, we applied the Integrated Valuation
of Ecosystem Services and Tradeoffs (InVEST) model, using four periods of remote sensing images
of 1964, 1980, 2000, and 2017 as data sources, and analyzed the trend of landscape pattern changes
in the MF area. The results show that (1) from 1964 to 2017, the study area was greatly affected by
anthropogenic disturbance and climate change. Each landscape index indicates that the fragmentation
of the whole study area has increased, the stability of the ecosystem has weakened, and the habitat
quality is somewhat in jeopardy. (2) Analyzed in terms of spatial and temporal characteristics, the
habitat quality of the whole study area decreased from 1964 to 2017. Among them, the low habitat
value is mainly distributed in the north and northeast, the central part of the study area shows
scattered low-habitat-value areas, and in the high-altitude area in the south, the ecosystem is more
stable. (3) Since the northern region is dominated by cultivated land patches and residential building
land patches, the habitat quality of the stressed zone deteriorates the larger its maximum patch
area. The habitat quality of the region under stress worsens the larger its maximum patch size.
In the area dominated by MF, the larger the area of MF patches, the higher the ecological service
value. The study may be helpful for comprehending how the dynamics of landscape patterns affect
biodiversity. It may also offer a scientific foundation for improving regional natural environments
and effective decision-making support for local governments in the areas of landscape design and
biodiversity preservation.

Keywords: Malus sieversii; InVEST model; habitat quality; habitat quality; landscape patterns

1. Introduction

Xinjiang wild apple, also known as Malus sieversii, is one of the most biodiverse regions
in China and has a unique broadleaf forest ecosystem in China [1,2], and Malus sieversii
is also regarded as the ancestor of contemporary apple (Malus pumila) cultivars and as
a priceless source of genetic variation [3]. Due to the distinctiveness of the community,
the Xinjiang wild apple forest has been included in the list of priority ecosystems for
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conservation in China [4]. In the past 40 years, with economic development, interference
with the ecological environment is growing as human activities intensify [5]. Human
society has been expanding into MF. During the same period, the rampant infestation of the
apple girdling bug has caused a significant shrinkage of the MF distributed in the western
Tianshan Mountains and the destruction of biodiversity, resulting in a severe decline in the
quality of the MF habitat in the region. To improve the quality of MF habitats and restore
the degraded ecosystems in this region, it is necessary to conduct targeted research on the
dynamic assessment of MF habitat quality to guide the conservation of resources and the
healthy operation of forest ecosystems.

Habitat quality is a criterion for excellent regional ecosystem function [6,7]. The
ability of an ecological system to produce living conditions that are adequate for the
sustainable development of individuals and populations is referred to as habitat quality,
and it partially reflects the state of regional biodiversity [8]. Reconstructing the spatial
distribution of regional habitat quality can revivify the ecological environment background
of historical eras and offer evidence to support hypotheses about how regional ecological
environmental quality has changed over time [9]. Landscape pattern generally refers to
the spatial distribution of landscape patches with different shapes, sizes, and attributes,
and the changes in landscape patterns are caused by the interaction of natural and social
factors [10]. The regional change in biodiversity and landscape pattern can be closely
correlated with the change in habitat quality [11]. On several scales, including the national,
regional, and watershed, the evaluation of habitat quality has gained increasing attention
in recent years. One of particular interest is the study of habitat quality in conjunction
with changes in landscape patterns [12,13]. For habitat quality evaluation and protection,
many scholars use a variety of ecological models. For example, Xu [14], using ArcGIS and
the InVEST model, measured the geographical and temporal development of land use,
landscape pattern, and habitat quality in the Taihu basin from 1985 to 2015; ZHANG [9]
used the CA-Markov model combined with the InVEST model to rebuild the spatial pattern
of habitat quality in the Pan-Yangtze River Delta region from 1975 to 1995; and data from
social survey responses can be mapped and analyzed using the tool Social Values for
Ecosystem Services (SolVES) [15] and other models for quantitative analysis of habitat
quality in different regions. There are also hierarchical analysis and fuzzy mathematical
methods for research to build habitat quality evaluation systems [16], while the entropy
method and environmental Kuznets curve test are used to evaluate habitat quality [17].
However, there are still few studies that show the effects of landscape pattern changes on
Malus sieversii habitat quality changes.

The integrated valuation of environmental services and tradeoffs (InVEST) is an
integrated valuation of ecosystem services and tradeoff assessment model developed
by Stanford University, The Nature Conservancy (TNC), and the World Wildlife Fund
(WWF) [18]. It was initially designed to map the value of natural landscapes so that natural
capital could be more easily and feasibly incorporated into decision-making systems. Due to
its cheap data requirement, powerful spatial visualization, high assessment accuracy of its
calculation results, and ability to depict the distribution of habitat under various landscape
patterns, the InVEST model is frequently employed for habitat quality assessment [19].
Here are a few current examples. Lin et al. [20] calculated habitat quality and five other
ecosystem service values through the integrated valuation of ecosystem services and
tradeoffs (InVEST) and identified hotspots for each ecosystem service value through the
local indicator of spatial association (LISA), and the results show spatial autocorrelation
of ecosystem services to identify conservation areas that provide potential benefits to
people. Using the InVEST model, Zhu [21] et al. evaluated the habitat quality in Hangzhou
and discovered that rapid urbanization has a considerable negative impact on it in many
regions, while the direction and strength of the effects of landscape design on habitat
quality varied over time and geography. This model’s comprehensive assessment approach
for evaluating habitat quality can help to cut down on randomness in the selection of
evaluation indicators. Additionally, the model might offer a better rigorous theoretical
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framework for the evaluation of habitat quality by taking ecological processes into account.
However, the InVEST model’s current limitation is that the parameters rely on empirical
values, which calls for additional focus.

