
Citation: Zhou, X.; Guan, F.; Fan, S.;

Yin, Z.; Zhang, X.; Li, C.; Zhou, Y.

Modeling Degraded Bamboo Shoots

in Southeast China. Forests 2022, 13,

1482. https://doi.org/10.3390/

f13091482

Academic Editors: Suzan Benedick

and Januarius Gobilik

Received: 18 August 2022

Accepted: 11 September 2022

Published: 14 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Modeling Degraded Bamboo Shoots in Southeast China
Xiao Zhou 1,2, Fengying Guan 1,2,*, Shaohui Fan 1, Zixu Yin 1,2, Xuan Zhang 1,2, Chengji Li 1,2 and Yang Zhou 1,2

1 International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland
Administration, Beijing 100102, China

2 National Location Observation and Research Station of the Bamboo Forest Ecosystem in Yixing,
National Forestry and Grassland Administration, Yixing 214200, China

* Correspondence: guanfy@icbr.ac.cn; Tel.: +86-10-84789808

Abstract: Degraded bamboo shoots (DBS) constitute an important variable in the carbon fixation
of bamboo forests. DBS are useful for informed decision making in bamboo forests. Despite their
importance, studies on DBS are limited. In this study, we aimed to develop models to describe
DBS variations. By using DBS data from 64 plots of Yixing forest farm in Jiangsu Province, China,
a mixed-effects model was constructed, including block-level random effects. We evaluated the
potential impact of several variables on DBS. The number of bamboo shoots (NBS), mean height
to crown base (MHCB), hydrolytic nitrogen (HN), and available potassium (AK) significantly con-
tributed to the model. By introducing the block-level random effect in the logistic model, the fitting
statistics were significantly improved. The model showed that there were increased DBS in bamboo
stands with decreased MHCB and AK, whereas DBS decreased with decreasing NBS and HN. The
application of K fertilizer reduced the number of DBS during the emergence stage. By adjusting these
factors, the number of DBS in bamboo forests can be reduced, which provides a theoretical basis for
increasing the biomass of bamboo forests. It can also provide an important basis for studying the
carbon sink characteristics of bamboo forests and help to formulate more effective bamboo forest
management plans.

Keywords: basic model; mixed-effects model; model validation; bamboo management

1. Introduction

Bamboo forests are important forest type. Moso bamboo (Phyllostachys edulis) is mainly
distributed in tropical and subtropical regions [1,2]. It has economic (as food and wood) and
ecological benefits [3,4]. Degraded bamboo shoots (DBS) are an important characteristic
of bamboo forest dynamics. DBS are a phenomenon in which the development of new
bamboo stops after the shoots are unearthed because of insufficient nutrition in the soil,
foreign pests and diseases, sudden cold or dry weather, competition in the bamboo forest
(such as the number of bamboo shoots, NBS), and bamboo forest structure, and they then
die and cannot further develop into bamboo. They are thought to play a role in competition
and regulation of bamboo forests [5].

DBS are described as follows: (1) DBS taper to a large degree; the color of the shoot
sheath is dark, dark brown, or even black; and the sheath leaves are underdeveloped;
(2) the surface fur on the middle and upper bamboo shoot sheaths is disordered, and the
shoot is easily damaged and can fall off when touched; there is no white powder or obvious
growth in the sheath; (3) when pinching the bamboo shoot tip with your hand, it is hard
and has no obvious elasticity; and (4) when the bamboo shoot sheath is peeled off, the
color of the lower sheath is purple, often with cyan blue stripes, or cyan to dark yellow; the
bamboo shoots are dark yellow, and the color of the root tip changes from purplish red to
cyan to yellow (Figure 1).
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Figure 1. Phenomenon of degraded bamboo shoots in a bamboo forest.

The proportion of DBS is as high as 80% in some bamboo species, which substantially
reduces the yield of shoots and culms and can seriously threaten the sustainability of
bamboo forests [6–8]. In recent years, large-scale DBS have been reported in bamboo forests
in bamboo-growing regions. Therefore, it is important to understand the impact of different
sites and environments on DBS [6,8].

