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Abstract: Sugi (Cryptomeria japonica D. Don) is an important forestry species in Japan. C. japonica
‘Spiralis’ is a mutant with twisted needles. The mutant is called Yore-sugi in Japan and is known as
‘Rasen’ in other countries. The twisted trait is regulated by a dominant gene called TWISTED NEE-
DLES, and it can be identified by observing the needles within 1 to 2 months after germination. The
TWISTED NEEDLES gene may be useful for improving the efficiency of genome editing technology
in C. japonica. In this study, we attempted to identify the linkage group of the TWISTED NEEDLES
locus and investigate markers that sandwich this locus using the mapping family. First, we identified
the linkage group containing the TWISTED NEEDLES locus based on the distortion from the expected
segregation ratio using 32 mutant individuals of the mapping family. The segregation distortion
showed that the TWISTED NEEDLES locus was located on the 11th linkage group (LG11). Next, a
linkage map of LG11 was constructed based on genotype data from the single-nucleotide polymor-
phism (SNP) markers and double digested restriction site-associated DNA sequencing (ddRAD-seq)
using 123 individuals of the MMY-1 family. On this map, six markers were located at the same
position as the TWISTED NEEDLES locus. To investigate markers sandwiching the TWISTED NEE-
DLES locus, a partial linkage map around the TWISTED NEEDLES locus was constructed using
643 individuals of the MMY-1 family. The TWISTED NEEDLES locus was located in the 0.6 cM region
between gSNP01822 and the other five markers (Contig_4705-179, Contig_4518-93, Contig_4398-118,
gSNP04056, and Contig_4970-113).
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1. Introduction

Generally, conifers have a large genome (>10 Gb) and contain many repetitive se-
quences, which makes it difficult to perform genomic studies on them. However, due to
the rapid progress of sequencing technology in recent years, genome sequence studies
have been carried out on some coniferous trees, e.g., Picea glauca [1], Pinus lambertiana [2],
Pseudotsuga menziesii [3], Abies alba [4], and Sequoiadendron giganteum [5].

Sugi (Cryptomeria japonica D. Don) is an allogamous, diploid (2n = 22), wind-pollinated
conifer species with high importance for commercial forestry in Japan. Since 1957, a
government-funded tree improvement program, currently covering an area of 4.5 million
hectares (44% of all Japanese artificial forests), has been conducted in Japan [6,7]. Many
studies, such as expressed sequence tag (EST) collection [8–13], DNA marker develop-
ment [14–19], linkage map construction [20–23], marker-assisted selection [24], experimen-
tal pyramiding breeding [25], plant regeneration through somatic embryogenesis [26–32],
genetic transformation [26,33–35], and genome editing [36], have been performed to accel-
erate the molecular breeding of C. japonica.
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Because tree species such as C. japonica have a long generation time and require space
for growing seedlings, a highly efficient transformation system is required for their genetic
engineering, including genome editing. Therefore, it is important to develop a simple
method to accurately evaluate the efficiency of genome editing. Nanasato et al. [36] first
introduced the green fluorescent protein (GFP) gene into embryonic callus (using calli
derived from immature seeds for transformation) and produced calli with GFP fluores-
cence in C. japonica. Then, they knocked out the GFP activity using CRISPR/Cas9 and
evaluated the genome editing efficiency by observing GFP signals. Next, they disrupted the
endogenous magnesium chelatase subunit I (CjChlI) gene, which is required for chlorophyll
biosynthesis, by genome editing. As a result, several lines showed albino or pale-green
phenotypes, indicating successful genome editing in C. japonica [36].

C. japonica ‘Spiralis’ [37] is a mutant that shows helical growth of needles, i.e., it has
twisted needles (Figure 1). The mutant is called Yore-sugi in Japan [38]. In other countries,
it is known as ‘Rasen’ [39]. The twisted needle trait is regulated by a dominant gene
named TWISTED NEEDLES [38] and several studies of its heritability and isozyme pattern
have been conducted due to its interesting phenotype [40,41]. Many plants with helical
growth phenotypes are known such as Arabidopsis thaliana and Oryza sativa. In many cases,
the helical growth phenotype is based on defects in cell expansion symmetry, which are
caused by the microtubule system, cell wall functions, auxin transport, and more [39]. In
C. japonica, the trait can be observed within 1 to 2 months from germination. Therefore, we
considered that the efficiency of genome editing could be evaluated quickly and accurately
if we could knock out the TWISTED NEEDLES gene and observe the twisted trait. It is
difficult to evaluate the efficiency of genome editing accurately using CjChlI because it
is an essential gene for plant growth, and genome-edited plantlets show strong growth
inhibition [36]. However, the twisted trait should enable us to accurately evaluate genome
editing efficiency because it does not affect plant growth. Furthermore, the TWISTED
NEEDLES gene does not have to be introduced in advance, as opposed to GFP, because
it is an endogenous gene in C. japonica. By targeting TWISTED NEEDLES, the efficiency
of genome editing can be evaluated by observing the phenotype of plantlets. Moreover,
the dominant twisted trait can be distinguished accurately between wild-type and het-
erozygous genotypes, whereas the heterozygous condition of CjChlI may be overlooked by
phenotypic observation. Nanasato et al. [36] reported that one heterozygous line of CjChlI
produced a green phenotype that appeared the same as the wild-type phenotype [36].