Based on landscape and ecological theories, this study uses four periods of remote
sensing images of 1964, 1980, 2000, and 2017 as data sources, focuses on the MF area
in the Mohe watershed of the Ili River valley in Xinjiang, applies the InVEST model to
assess the spatial and temporal changes in habitat quality under four periods of landscape
pattern distribution, and investigates the relationship between landscape pattern changes
and habitat quality. Then, we use principal component analysis to identify the driving
forces of landscape pattern changes. The objectives of this study are the following: (1)
obtain appropriate parameters for the MF‘s susceptibility to threat factors; (2) assess the
spatiotemporal variation in habitat quality in the period of 1964–2017; (3) identify the
characteristics of spatial differentiation of habitat quality from ecosystem perspectives;
and (4) analyze the underlying correlations between the influencing factors and habitat
quality. The study may help us comprehend how the dynamics of landscape patterns affect
biodiversity and help local governments make decisions for the preservation of biodiversity
and landscape planning in MF area.

2. Materials and Methods
2.1. Study Area

The study area is situated in the eastern portion of Gongliu County, Ili Kazakh Au-
tonomous Prefecture, Xinjiang Uygur Autonomous Region, on the western part of the
Central Tianshan Mountains, on the south bank of the Jirgulang River, and in the Mohe
watershed on the northern slope of the Narathi Mountains. The geographical coordinates
were 43◦10′–43◦ 14′ N with a longitude of 82◦43’–82◦52′ E, an elevation of 1100–1600 m,
and a ground relative elevation difference of 200–350 m [22]. This area has the continental
climate of the north temperate zone, with an average annual temperature of 4 ◦C, a frost-
free period of 105 d, precipitation of 550 mm, and a snow cover period of 95 d. Wild apple,
wild apricot (Armeniaca vulgaris), wild hawthorn (Crataegus chlorocarpa), rowan (Sorbus
tianschanica), thick plum (Padus racemosa), and other trees are the predominant trees in
this region. The main herbs include fescue (Festuca gigantea), motherwort, and rose (Rosa
acicularis), while the main shrubs are berberis [23] (Figure 1 depicts the zone’s location).

Figure 1. Location distribution of the study area.
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2.2. Data Sources and Preprocessing

In this study, photos from the MF area taken by CORONA/SPOT/GF-2 satellites
in 1964, 1980, 2000, and 2017 were utilized as data sources (Table 1). Images with low
cloudiness, all within 10 m resolution, were chosen. The four preprocessing steps of remote
sensing images—image radiation correction, picture fusion, waveband selection, image
stitching, and cropping—were performed using ENVI5.3. A mix of supervised classification
and visual interpretation was utilized, and Google Earth maps, a forest resource survey,
and in situ survey data were used to verify the correctness of the interpretation findings.
Referring to the classification criteria of the 2017 national land use status classification
system (GB/T21010-2017) and the land classification system of the Chinese Academy
of Sciences [24,25], the landscape pattern of the MF area was classified according to the
characteristics of the study area [22]. The final distribution of landscape types in the
Mohe watershed of the MF area was obtained. It was concluded from the test that the
kappa coefficients of all four periods were more significant than 80%, and the accuracy of
landscape classification met the research requirement criteria.

Table 1. Data Resources.

Data Resources Scene ID Date Resolution

CORONA Satellite DS09058A054MC037 29 August 1964 2.5 m
CORONA Satellite DZB1216-500108L005001 10 July 1980 10 m

SPOT Satellite 42082630011030546462M 3 November 2000 2.5 m
GF-2 4221681 17 October 2017 1 m

2.3. Landscape Classification and Accuracy Verification

This research employs the maximum likelihood method [26] to categorize the photos
using a combination of supervised classification and manual interpretation by the land-
scape classification system. When remote sensing photos are expressly utilized for post
analysis, the accuracy of the categorized images must also be evaluated because there
invariably are errors and omissions. The Kappa coefficient can more accurately indicate
classification accuracy [27,28]. The 1964 Malus sieversii resource results were verified using
the 1964 remote sensing images, and some visual interpretation was added to and improved
upon using the first forest resource class II survey data of the study area (based on the
1:50,000 aerial photo interpretation and interview survey in the late 1950s). The second
forest resource class II survey data of the study area (based on the 1:25,000 aerial photo
interpretation in 1980) were used to verify the 1964 MF resource results, and these results
were then used to determine the extent to which the MF resource overall classification
accuracy was 93.6542%; the Kappa coefficient was 0.8463, and the classification accuracy
was 91.2569% overall. Based on the 1964 remote sensing images, the first forest resource
class II survey data of the study area (based on the 1:50,000 aerial photo interpretation
and interview survey in the late 1950s) were used to verify the 1964 MF resource with
some visual interpretation to supplement and improve it; the second forest resource class
II survey data of the study area (based on the 1:25,000 aerial photo interpretation in 1980)
were used as well. Respectively, the overall classification accuracy was 91.2569%, and the
Kappa coefficient was 0.8123; the overall classification accuracy was 93.6542%, and the
Kappa coefficient was 0.8463. The overall classification accuracy was 94.2569%, and the
kappa coefficient was 0.8642. The accuracy of the landscape classification results met the
research requirements.

2.4. Landscape Metrics

The landscape type transfer matrix for 1964–1980, 1980–2000, 2000–2017, and 1964–
2017, respectively, were obtained by superimposing and analyzing the landscape type
maps from 1964, 1980, 2000, and 2017, and the transfer area matrix recorded the area of
each landscape type converted to other landscape types.
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Different landscape indices were chosen to further investigate the landscape pattern
evolution characteristics of the MF region, and the Patch Analysis module of Fragstats 4.0
was utilized to calculate the landscape pattern metrics. Through comparative analysis, the
following indices were selected: number of patches (NP), patch density (PD), contagion
index (CONTAG), Shannon’s diversity index (SHDI), Shannon’s evenness index (SHEI),
and cohesion index (COHESION) to quantitatively characterize the landscape pattern
changes (Table 2) [29].