In bamboo forests, bamboo shoots can be divided into normal and abnormal DBS.
Normal DBS are mainly caused by the competition of water, nutrients, and light conditions
in new bamboo. Abnormal DBS are mainly caused by man-made random interference or
natural disasters, such as extreme weather, forest fires, snow disasters, droughts, forest
diseases, and insect pests [4,5]. Owing to the randomness of abnormal DBS, only normal
DBS stands are typically studied. Therefore, we considered only the effects of nutrient
content and stand variables on DBS. DBS consume a considerable amount of nutrients from
the mother bamboo, but this does not increase the yield, which could lead to a reduction
in NBS and the production potential of bamboo stands. This can increase economic losses
caused by the return of shoots to the ground [5,8]. Thus, an accurate description of DBS
conditions provides a theoretical basis for effective maintenance and use of bamboo shoots.

DBS, a key feature in the growth and harvest of bamboo forests, are important for char-
acterizing the forest structure and composition [5,9]. As mature bamboo can be harvested
in 4–6 years, an increase in the number of DBS may have a negative impact on the structural
stability and ecological benefits of bamboo forests, affecting forest mortality and impairing
sustainable management of the forest [10]. Compared with other stand characteristics, it
is more challenging to accurately describe the pattern of DBS in a given site condition, as
DBS have high variability in space and time [7,10].

Previous studies have focused more on the development stages of DBS [11–13], the
types and causes of bamboo degradation [14,15], and the general features of DBS [5,16,17]
rather than accurately modeling DBS. Only a few researchers have attempted to study
normal bamboo shoots and DBS modeling [18,19].

DBS are the result of several factors. The degradation process of bamboo shoots is
complex, with multifactor synergism and a considerable degree of randomness; therefore,
the underlying mechanisms remain elusive [20], limiting its modeling capability.

DBS may vary among different bamboo stand structures. DBS data were obtained
from bamboo forests with different sites and environments. Therefore, the data were hierar-
chically structured (a sample plot nested in the blocks), and observations are most likely to
be spatially correlated. Mixed-effects modeling can effectively solve these problems [21,22].
In addition, the method considers randomness in the data and potential variables caused
by randomness, thus improving the accuracy of the model [21–24]. To describe variations
in DBS, similar model types that describe forest mortality [4,25,26] and forest fires [27–29]
are necessary. These model types include Poisson, negative binomial, zero-inflated, and
hurdle models [23,24], among others [4,25].
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It is assumed that soil nutrient content and stand variables can affect the competitive
relationship between moso bamboo individuals, provide a suitable environment for moso
bamboo growth, and promote growth and development, thus impacting DBS. To resolve the
above-mentioned issues (the effects of soil nutrient content and stand variables, hierarchi-
cally structured data, and spatial correlations), we aimed to (1) develop a model describing
variations in degraded bamboo shoots through the application of mixed-effects modeling,
(2) evaluate the sensitivity of the DBS model to soil nutrient content, and (3) evaluate the
effects of stand factors and soil nutrients on bamboo shoot degradation. By adjusting these
variables, the models can provide technical support for the increase in carbon reserves
in bamboo forests and help formulate more effective bamboo forest management plans.
The presented models provide a theoretical basis for estimating bamboo forest growth in
southeast China to maintain bamboo shoots and make full use of degraded shoots.

2. Materials and Methods
2.1. Study Site

The experimental sample plots were set in Yixing, Jiangsu Province (31◦15′1”–31◦15′40” N,
119◦43′52”–119◦44′41” E). The average precipitation is 1167 mm, the temperature is 15.7 ◦C,
and the annual evaporation is 886.8 mm. The area is mainly low mountains and hills and
the soil type is yellow clay (GB/T 17296-2009). The vegetation type is moso bamboo forest.

The traditional manual management measures adopted in the moso bamboo forest
include bamboo cutting, shrub cutting, grass cutting, mining winter and spring bamboo
shoots, and tourism. All human activities were controlled in the study area.

We established 64 temporary sample plots (TSPs) on a Yixing farm, and each sample
plot was 20 × 3 m (Figure 2). Because the slope, aspect, and slope position may lead to
different growth environments, we divided the sample plots into different blocks. The
sample plots are listed in Table 1.

Table 1. Block division and plot setting.