As another advantage, the twisted trait is expected to be useful as a positive selection
marker to determine whether a vector is present in plantlets based on phenotype observa-
tion by introducing the TWISTED NEEDLES gene (Tw, twisted trait; see Section 2) into a
genome editing vector. In the T1 generation of the genome editing, plantlets having the
vector could be selected easily by observing the twisted trait. It is important to remove
unnecessary vectors after genome editing for future applications such as field plantation.
Therefore, it should be possible to select genome-edited plantlets without external vector
sequences by selecting non-twisted plantlets from the T2 (or later) generation. Thus, the
identification of the TWISTED NEEDLES gene is important for both accelerating the inves-
tigation of helical needle growth mechanisms in conifers and also contributing to molecular
biological techniques, such as improvement of genome editing technology, in C. japonica.

In this study, we attempted to localize the TWISTED NEEDLES locus in C. japonica. We
identified a linkage group of the TWISTED NEEDLES locus using genomic microsatellite
(simple sequence repeat, SSR) and EST-SSR markers, constructed a linkage map of LG11
(on which the TWISTED NEEDLES locus mapped) based on genotype data from double
digested restriction site-associated DNA sequencing (ddRAD-seq) and the previously
reported single-nucleotide polymorphism (SNP) markers [20] using 123 individuals of
a mapping family, and finally constructed a partial linkage map around the TWISTED
NEEDLES locus using 643 individuals of a mapping family. This study provides basic
information for future identification of the TWISTED NEEDLES gene of C. japonica.
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Figure 1. Plants and needles of and normal individual (A,C) and Yore-sugi (B,D). Scale bar = 5 cm.

2. Materials and Methods
2.1. Mapping Family and Evaluation of Twisted Trait

In this study, we represented the dominant and recessive alleles for the TWISTED
NEEDLES locus as Tw (twisted needle trait) and tw (normal trait (wild type)), respectively.
To construct a linkage map, we used the MMY-1 family (Figure 2). The family was derived
from a backcross between ‘Midori 5’ [tw/tw] and F1 plant M5Y-1 [Tw/tw]. The M5Y-1 plant
[Tw/tw] was an F1 plant between ‘Midori 5’ [tw/tw] and ‘Houyore’ [Tw/tw]. ‘Midori 5’
had normal needles, and ‘Houyore’ and M5Y-1 had twisted needles. Strobili production
was promoted by spraying the trees with gibberellin-3 (100 ppm) in July 2016, and the
artificial crossing was performed during March 2017. In autumn 2017, seeds were collected
from the mother tree, ‘Midori 5’. The seeds were sown on sterilized paper in plastic Petri
dishes in a controlled-environment growth chamber (BIOTRON; Nippon Medical and
Chemical Instruments, Japan) at 25 ◦C under fluorescent light (15,000 lx, 16 h light/8 h dark
photoperiod), and germinated seeds with ≥2 mm roots were transplanted in a 128-cell plug
tray filled with spagmoss (Sphagnum subnitens; Besgrow, Christchurch, New Zealand).
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Seedlings were grown at 25 ◦C during the winter season and transferred outside in April
2018. The needle phenotype (twisted or normal) of seedlings was evaluated visually at
≥2 months after germination.
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Figure 2. The MMY-1 family used for linkage analysis in this study.