Table 2. Landscape pattern index.

Landscape Metrics Mathematical Expression Subscripts/Symbols

Number of patches (NP) NP = ni ni = total number of patches in the
landscape.

aij = area (m2) of patch ij
gik = number of adjacencies (joins)

between pixels of patch types
(classes) i and k based on the

double-count method.
pi = proportion of the landscape
occupied by patch type (class) i.

pij = perimeter of patch ij in terms
of number of cell surfaces.

Patch density (PD) PD = ni
aij
× 100

Contagion index (CONTAG)
CONTAG = 1 +

m
∑

i=1

m
∑

k=1

(Pi)

 gik
m
∑

k=1
gik

·
ln (P)i

 gik
m
∑

k=1
gik


2 loge(m)

× 100

Shannon’s diversity index
(SHDI) SDHI = −

m
∑

i=1
(Pi loge Pi)

Shannon’s evenness index
(SHEI) SHEI =

−
m
∑

i=1
(Pi loge Pi)

loge m

Cohesion index (COHESION)
COHESION =

1−

m
∑

i=1

n
∑

j=1
pij

m
∑

i=1

n
∑

j=1
pij
√

aij

[1− 1√
A

]−1
× 100

2.5. Habitat Quality Calculation Based on InVEST Model

The habitat quality module of the InVEST model was chosen for this study to evaluate
the characteristics of habitat change at the landscape level in the MF area. The following
threat factors were used: cultivated land, landslide areas, roads, and residential building
sites. The maximum impact distance, weights, habitat types, and sensitivity of threat factors
were assigned by the manual of the InVEST model and examples of the InVEST model,
combined with related studies [23–36], as shown in Tables 3 and 4.

Table 3. The maximum influence distance and weight of different threat factors.

Threat Factors Maximum Influence Distance Weights Habitat Type

Cultivated land 1.0 0.6 Linear
Landslide 0.5 1.0 Exponential

Roads 0.5 0.4 Linear
Buildings 2.0 0.5 Linear

Table 4. Habitat adaptability of different landscapes and their sensitivity to various threat factors.

Landscape Type Habitat
Adaptability

Cultivated
Land Landslide Roads Buildings

Wild apples 1.0 0.5 0.8 0.3 0.4
Other forest land 0.8 0.5 0.7 0.4 0.4

Grassland 0.9 0.8 0.8 0.2 0.3
Cultivated land 0.0 0.0 0.2 0.0 0.0

Water 1.0 0.3 0.0 0.0 0.2
Landslide 0.0 0.1 0.0 0.2 0.3

Roads 0.0 0.0 0.3 0.0 0.0
Buildings 0.0 0.0 0.1 0.0 0.0
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Habitat degradation degree represents how environmental risk factors impact specific
landscape-type raster cells. The higher the score, the more the raster cell is affected by
threat factors; a higher habitat quality score reflects good or poor habitat quality under
the influence of threat sources; the higher the score, the more stable the ecosystem, and
the higher the habitat quality; and the lower the score, the more vulnerable the ecological
environment is to external disturbance. Table 5 displays the indices for evaluating habitat
quality and their respective definitions.

Table 5. Habitat evaluation indices and meaning.

Habitat Evaluation Indicators Mathematical Expression Meaning

Degree of habitat degradation

(1)

Dxj =
R
∑

r=1

rr

∑
y=1

 Wr
R
∑

r=1
ωr

ryinxyβxSjr

Dxj: habitat degradation degree of raster x,
indicating the degree of habitat degradation
exhibited by pressure; R: number of threat

factors; wr: threat factor weights; Yr: number of
rasters of the threat layer on the ground class
layer; ry: intensity of threat factors, number of
threat factors on each raster; irxy: threat level of

the threat factor to the habitat; βx: degree of legal
protection; Sjr: denotes the level of sensitivity of

land type j to threat factors; dxy: distance
between raster x (habitat) and raster y (threat

factor); drmax: the maximum impact range of the
threat factor r

(2)
irxy = 1−

(
dxy

drmax

)

Habitat quality
(3)

Qxj = Hj

[
1−

(
Dz

xj
Dz

xj+kz

)]
Qxj: habitat quality index of the j landscape type

x raster; Hj: habitat suitability score for the j
landscape type, with values ranging from 0 to 1;
z: 2.5; k: half-saturation constant, i.e., half of the

maximum value of habitat degradation

2.6. Driving Factors of Landscape Pattern Change

The change in landscape pattern results from the interaction between natural and
human factors. This paper combines the actual situation of the MF area in the Mohe
watershed and divides the indicators into 4 major categories (environmental, economic,
demographic, and social) and 12 indicators (X1 to X12) based on qualitative and quantitative
research. (Tables 6 and 7).

Table 6. Malus sieversii forest‘s Driving Force Index System in the Mohe Basin.

Target Layer Element Layer Indicator Layer

Natural factors Environmental factors
Average temperature (X1), annual
precipitation (X2), area of collapse

(X3)

Human factors
Economic factors

Grain production (X4), oil
production (X5), farmers’ and

herders’ income (X6)

Demographic factors Population (X7), agricultural
population (X8)

Social factor
Woodcutting (X9), cultivation

(X10), total livestock stock (X11),
pastoral output (X12)
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Table 7. Driver eigenvalues and main contribution rate.