Slope (◦) Aspect Slope Position Number of Sampling Plots Block

0–3 Southwest Downhill slope 25 Block 1
4–7 Southwest Middle slope 17 Block 2
8–11 Southwest Uphill slope 12 Block 3

11–14 Northwest Middle slope 5 Block 4
15–18 Northwest Middle slope 5 Block 5

2.2. Sampling and Measurement of DBS
2.2.1. Distinguishing Degraded Bamboo Shoots (DBS)

Moso bamboo DBS can mainly be distinguished using four characteristics: (1) from a
distance, the tapering degree of the retreating shoot is large; the color of the shoot sheath
is dark, dark brown, or even black; and the sheath leaves are underdeveloped; (2) when
looking at the degradation of bamboo shoots, the surface fur on the middle and upper
bamboo shoot sheaths is disordered, it is not tall and straight or dry, and most of the hair is
dry; it is easily damaged and can fall off when touched; and there is no white powder or
obvious growth in the sheath; (3) when pinching the bamboo shoot tip with your hand, it
is hard and has no obvious elasticity; and (4) when the bamboo shoot sheath is peeled off,
the color of the lower sheath is purple, often with cyan blue stripes, or cyan to dark yellow;
the bamboo shoots are dark yellow, and the color of the root tip changes from purplish red
to cyan to yellow [18].
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2.2.2. Degraded Bamboo Shoots (DBS) Investigation

Using these characteristics, we selected sample plots of different groups in the Yixing
state-owned forest farm to investigate the DBS. The investigation period was from March
to May 2019 and the investigation event lasted for 50 days. Bamboo shoots unearthed in
the sample plot were observed daily to determine whether they survived. The TSPs cover a
wide range of bamboo forests with varying stand structures, stand densities, bamboo sizes,
bamboo ages, site productivity, terrain, and environment. All diameters at breast height
(DBH ≥ 5) were measured to obtain the DBH, height to crown base (HCB), and number of
bamboo shoots (NBS). We used the direct counting method to obtain the NB, NBS, and DBS.
Subsequently, various measures describing bamboo stand density were derived from these
measurements. The distribution patterns of the DBS are shown in Figure 3. The bamboo
stand variables are presented in Table 2.

2.2.3. Sample Plots Soil Sampling

Due to the apparent aggregation of soil nutrients, studies have found that the nutrient-
absorbing fine roots of moso bamboo in this area are mainly distributed in the soil surface
(0–10 cm) [30]. Therefore, we mainly focused on the contribution of soil nutrients in the
0–10 cm layer.

In March 2019, soil samples of 0–10 cm soil layer were collected from 64 TSPs
(five samples per sample plot). The soil samples were mixed in a sample plot to form
a composite sample and brought to the laboratory. In total, 64 samples were collected.
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Table 2. Summary statistics of measurements of bamboo variables and soil nutrient content. DBS,
degraded bamboo shoots; NBS, number of bamboo shoots; MD, mean diameter at breast height;
MHCB, mean height to crown base; N, stand density of bamboo forest; NB, number of new bamboo;
BA, basal area of all bamboo; QMD, quadratic mean DBH; SOC, soil organic carbon; TN, total nitrogen;
TP, total phosphorus; TK, total potassium; HN, hydrolytic nitrogen; AP, available phosphorus; AK,
available potassium.

Variables Min Max Mean Std.

NBS (culms/ha) 1000 4867 2373 901.75
MD (cm) 7.42 9.82 8.97 0.42

MHCB (m) 3.41 5.98 4.53 0.53
N (culms/ha) 1833 8100 4507 1271.17

DBS (culms/ha) 0 2700 611 620.20
NB (culms/ha) 813 3400 1762 688.92

BA (m2/ha) 13.15 49.56 29.14 7.76
QMD (cm) 7.64 9.91 9.10 0.40
SOC (g/kg) 13.44 43.10 33.69 5.47
TN (g/kg) 0.84 2.34 1.74 0.27
TP (g/kg) 0.22 0.39 0.26 0.04
TK (g/kg) 7.84 11.76 9.63 0.77

HN (mg/kg) 104.9 221.10 164.6 21.65
AP (mg/kg) 0.17 2.45 1.17 0.48
AK (mg/kg) 46.34 84.24 60.45 7.61

2.2.4. Determination of Soil Nutrients

The soil samples were passed through 0.25 mm and 0.15 mm sieves to determine the
total nitrogen, total phosphorus, and total potassium contents. Additionally, the samples
were passed through a 1 mm sieve for the determination of alkali hydrolyzable nitrogen,
available phosphorus, and available potassium.