2.2. DNA Extraction

Genomic DNA was extracted from needle tissues using a modified hexadecyltrime-
thylammonium bromide (CTAB) method [42]. The concentration of DNA samples was
determined using agarose gel electrophoresis. First, electrophoresis using a 2% agarose
gel was performed. For this process, 1 µL of genomic DNA or λDNA (100 ng/µL) as
a standard was mixed with 1 µL of loading buffer, 7 µL of sterile water, and 1 µL of
fluorescent dye (UltraPower DNA Stain; Gellex International, Tokyo, Japan) and incu-
bated for 3 min at room temperature. Electrophoresis was carried out in TAE buffer
for 15 min at a constant voltage of 100 V. The DNA bands were visualized with FAS-IV
(NIPPON Genetics, Tokyo, Japan), and electrophoresis images were acquired. DNA con-
centrations for ddRAD-seq were quantified using a Qubit 2.0 Fluorometer (Thermo Fisher
Scientific, Waltham, MA, USA); those for other markers were estimated by electrophoresis
using λDNA.

2.3. Identification of Linkage Group Including TWISTED NEEDLES Locus

We used only 32 twisted-needle individuals of the MMY-1 family to identify the linkage
group containing the TWISTED NEEDLES locus. If a marker is linked to the TWISTED
NEEDLES locus, the genotypic segregation ratio of the marker and the TWISTED NEEDLES
locus should be significantly distorted from the expected outcome. For this analysis, a total
of 22 genomic SSR or EST-SSR markers were used (see Section 3). The KAPA2G Fast PCR
Kit (Kapa Biosystems, Wilmington, MA, USA), Go-Taq polymerase (Promega, Fitchburg, WI,
USA), and Multiplex PCR master mix (Qiagen, Venlo, The Netherlands) were used for the
PCR amplifications of genomic SSR and EST-SSR markers. PCR amplifications were carried
out using the Takara PCR Thermal Cycler (Takara, Tokyo, Japan). For the KAPA2G Fast
PCR Kit, a reaction mixture with a total volume of 10 µL was used. It consisted of 5 ng of
genomic DNA, 1× PCR Kapa2G buffer with 1.5 mM MgCl2, 0.2 µL of 25 mM MgCl2, 0.2 µL
of 10 mM each dNTP mix, 0.8 µL of 5 µM fluorescently labeled forward primers, 0.8 µL of
5 µM reverse primers, 5 ng template DNA, and 0.2 U KAPA2G Fast PCR polymerase. The
PCR conditions were 15 min at 95 ◦C, then 40 cycles of 15 s at 95 ◦C, 15 s at 60 ◦C, and 1 min
at 72 ◦C, followed by 1 min at 72 ◦C. For the Go-Taq polymerase, a reaction mixture with a
total volume of 10 µL was used. The mixture consisted of 5 ng of genomic DNA, 1× PCR
buffer, 0.8 µL of 25 mM MgCl2, 1.0 µL of 2 mM each dNTP mix, 0.8 µL of 5 µM fluorescently
labeled forward primers, 0.8 µL of 5 µM reverse primers, and 0.5 U Go-Taq polymerase. The
PCR conditions were 5 min at 94 ◦C, then 35 cycles of 30 s at 94 ◦C, 30 s at 60 ◦C, and 30 s at
72 ◦C, followed by 5 min at 72 ◦C. For the Multiplex PCR master mix, a reaction mixture
with a total volume of 6 µL was used. It consisted of 5 ng of genomic DNA, consisting of
1× Multiplex PCR master mix (Qiagen) and 2.0 µL of primer mix (equal concentrations
of fluorescently labeled forward primer and reverse primer). The PCR conditions were
15 min at 95 ◦C, then 30 cycles of 30 s at 94 ◦C, 45 s at 60 ◦C, and 1 min at 72 ◦C, followed
by 30 min at 60 ◦C. The PCR products and the DNA size marker (600LIZ; Thermo Fisher
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Scientific) were separated by capillary electrophoresis on an ABI 3130 Genetic Analyzer
(Applied Biosystems, Foster City, CA, USA). The DNA fragments were analyzed using
GeneMarker software (ver. 2.4.0; SoftGenetics, State College, PA, USA). The segregation
independence of each SSR or EST-SSR marker was investigated using the chi squared test.

2.4. Construction of a Linkage Map Using ddRAD-Seq

The 123 F1 individuals from the MMY-1 family (74 twisted-needle individuals and
49 normal-needle individuals), which were not selected intentionally (derived from plastic
Petri dish No.1 and No.2), were used to construct a linkage map of LG11, on which the
TWISTED NEEDLES locus is located (see Section 3).