Indicator Factors Eigenvalue Contribution Rate % Cumulative
Contribution Rate %

X1 10.723 89.356 89.356
X2 0.942 7.846 97.202
X3 0.336 2.798 100
X4 3.34752 × 10−16 2.7896 × 10−15 100
X5 2.3648 × 10−16 1.97067 × 10−15 100
X6 1.74958 × 10−16 1.45798 × 10−15 100
X7 8.87243 × 10−17 7.39369 × 10−16 100
X8 7.12545 × 10−17 5.93788 × 10−16 100
X9 1.24238 × 10−16 1.03531 × 10−15 100

X10 1.96251 × 10−16 1.63543 × 10−15 100
X11 3.28664 × 10−16 2.73887 × 10−15 100
X12 5.53737 × 10−16 4.61448 × 10−16 100

Principal component analysis was performed on the driving factors, and the obtained
driver eigenvalues and principal contributions (Table 7) and principal component rotated
loading matrix (Table 8) indicate that the cumulative contribution of the first three principal
components reached 100%, which means that the first three principal components represent
all the information in the 12 indicators.

Table 8. Main component rotation load matrix.

Indicator Factors F1 F2 F3

X1 0.958 0.191 −0.216
X2 0.865 0.501 0.034
X3 0.838 −0.525 0.151
X4 0.978 0.111 0.176
X5 0.903 0.002 −0.029
X6 0.970 0.114 0.216
X7 0.987 −0.005 −0.160
X8 0.962 0.111 −0.249
X9 0.952 0.261 0.211

X10 0.863 −0.505 −0.002
X11 0.993 0.079 0.083
X12 0.970 0.108 0.220

3. Results
3.1. Landscape Pattern Change Analysis

Since the area of road and river landscapes changed between 1964 and 2017, they were
omitted from the transfer matrix for the time being. More than 90 percent of the research
area is comprised of the MF, grasslands, and other woodlands (coniferous forests, broad-
leaved forests, and mixed coniferous forests). Table 9 demonstrates that the landscape
pattern of the study area has changed between 1964 and 2017. The changes in various
types of landscapes are primarily manifested by the annual decrease in the area of the
MF and other woodlands (coniferous forests, broad-leaved forests, and mixed coniferous
forests) and the annual increase in the area of cultivated land, residential construction land,
and landslides. Among them, the area of the MF declined from 6239.7 hm2 to 2440.89
hm2. The main inflow landscapes are grassland and other forest lands, 246.07 hm2 and
125.67 hm2, respectively, while the main outflow landscapes are grassland and cultivated
land, 3620.51 hm2 and 267.52 hm2, respectively. The area of the MF is diminished owing
to overexploitation by humans, and the MF is also impacted by the apple small giddy
insect pest, which causes forest trees to die. The cultivated land area expanded from
1425.6 hm2 to 2944.26 hm2; the major transfer in the landscape is grassland, MF, and other
woodlands, which are 1018.19 hm2, 267.52 hm2, and 236.7 hm2, respectively; and the
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main transfer-out landscape is grassland and other woodlands, 12.97 hm2 and 12.04 hm2,
respectively. The inflow area is bigger than the outflow area, and it can be observed that
the amount of cultivated land expands and large areas of reduced grassland and MF are
reclaimed as farmland. The main increase in the grassland landscape is in the MF and other
woodlands, 3620.51 hm2 and 1119.41 hm2, respectively, and the outflow is cultivated land
and other woodlands, 1018.19 hm2 and 525.85 hm2, respectively, indicating that humans
destroy grassland on a large scale for production and living and destroy woodland through
disturbance in addition to degrading woodland landscapes into grassland landscapes and
destroying the stability of the ecosystem.

From the landscape level index analysis, NP and PD indices in the study area increased
from 2548 and 9.9956 to 5397 and 21.1719, respectively, from 1964 to 2017, and AREA_MN
decreased from 10.0045 to 4.7233. The CONTAG index increased from 64.6579. AREA_MN
decreased from 10.0045 to 4.7233. The CONTAG index decreased from 64.6579 to 63.9887,
indicating that the fragmentation of the entire MF area increased as a result of human
disturbance, malachite small giddy insect pests, and geological disasters, posing a particular
threat to the ecological balance and habitat quality of the area. The SHEI and SHDI declined
from 0.6425 and 1.4116 to 0.6373 and 1.4002, respectively, showing a declining trend
in landscape diversity and an unavoidable deterioration of the landscape’s structural
equilibrium.

Table 9. Area transfer matrix of landscape types from 1964 to 2017 in Mohe Watershed (hm2).

Era Land Type Wild Apple Other Forest
Land Grassland Cultivated

Land Landslide Buildings

1964–1980 Wild apple - 4.87 1850.32 11.92 0.00 0.06
Other forest land 141.56 - 7.99 0.00 0.00 0.00

Grassland 21.20 15.14 - 317.00 0.00 77.77
Cultivated land 1.04 0.00 20.38 - 0.00 0.00

Landslide 0.00 0.00 0.00 0.00 - 0.00
Buildings 7.41 0.02 13.06 2.95 0.00 -

1980–2000 Wild apple - 111.38 2001.53 163.09 80.60 31.63
Other forest land 14.97 - 1111.84 227.29 41.25 8.52

Grassland 364.54 593.96 - 930.47 114.53 173.97
Cultivated land 0.80 12.04 16.37 - 0.00 61.42

Landslide 9.89 4.27 11.76 0.00 - 0.00
Wild apple 0.00 0.00 0.67 20.66 0.00 -

2000–2017 Other forest land - 0.07 86.24 4.68 4.89 0.00
Grassland 16.77 - 24.44 0.00 1.83 0.00