The soil organic matter content was determined using the potassium dichromate
oxidation external heating method. See Zheng et al. for the determination method of soil
nutrient content [31]. Table 2 shows the statistics of soil nutrient content.
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2.3. Determination of Predictor Variables

We evaluated bamboo size, competition, and nutrient content, which significantly
influence DBS. Predictor variables affecting DBS were selected based on their biological
significance and logic. Fifteen variables were evaluated for their potential influence on DBS.
Bamboo individual and stand variables were used, including MD, MHCB, NBS, N, and
NB. The competition variables used in this study were the BA and QMD. Nutrient contents
included SOC, TN, TP, TK, HN, AP, and AK. We explained the site by using block-level
variables as random effects.

Although many variables were evaluated, only a few variables that have significant
impact on DBS and are not significantly related to each other were selected. We used the
variance inflation factor (VIF) to control for potential collinearity effects between predictor
variables [32]. Collinearity produces large standard errors in the parameter estimates
(VIF > 2), which causes a large bias [33]. Therefore, only the following predictor variables
with a VIF < 2 were retained in our final model: NBS, MHCB, AK, and HN.

2.4. Candidate Models

We used seven versatile mathematical functions, hereafter referred to as the basic
models, which are commonly used for count data modeling (variables of the presence or
absence) to develop models for describing variations in degraded bamboo shoots (Table 3).
These models are the Poisson model (PS) and negative binomial model (NB), which refer to
the standard function, zero-inflated Poisson model (ZIP), zero-inflated negative binomial
model (ZINB), hurdle Poisson model (HP), hurdle negative binomial model (HNB), and
logistic regression model (Equations (1)–(7)). First, the basic models were fitted using
NBS, MHCB, AK, and HN as predictors, and their fitting performance was compared.
Second, we selected the model with the best fit to formulate a mixed-effects model with the
inclusion of block-level random effects.

Table 3. Summarized forms of DBS functions, which were expanded through the inclusion of four
predictor variables.

Mode l Equation Equation No.

PS log(λij) = log(DBSij) = β0 + β1NBSij + β2 MHCBijk + β3 AKijk + β4HNij (1)

NB log(λij) = log(DBSij + eij) = eij(β0 + β1NBSij + β2 MHCBijk + β3 AKijk + β4HNij)

Exp(eij) ∼ Gamma(θ−1, θ−1)
(2)

ZIP
{

log( pij
1−pij

) = α0 + α1 AKij

log(λij) = log(DBSij/(1− pij)) = β0 + β1NBSij + β2 MHCBijk + β3 AKijk + β4HNij

(3)

ZINB


log( pij

1−pij
) = α0 + α1 AKij

log(λij) = log((DBSij + eij)/(1− pij)) = β0 + β1NBSij + β2 MHCBijk + β3 AKijk + β4HNij
Exp(eij) ∼ Gamma(θ−1, θ−1)

(4)

HP


log( pij

1−pij
) = α0 + α1 AKij

log(λij) = β0 + β1NBSij + β2 MHCBijk + β3 AKijk + β4HNij
DBSij = (1− pij)λij/(1− e−λij )

(5)

HNB


log( pij

1−pij
) = α0 + α1 AKij

log(λij) = log((DBSij + eij)/(1− pij)) = β0 + β1NBSij + β2 MHCBijk + β3 AKijk + β4HNij
Exp(eij) ∼ Gamma(θ−1, θ−1)

(6)

Logistic DBSij =
a

1+e(β0+β1 NBSij+β2 MHCBijk+β3 AKijk+β4 HNij )
(7)

Notes: DBSij is the number of degraded bamboo shoots in the jth sample plot nested in the ith block; NBSij is the
number of bamboo shoots in the jth sample plot nested in the ith block; MHCBij is the mean height to crown base
in the jth sample plot nested in the ith block; AKij is the available phosphorus content in the 0–10 cm soil layer
of the jth sample plot nested in the ith block; HNij is the hydrolytic nitrogen content in the 0–10 cm soil layer of
the jth sample plot nested in the ith block; a, β0–β4 are estimated parameters; λij represents the mean number
of counts in a given period within the expected value of the model. See Zhou et al. 2021 for candidate model
details [23,24].
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2.5. Mixed-Effects Models

Bamboo shoot data were collected from different bamboo forests growing under
different growth conditions to simulate the relationship between degraded bamboo shoots,
stands, and soil content variables. Therefore, the data were hierarchically structured
(investigation of different sample plots in the same block).