First, high-throughput double digest RAD-seq [43] was performed. Genomic DNA
was digested with PstI and SphI and ligated with adapters (Fluidigm, San Francisco, CA,
USA). After PCR amplification using adapter-specific primers, equal amounts of PCR
products from each sample were mixed to construct a RAD library. The library obtained
was size-selected using the Blue Pippin Prep tool (Sage Science, Beverly, MA, USA), and
the quantity was assessed using real-time PCR (LightCycler480, Roche Molecular Systems,
Mannheim, Germany). After adjusting the concentration of the library, sequencing was
performed with paired-end (2 × 150 bp) reads on an Illumina HiSeqX system (Illumina,
San Diego, CA, USA) by the Macrogen Japan Corporation (Kyoto, Japan). Second, geno-
typing using the BioMark 48.48 Dynamic Array (Fluidigm) was performed for the six
SNP markers previously mapped on LG11 [12], where the TWISTED NEEDLES locus was
located (see Section 3). The assays were carried out following the protocol provided by the
manufacturer. The data obtained were analyzed using Fluidigm SNP Genotyping Analysis
software v4.1.2 (Fluidigm, San Francisco, CA, USA).

For markers derived from same contig in ddRAD-seq and showing the same genotypes
in all individuals in mapping family, we used only one, excluding the others. Linkage
analysis was performed using JoinMap v4.1 (Kyazma, Wageningen, Netherlands) with
a back-cross population design, the regression mapping algorithm, and two rounds of
map calculation [44]. Markers were initially assigned to tentative linkage groups using
logarithm-of-odds ratio (LOD) thresholds of 3.0 to 15.0, with increments of 1.0; a LOD
threshold of 12.0 was used when groups of markers were defined. The map distance was
calculated using the Kosambi mapping function [45]. The default settings were used for
the recombination frequency threshold and ripple value. The linkage group number (1–11)
was defined following the genetic map published by Moriguchi et al. [20]. Images of the
linkage groups were drawn using MapChart ver. 2.0 [46].

2.5. Identification of Markers Which Sandwich the TWISTED NEEDLES Locus

To investigate markers sandwiching the TWISTED NEEDLES locus, the 643 F1 indi-
viduals from the MMY-1 family (378 twisted-needle individuals and 265 normal-needle
individuals), including the 123 F1 individuals described in Section 2.4, were used to con-
struct a partial linkage map around the TWISTED NEEDLES locus. To do so, we designed
SNPType primer sets using the online tool D3 Assay Design (Fluidigm). Of the six markers
mapped to the same position as the TWISTED NEEDLES locus on the linkage map (see Sec-
tion 3), five markers (Contig_4705-179, Contig_4518-93, Contig_4398-118, gSNP04056, and
Contig_4970-113) could be designed primers for BioMark 48.48 Dynamic Array (Fluidigm).
In addition to them, the gSNP01822 marker for which primers for BioMark 48.48 Dynamic
Array (Fluidigm) had been previously designed and closely linked to the TWISTED NEE-
DLES locus were used for analysis. Genotyping and linkage analyses were performed as
described in Section 2.3.

3. Results and Discussion

In this study, we used a total of 22 genomic SSR or EST-SSR markers to identify the
linkage group of the TWISTED NEEDLES locus. They were selected from 49 markers
scattered on all linkage groups previously reported [17–19,21] (three to seven loci per
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linkage group, Table S1). The expected segregation ratios of these are 1:1:1:1 or 1:1. The
former is obtained in the locus when both parents are heterozygous, i.e., the case in which
there is no common allele between parents (ab × cd type) and the case in which one allele
is common between parents (ef × eg type). The latter is obtained when one parent is
homozygous and the other is heterozygous, i.e., the case in which the female parent is
homozygous, and the male parent is heterozygous (nn × np type) and the case in which the
female parent is heterozygous, and the male parent is homozygous (lm × ll type). Among
these, the lm × ll type markers cannot be used for the localization because the genotype of
all F1 individuals having the twisted-needle Tw is homozygous. Thus, we excluded them
from the analysis. The chi-square test results for independence for the 22 markers revealed
that one locus, Cjgssr124_S, on LG11 showed high segregation distortion (χ2 = 28.13,
p < 0.0001; Table 1). Therefore, the TWISTED NEEDLES locus was located on LG11.

Table 1. Linkage association between genomic microsatellite or EST-SSR markers and the TWISTED
NEEDLES locus in C. japonica.