Cultivated land 15.35 1.20 - 8.69 15.32 0.58
Landslide 0.48 0.05 40.25 - 0.11 43.09
Buildings 2.27 5.05 21.82 0.00 - 0.00

Wild apple 0.00 0.00 9.79 24.81 0.00 -
1964–2017 Wild apple - 148.80 3620.51 267.52 93.32 2.22

Other forest land 125.67 - 1119.41 236.70 38.70 15.82
Grassland 246.07 525.85 - 1018.19 96.70 325.17

Cultivated land 0.81 12.04 12.97 - 0.00 0.01
Landslide 9.65 4.27 11.30 0.00 - 0.00

Building site 0.00 0.02 6.27 18.92 0.00 -

3.2. Analysis of Spatial and Temporal Variation in Habitat Quality

The habitat quality was divided into six classes according to the habitat quality score,
which was 0–0.1, 0.1–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1.0, and the spatial and temporal
characteristics of habitat quality were analyzed as shown in Table 10. In terms of time series,
the mean habitat quality in the Mohe watershed MF region was 0.7153 in 1964, 0.6691 in
1980, 0.637 in 2000, and 0.6411 in 2017, with a general downward trend. The rise in the
standard deviation of habitat quality from 0.3721 to 0.4024 indicates that the variation in
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habitat quality among raster cells increased, suggesting a general trend of habitat quality
decline.

Table 10. Spatial statistics of habitat quality of wild apple forest in the Mohe Basin from 1964 to 2017.

Habitat
Quality
Score

1964 1980 2000 2017

Area
Weight

/%

Mean
Habitat
Quality

Standard
Devia-

tion

Area
Weight

/%

Mean
Habitat
Quality

Standard
Devia-

tion

Area
Weight

/%

Mean
Habitat
Quality

Standard
Devia-

tion

Area
Weight

/%

Mean
Habitat
Quality

Standard
Devia-

tion

0–0.1 6.3 10.73 17.92 18.76
0.1–0.2 10.68 14.23 20.46 17.95
0.2–0.4 12.19 0.7153 0.3721 10.2 0.6691 0.376 5.37 0.637 0.4031 5.69 0.6411 0.4024
0.4–0.6 0.57 1.71 2.95 3.83
0.6–0.8 1.98 2.42 3.48 3.62
0.8–1.0 68.28 60.71 49.82 50.15

Figure 2 displays the regional and temporal trend of habitat quality in the Mohe
watershed’s MF zone from 1964 to 2017. As seen in the figure, the area between 0 and 0.1 of
the habitat quality score of the MF area is expanding, primarily in the north and northeast
of the study area, where the habitat quality is relatively poor due to the area being a plain,
cultivated land and residential construction land are primarily used, and human activities
are frequent, superimposed on the apple girdling insect pest; the densely distributed area of
the MF in the center of the study area is decreasing in size. Due to the frequent occurrence
of geological hazards, such as landslides and the effect of insect pests, the habitat quality is
reduced in the central area of the research zone, resulting in a significant loss of the MF.
The ecology is more stable in the south’s high-altitude regions, less impacted by nature and
people.

Figure 2. Changes in landscape pattern areas from 1964 to 2017.
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3.3. Correlation Analysis of Malus sieversii Forest Habitat Quality and Landscape Pattern

Based on temporal and spatial distribution of landscape types of MF areas in the Mohe
watershed (Figure 3) and Spatial and temporal distribution characteristics of habitat quality.
(Figure 4), we found that the habitat quality in the northern part of the study area is more
variable because the northern part is dominated by cultivated land patches and residential
building land patches, and the larger the maximum patch area, the worse the habitat quality
under stress in the area. The dominant distribution landscape in the central region is MF,
and in areas dominated by MF, the larger the size of MF patches, the greater the ecological
service value. In contrast, reducing the amount of MF patches harms ecosystem function
and habitat quality. Consequently, there is a link between habitat quality and landscape
pattern, and the influence of the same landscape index on the habitat quality of distinct
landscape types in different locations varies [37].

Figure 3. Temporal and spatial distribution of landscape types of Malus sieversii forest areas in the
mohe watershed (A–D are 1964, 1980, 2000, and 2017, respectively).
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Figure 4. Spatial and temporal distribution characteristics of habitat quality from 1964 to 2017 in
Mohe Valley.

According to Figure 3, from 1964 to 2017 in the MF area of the Mohe watershed, the
landscape area of MF and other woodlands (coniferous, broad-leaved, and quasi-broad
mixed forests) decreased by 60.88% and 16.50%, respectively, the area of cultivated land
increased by 51.58%, the area of landslides increased by 68.18%, and the floor area increased
by 85.06%. When comparing Table 10 and Figure 4, it can be observed that the amount
of land with a habitat quality score of 0.8–1.0 fell by 18.13% between 1964 and 2017, but
the area of land with a habitat quality score of 0–0.1 or 0.1–0.2 rose by 12.46% and 7.27%,
respectively. Thus, human activity disruption and natural catastrophes such as landslides
are the primary causes of the change in landscape patterns and the primary drivers of
changes in habitat quality. Therefore, the influence of human and natural factors should be
fully considered in habitat protection and ecological planning and control of the MF area in
the south Tianshan mountain.