By introducing block-level random effects, seven basic models were used to develop a
one-level nonlinear mixed-effects (NLME) DBS model. We considered the combination of
all parameters. Models with the smallest Akaike information criterion (AIC) and largest
log-likelihood (LL) were selected for further analysis. Figure 4 shows the distribution of
different predictors and DBS.
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Figure 4. Scatter plot distribution between degraded bamboo shoots (DBS) and different predictor
variables used for modeling DBS for moso bamboo (number of bamboo shoots (NBS), mean height to
crown base (MHCB), hydrolytic nitrogen (HN), and available potassium (AK)).

In practice, the matrix form of the NLME is as follows.
yi = f (θi, xi) + ξi
θi = Aib + Biµi

µi ∼ N(0, D); ξi ∼ N(0, Ri)
(8)

where yi represents the observed value of the DBS, xi is a vector for the observed predictor
variables on the ith block, xi is the design matrix corresponding to the non-random effect
parameter b, and Bi is the design matrix of the random parameter µi. We assumed that µi
follows a normal distribution with a mean of zero and variance of D, which is given by

D =

[
σ2

µi1
σµi1µi2

σµi2µi1 σ2
µi2

]
(9)
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Hypotheses µi and ξi are independent. The residual vector is defined by ξi ∼ N(0, Ri),
where the variance–covariance matrix (Ri) is calculated using the following formula:

Ri = σ2G0.5
i ΓiG0.5

i (10)

where σ2 is the residual variance common to all blocks, Gi is a diagonal matrix related to
heteroscedasticity within the block, and Γi is a matrix used to explain the within-block
autocorrelation structure of the residuals. As our residual analysis showed insignificant
autocorrelations of the observations within the same subject (block), we reduced the Γi to
identity matrices.

Three common variable stability functions (the exponential function, power func-
tion, and constant plus power function (Equations (11)–(13)) were applied to explain
heteroscedasticity. After evaluating the performance of each function, the one with the best
performance was selected according to the AIC value.

Var(ξij) = σ2 exp(2γNBSij) (11)

Var(ξij) = σ2NBS2γ
ij

(12)

Var(ξij) = σ2(γ1 + NBS2γ2
ij

)
2

(13)

2.6. Model Evaluation

The use of an independent dataset to evaluate the DBS model was more effective.
However, due to the limited amount of data, we were unable to implement this in our study.
Instead, we used leave-one-out cross-validation (LOOCV), a commonly used method, to
evaluate the model [23,24]. The data were grouped according to the sample plots, and only
one sample plot was reserved in each complete data set. The data set with one sample plot
removed was used to fit the model, and the resulting model was used to predict the number
of DBS in the deleted sample plot. We repeated this 64 times. The difference between the
predicted DBS value and the observed DBS value was used to calculate R2, TRE, and RMSE,
which are defined below (Equations (14)–(16)).

R2 = 1− ∑n
i=1 (DBSi −

∧
DBSi)

2

∑n
i=1 (DBSi − DBS)2 (14)

TRE =
n

∑
i=1

∣∣∣DBSi − D̂BSi

∣∣∣/ n

∑
i=1

D̂BSi (15)

RMSE =

√
1
n

n

∑
i=1

(DBSi − D̂BSi)
2

(16)

where n is the number of sample plots, DBSi is the actual value of degraded bamboo shoots

in the ith sample plot,
∧

DBSi is the estimated value of degraded bamboo shoots in the ith
sample plot, and DBS is the average observed value of degraded bamboo shoots.

We estimated the models using the glmmTMB package [34] and the nlme package in
R 3.6.3 [35].

3. Results
3.1. Basic Models

Because the ZINB and HNB models did not converge, these were not considered in
this study. Model parameter estimations (Equations (1)–(3), (5), and (7)) were significantly
different from 0, except for β0 and β3 in the logistic model, and β2, β3, and β4 in the NB
model (p < 0.05; Table 4). The NB, ZIP, and HP models exhibited identical fit statistics,
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which were poorer than that of the PS model. DBS was positively correlated with NBS
and HN but negatively correlated with MHCB and AK. Compared with the other models,
the logistic model had better fitting statistics, the largest R2, and the smallest RMSE and
TRE values.