Linkage Group Marker Name χ2 P
Number of
Analyzed

Individuals

LG1 HS4_c16648_ES 0.35 0.56 32
CS2169_S 3.13 0.08 32
Cjgssr175_S 0.50 0.48 32

LG2 BY893784_ES 1.13 0.29 32

LG3 S4049_S 2.42 0.12 32
Cjgssr77_S 0.00 0.96 32

LG4 CJS0333_S 2.42 0.12 32
Cjgssr121_S 0.50 0.48 32
Cjgssr123_S 0.07 0.80 32

LG5 CS0038FC_S 3.13 0.08 32
Cjgssr181_S 0.03 0.85 32
Cjgssr125_S 0.50 0.48 32

LG6 BY898881_ES 0.00 1.00 32
HS4_rep_c13952_ES 0.13 0.72 32
Cjs1817FC_S 0.00 1.00 32

LG7 Cjgssr13_S 0.00 0.96 32

LG8 CS1200FC_S 0.45 0.50 32
HS4_rep_c17715_ES 0.00 1.00 32

LG9 S4050_S 0.14 0.71 32

LG10 CJS0201_S 0.00 1.00 32
HS4_rep_c39488_ES 0.27 0.61 32

LG11 Cjgssr124_S 28.13 <0.0001 32

As a result of constructing a linkage map using 123 individuals of the MMY-1 family,
a total of 106 markers and the TWISTED NEEDLES locus were mapped on LG11 (Figure 3).
All markers were derived from ddRAD-seq, except for the six markers previously reported
(gSNP01822, gSNP04056, gSNP01363, gSNP00119, gSNP00725, and gSNP02051) [20]. The
total map length of LG11 was 110.8 cM (1.05 cM/marker). The order of the six SNP markers
was the same as that of the map reported in Moriguchi et al. [20]. In the linkage map
constructed in this study, six markers (one from the previously reported SNP marker
(gSNP04056) and the remaining five derived from ddRAD-seq (Contig_4518-93, Con-
tig_4970-113, Contig_4705-179, Contig_4398-118, Contig_1472-16)) were mapped at the
same position as the TWISTED NEEDLES locus.
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of the linkage groups. Centimorgan distances (Kosambi) are indicated to the left of each linkage
group. The TWISTED NEEDLES (TW) locus is indicated in bold.

To investigate the markers that sandwiched the TWISTED NEEDLES locus, a par-
tial linkage map around the TWISTED NEEDLES locus was constructed using 643 in-
dividuals of the MMY-1 family. As the result of this analysis, the TWISTED NEEDLES
locus was lo-cated in the 0.6 cM region between gSNP01822 and the other five markers
(Contig_4705-179, Contig_4518-93, Contig_4398-118, gSNP04056, and Contig_4970-113)
(Figure 3). A BLASTN homology search of these markers against the genome sequence
of Sequoia sempervirens [5], a coniferous species in the same family (Cupressaceae) as
C. japonica, identified homologous positions on chromosome 8 with coordinates ranging
from 564.1 Mb to 643.2 Mb for Contig_4518-93 and gSNP01822, respectively (Table S2). It
corresponds to approximately 79 Mbp in S. sempervirens. Five out of the six SNP mark-
ers around the Tw locus aligned to the only available Cupressaceae genome sequence, S.
sempervirens, suggesting that some of the regions were conserved and the Tw locus may
be narrowed down to the region (even in the case of C. japonica, the 0.6 cM region may
correspond to a similar physical distance).

Of the 643 individuals of the MMY-1 family, 378 individuals had twisted needles and
the remaining 265 individuals had normal needles. This was significantly distorted from the
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1:1 separation ratio expected (χ2 = 19.54, p < 0.001). The five markers mapped at the same
position as the TWISTED NEEDLES locus were also distorted (Figure 4). The clustering of
markers with distorted segregation has also been reported in some crop species [47–49].
Mukai et al. [50] and Iwata et al. [16] pointed out that clusters of markers with distorted
segregation may be due to linkage with deleterious or lethal alleles. Because the number
of individuals with normal needles was fewer than the number with twisted needles, the
cause of the distortion of the needle trait observed in the MMY-1 population is thought to
be linkage between the tw allele and deleterious/lethal alleles derived from ‘Midori 5’.
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As mentioned previously, using the twisted trait of C. japonica ‘Spiralis’ is expected
to improve the efficiency of genome editing. This will be achieved by identification of
the gene of TWISTED NEEDLES, which will be promoted by clarification of the genome
sequence in C. japonica, as in other foreign conifers, in the future. In conifers, although
a variety of pine (Pinus strobus) with the twisted needle trait, ‘Contorta’, is known [39],
the mechanics behind helical needle growth are not understood. The future study of the
TWISTED NEEDLES gene in C. japonica will also promote the investigation of helical needle
growth mechanisms in conifers.
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