4. Discussion
Influence of Various Factors on the Landscape of Malus sieversii Forests

Landscape pattern changes result from a combination of multiple factors [38]. The
population factor is one of the indirect causal factors of dynamic changes in the Mohe
watershed MF area. Its influence may indirectly induce changes in the MF landscape by
acting on other factors. In addition, the influence of many uncertain factors, such as natural
pests and diseases, fires, and landslides, lead to more complex changes in the MF area in
the Mohe watershed, as well as changes that are difficult to determine. From a short period,
the frequency and rate of changes in natural factors are slower than those of human factors,
and their influence on landscape pattern changes is not apparent. However, from a more
extended period, their influence on landscape pattern changes is significant. Data show
that the study area’s population in 2017 was 4.2 times that of 1964, and the population
has increased relatively rapidly in recent decades. The increase in population has not
only increased the labor force but also brought about many resource supply carrying
capacity problems so that the per capita area of cultivated land, grassland, and forest
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land has decreased, and to meet the needs of production and living, the acquisition of
natural resources must be increased, and the demand for reclaimed cultivated land has
been increasing. The reason is that, to protect the ecological environment, the Chinese
government actively advocates the implementation of the policy of returning farmland to
forest land and grassland so that farmland is transformed into grassland and woodland.
From the analysis of the MF landscape area, we find that it is also consistent with this change.
The analysis of the area found that it also conforms to this changing pattern, and the area
decreased more before 2000. After 2000, the change tends to level off, demonstrating that
the change in cultivated land area is one of the key factors influencing the transformation
of the MF‘s landscape pattern. From 1964 to 2017, the income of farmers and herders
in the study area showed an upward trend, demonstrating how economic growth can
support society’s ongoing advancement and development. However, for economic growth
at the same time, farmers and herders inevitably reclaim grassland and forest land into
cultivated land and cut trees for fuel. However, before 2000, economic growth was slow
due to the lack of high technology and limited food production. After 2000, economic
growth was accelerated with the improvement of technology, intensive production, and
the transformation of multiple business methods. The increase in the income of farmers
and herders has changed the distribution of the landscape pattern of Malus sieversii.

Moreover, temperature changes significantly impact the distribution of landscape
patterns [39]. In the context of global warming, the study area has experienced a significant
increase in temperature and precipitation from 1960 to the present [40], which has caused
the MF landscape to shift toward higher elevations, as evidenced by the large areas of 0-10-
year-old Sevier apple seedlings and multiple 20–30-year-old Sevier apple forests growing
above the birch tree line in the field survey, which exceeded the upper elevation of the
1600m MF. This is reinforced by the enormous regions of 0–10-year-old sieversii apple
seedlings and 20–30-year-old sieversii apple stands growing above the birch forest line on
the mountain peaks. The influence of temperature and human activities to the extent that
the landscape area of MF in lower elevation areas is decreasing and being replaced by other
landscape types has led to an increase in landscape instability and a high likelihood of
shifting to grassland landscapes, as well as a decrease in coverage and area and a gradual
increase in fragmentation. Moreover, the distribution pattern has become more complex.

The influence of precipitation and collapse on the landscape of MF results from various
factors acting together. The study area is located at the mouth of the river, a layer of loess
of several meters covers the bedrock of the surface to tens of meters of thickness, the loess
is soft and poorly compacted, and overload grazing is expected in the area, which often
leads to surface exposure. This is also why this element has become the dominant factor in
the landscape change of MF.

In addition, the influence of many uncertain factors, such as natural pests and diseases,
fires, landslides, and landslide hazards, leads to more complex changes in the MF area in
the Mohe watershed as well as changes that are difficult to determine. In a short period, the
frequency and rate of change in natural factors are slower than those in human factors, and
the impact on changes in landscape patterns is not apparent. However, in a more extended
period, the impact of changes in landscape patterns is significant.

5. Conclusions

Using the Mohe watersheds as an example, this study integrated the InVEST-based
model to examine the spatial and temporal changes in landscape patterns and habitat
quality in the MF area from 1964 to 2017. The results of the study are as follows.

(1) The landscape layout of the MF region in the Mohe watersheds has changed between
1964 and 2017. The number of Malus sieversii and other woodlands (coniferous,
broad-leaved, and mixed coniferous forests) dropped annually. At the same time,
grassland and cultivated land were the most productive landscapes. Annual increases
in buildings, cultivated land, and landslides indicate that the area of the MF is under
the influence of human interference and climate change at this time. Each landscape
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measure reveals that the fragmentation of the entire study area has increased and the
stability of the ecosystem has decreased, posing a threat to the ecological balance and
habitat quality in the region.

(2) From 1964 to 2017, a regional and temporal analysis of the habitat quality of the
entire research area revealed a downward trend. Low habitat values are primarily
distributed in the north and northeast because this is a plain area where cultivated land
and buildings are prevalent and human activities are frequent; the central part of the
study area shows scattered habitat low-value areas, which mainly exist in landslides,
mudslides, and other geological disaster-prone areas; and the high-altitude area in the
south is less disturbed by natural and human interference and has a higher habitat
value.

(3) The habitat quality in the northern section of the research area is more variable, and
because the northern region is dominated by cultivated land patches and building
patches, the greater the maximum patch area, the less the habitat quality is impacted
in this region. In the central region, the dominant distribution landscape is MF, and
in the area dominated by MF, the greater the area of MF patches, the greater the
value of ecological services, whereas a reduction in its area leads to a decline in
ecosystem function, which in turn affects the habitat quality grade. Therefore, there is
a correlation between habitat quality and landscape pattern, and there is variation in
the influence of the same landscape index on the habitat quality of distinct landscape
types in various regions [41].

In summary, this study showed that, from 1964 to 2017, the whole study area’s habitat
quality showed a deteriorating tendency after a regional and temporal analysis and that
several factors including climate change and human activity have caused the habitat to
weaken. Additionally, there lies a correlation between landscape pattern and habitat
quality. However, all factors on MF in the InVEST model are simply summed, while
the total impact of multiple threats is always much larger than the arithmetic sum of
various impacts. Therefore, how to scientifically integrate multiple ecosystem services in
watersheds in the future and analyze in depth the complex relationships between different
ecosystem services is important. Finally, the results of this study can provide scientific
support for managing and protecting MF in China.

Author Contributions: M.C. and H.F originated the idea; M.C., F.L. and X.J. participated in the
design of the study; M.C., X.J., Y.L. and T.H. performed the field work and data collection; M.C. and
H.F. analyzed the data, wrote the article, and edited the manuscript; X.Z. and X.J. rechecked and
revised the English version of the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: The research was support by National Key Research and Development Program of China
“Ecological method and health Regulations techniques of degraded Malus sieversii on the north slope
of Tiansha Mountain”, grant no. [2016YFC0501500].

Data Availability Statement: The data are contained within the article, and all data sources are
mentioned.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, X.; Feng, T.; Zhang, Y.; He, T.; Feng, J.; Zhang, C. Genetic diversity of volatile components in Xinjiang Wild Apple (Malus

sieversii). J. Genet. Genom. 2007, 34, 171–179. [CrossRef]
2. Chen, L. The Current Situation of Biodiversity in China and Its Protection Countermeasures; Science Press: Beijing, China, 1993; pp.

194–197.
3. Wang, N.; Jiang, S.; Zhang, Z.; Fang, H.; Xu, H.; Wang, Y.; Chen, X. Malus sieversii: The origin, flavonoid synthesis mechanism,

and breeding of red-skinned and red-fleshed apples. Hortic. Res. 2018, 5, 70. [CrossRef] [PubMed]
4. Qian, Y.K.; Ma, K.P. Principles and Methods of Biodiversity Research; China Science and Technology Press: Beijing, China, 1994;

pp. 141–157.

http://doi.org/10.1016/S1673-8527(07)60018-6
http://doi.org/10.1038/s41438-018-0084-4
http://www.ncbi.nlm.nih.gov/pubmed/30345062


Forests 2023, 14, 104 14 of 15

5. Yang, Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang
Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [CrossRef]

6. Goldstein, J.H.; Caldarone, G.; Duarte, T.K.; Ennaanay, D.; Hannahs, N.; Mendoza, G.; Polasky, S.; Wolny, S.; Daily, G.C. Integrating
ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [CrossRef]

7. Nelson, E.; Mendoza, G.; Regetz, J.; Pola, S.; Tallis, H.; Cameron, D. Modeling multiple ecosystem services, biodiversity
conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [CrossRef]

8. Liu, S.; Liao, Q.; Xiao, M.; Zhao, D.; Huang, C. Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape
Dynamic in the Three Gorges Reservoir Area, China. Int. J. Environ. Res. Public Health 2022, 19, 3594. [CrossRef]

9. Zhang, X.; Zhou, J.; Li, G.; Chen, C.; Li, M.; Luo, J. Spatial pattern reconstruction of regional habitat quality based on the
simulation of land use changes from 1975 to 2010. J. Geogr. Sci. 2020, 30, 601–620. [CrossRef]

10. Gustafson, E.J. Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1998, 1, 143–156. [CrossRef]
11. Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat

quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [CrossRef]
12. Chu, L.; Sun, T.; Wang, T.; Li, Z.; Cai, C. Evolution and prediction of landscape pattern and habitat quality based on CA-Markov

and InVEST model in Hubei section of Three Gorges Reservoir Area (TGRA). Sustainability 2018, 10, 3854. [CrossRef]
13. Gong, J.; Xie, Y.; Cao, E.; Huang, Q.; Li, H. Integration of InVEST-habitat quality model with landscape pattern indexes to assess

mountain plant biodiversity change: A case study of Bailongjiang watershed in Gansu Province. J. Geogr. Sci. 2019, 29, 1193–1210.
[CrossRef]

14. Xu, L.; Chen, S.S.; Xu, Y.; Li, G.; Su, W. Impacts of land-use change on habitat quality during 1985–2015 in the Taihu Lake Basin.
Sustainability 2019, 11, 3513. [CrossRef]

15. Sherrouse, B.C.; Clement, J.M.; Semmens, D.J. A GIS application for assessing, mapping, and quantifying the social values of
ecosystem services. Appl. Geogr. 2011, 31, 748–760. [CrossRef]

16. Wu, X.; Hu, F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method. Ecol. Indic. 2020, 113,
106243. [CrossRef]

17. Li, J.; Zhang, X. Evaluation of ecological environment quality in resource-based cities—A case study of Hegang city. Resour. Ind.
2011, 13, 6–10.

18. Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.A.; Chaplin-Kramer, R. InVEST User’s Guide: Integrated Valuation of Environmental
Services and Tradeoffs; The Natural Capital Project: Stanford, CA, USA, 2013.

19. Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial
and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [CrossRef] [PubMed]

20. Lin, Y.P.; Lin, W.C.; Wang, Y.C.; Lien, W.Y.; Huang, T.; Hsu, C.C.; Schmeller, D.S.; Crossman, N.D. Systematically designating
conservation areas for protecting habitat quality and multiple ecosystem services. Environ. Model. Softw. 2017, 90, 126–146.
[CrossRef]

21. Zhang, Y.; Zhang, C.; Zhang, X.; Wang, X.; Liu, T.; Li, Z.; Lin, Q.; Jing, Z.; Wang, X.; Huang, Q.; et al. Habitat Quality Assessment
and Ecological Risks Prediction: An Analysis in the Beijing-Hangzhou Grand Canal (Suzhou Section). Water 2022, 14, 2602.
[CrossRef]

22. Li, L.; Chen, S.J.; Chen, M.Y.; Zhang, X.; Jia, X. Environmental driving force of stool shoot quantitative features of Malus sieversii
(Ldb.) in Xiaomohe valley. Ecol. Sci. 2019, 38, 18–24.

23. Wang, Q.; Li, W.; Wu, Y.; Pei, Y.; Xie, P. Application of statistical index and index of entropy methods to landslide susceptibility
assessment in Gongliu (Xinjiang, China). Environ. Earth Sci. 2016, 75, 599. [CrossRef]

24. Liu, J. Macro Investigation and Dynamic Analysis of Remote Sensing of Resources and Environment in China; China Science and
Technology Press: Beijing, China, 1996; pp. 23–28.

25. Zhang, H.; Xu, E.; Zhu, H. Ecological-Living-Productive Land Classification System in China. J. Resour. Ecol. 2017, 8, 121–128.
26. Bolstad, P.; Lillesand, T.M. Rapid maximum likelihood classification. Photogramm. Eng. Remote Sens. 1991, 57, 67–74.
27. Ma, Z.; Redmond, R.L. Tau coefficients for accuracy assessment of classification of remote sensing data. Photogramm. Eng. Remote

Sens. 1995, 61, 435–439.
28. Ben-David, A. Comparison of classification accuracy using Cohen’s Weighted Kappa. Expert Syst. Appl. 2008, 34, 825–832.

[CrossRef]
29. Peng, J.; Wang, Y.; Zhang, Y. Influence of land use classification on landscape pattern index. Acta Geogr. Sin. 2006, 61, 157–168.
30. Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al.

Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol.
2014, 4, 3514–3524. [CrossRef]

31. Wang, X.; Blanchet, F.G.; Koper, N. Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods Ecol.
Evol. 2014, 5, 634–646. [CrossRef]

32. Tao, T. Research progress and prospect of ecological land in China. Reg. Res. Dev. 2014, 33, 126–130, 167.
33. Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.;

et al. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014.

http://doi.org/10.1016/j.ecolind.2021.107967
http://doi.org/10.1073/pnas.1201040109
http://doi.org/10.1890/080023
http://doi.org/10.3390/ijerph19063594
http://doi.org/10.1007/s11442-020-1745-4
http://doi.org/10.1007/s100219900011
http://doi.org/10.1016/j.ecolind.2020.106654
http://doi.org/10.3390/su10113854
http://doi.org/10.1007/s11442-019-1653-7
http://doi.org/10.3390/su11133513
http://doi.org/10.1016/j.apgeog.2010.08.002
http://doi.org/10.1016/j.ecolind.2020.106243
http://doi.org/10.1016/j.scitotenv.2015.03.064
http://www.ncbi.nlm.nih.gov/pubmed/25836757
http://doi.org/10.1016/j.envsoft.2017.01.003
http://doi.org/10.3390/w14172602
http://doi.org/10.1007/s12665-016-5400-4
http://doi.org/10.1016/j.eswa.2006.10.022
http://doi.org/10.1002/ece3.1155
http://doi.org/10.1111/2041-210X.12198


Forests 2023, 14, 104 15 of 15

34. Sather, N.K.; Johnson, G.E.; Teel, D.J.; Storch, A.J.; Skalski, J.R.; Cullinan, V.I. Shallow tidal freshwater habitats of the Columbia
River: Spatial and temporal variability of fish communities and density, size, and genetic stock composition of juvenile chinook
salmon. Trans. Am. Fish. Soc. 2016, 145, 734–753. [CrossRef]

35. Zhao, L.; Yu, W.; Meng, P.; Zhang, J.; Zhang, J. InVEST model analysis of the impacts of land use change on landscape pattern
and habitat quality in the Xiaolangdi Reservoir area of the Yellow River basin, China. Land Degrad. Dev. 2022, 33, 2870–2884.
[CrossRef]

36. Wang, B.; Cheng, W. Effects of Land Use/Cover on Regional Habitat Quality under Different Geomorphic Types Based on InVEST
Model. Remote Sens. 2022, 14, 1279. [CrossRef]

37. Li, H.; Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 2004, 19, 389–399. [CrossRef]
38. Randhir, T.O.; Tsvetkova, O. Spatiotemporal dynamics of landscape pattern and hydrologic process in watershed systems. J.

Hydrol. 2011, 404, 1–12. [CrossRef]
39. Peng, J.; Tian, L.; Zhang, Z.; Zhao, Y.; Green, S.M.; Quine, T.A.; Liu, H.; Meersmans, J. Distinguishing the impacts of land use and

climate change on ecosystem services in a karst landscape in China. Ecosyst. Serv. 2020, 46, 101199. [CrossRef]
40. Yan, J.; Yan, M.; Cui, D.; Liu, H.; Chen, C.; Xia, Q. Analysis of temperature and precipitation trends in the Ili Valley, Xinjiang, in

the past 55 years. Water Resour. Power 2017, 35, 13–16.
41. Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at the county level in

China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/00028487.2016.1150878
http://doi.org/10.1002/ldr.4361
http://doi.org/10.3390/rs14051279
http://doi.org/10.1023/B:LAND.0000030441.15628.d6
http://doi.org/10.1016/j.jhydrol.2011.03.019
http://doi.org/10.1016/j.ecoser.2020.101199
http://doi.org/10.1016/j.scitotenv.2019.03.139

	Introduction 
	Materials and Methods 
	Study Area 
	Data Sources and Preprocessing 
	Landscape Classification and Accuracy Verification 
	Landscape Metrics 
	Habitat Quality Calculation Based on InVEST Model 
	Driving Factors of Landscape Pattern Change 

	Results 
	Landscape Pattern Change Analysis 
	Analysis of Spatial and Temporal Variation in Habitat Quality 
	Correlation Analysis of Malus sieversii Forest Habitat Quality and Landscape Pattern 

	Discussion 
	Conclusions 
	References