Table 4. Parameter estimates and fit statistics of seven basic models (Equations (1)–(3), (5), and (7)).

Parameter Poisson (M1) NB (M2) ZIP (M3) HP (M5) Logistic (M7)

a 1676 ***
(216.3000)

Zero component α0
8.6077 *
(4.0411)

8.6085 *
(4.0412)

α1
−0.1843 *
(0.0731)

−0.1843 *
(0.0732)

Count component β0
6.7810 ***
(0.0670)

5.4638 **
(1.8701)

7.6000 ***
(0.0644)

7.6000 ***
(0.0644)

0.3075
(3.1060)

β1
0.0005 ***

(5.81 × 10−6)
0.0006 **
(0.0002)

0.0004 ***
(6.21 × 10−6)

0.0004 ***
(6.21 × 10−6)

−0.0018 ***
(4.87 × 10−4)

β2
−0.2819 ***

(0.0010)
−0.1519
(0.3404)

−0.0076 ***
(1.06 × 10−2)

−0.0076 ***
(1.06 × 10−2)

0.1417 **
(5.03 × 10−2)

β3
−0.0038 ***

(0.0008)
−0.0226
(0.0222)

−0.0549 ***
(0.0008)

−0.0548 ***
(0.0008)

0.7761
(0.5046)

β4
0.0103 ***
(0.0002)

0.0080
(0.0073)

0.0009 ***
(0.0002)

0.0008 ***
(0.0002)

−0.0427 **
(0.0149)

R2 0.5268 0.4691 0.4861 0.4861 0.6022

RMSE 429.9827 455.4711 448.0134 448.0134 394.1936

TRE 30.3217 32.2449 28.7537 28.7537 25.3112

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05. Values in parentheses are standard errors. NB is the negative binomial
model, ZIP is the zero-inflated Poisson, and HP is the hurdle Poisson. M is model.

We evaluated the simulation effects of predictors (MHCB) and soil nutrient content
factors (AK and HN) describing the characteristics of bamboo forests on the DBS of the
logistic model (Figure 5). The three predictors have a significant impact on the change
in DBS (Figure 5). DBS decreased with increasing MHCB and AK but decreased with
increasing HN. AK and HN contributed the most to variations in DBS, followed by MHCB.

3.2. NLME Models

The estimated parameters and fit statistics for Models (17)–(21) are presented in Table 5.
The parameter estimates of the models (Equations (1)–(3), (5), and (7)) were significantly
different from 0, except for β0 and β3 in M21, and β2, β3, and β4 in M18 (p < 0.05; Table 5).
Compared with Models (1)–(3), (5), (7), except for M18, the TRE and RMSE of Models
(17), (19)–(21) significantly decreased, and R2 increased, respectively. Model (21) had the
smallest RMSE and TRE, and the highest R2. Therefore, we used the logistic NLME model
for further analysis.
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Table 5. Parameter estimates and fit statistics of the one-level nonlinear mixed-effects DBS models
(Equations (1)–(3), (5), and (7)).

Parameter Poisson (M17) NB
(M18)

ZIP
(M19)

HP
(M20)

Logistic
(M21)

a 1897.1424 ***
(275.5338)

Zero component α0
8.6077 *
(4.0361)

8.6080 *
(4.0126)

α1
−0.1843 *
(0.0731)

−0.1944 *
(0.0733)

Count component β0
4.7960 ***
(0.2171)

5.4638 **
(1.8701)

5.3030 ***
(0.2214)

5.3027 ***
(0.2208)

1.4120
(2.4835)

β1
0.0007 ***

(8.166 × 10−6)
0.0006 **
(0.0002)

0.0005 ***
(8.512 × 10−6)

0.0005 ***
(8.412 × 10−6)

−0.0015 ***
(0.0004)

β2
−0.2045 ***

(0.0125)
−0.1519
(0.3404)

−0.0311 *
(0.0134)

−0.0299 *
(0.0130)

0.1266 ***
(0.0362)

β3
−0.0538 ***

(8.984 × 10−4)
−0.0226
(0.0222)

−0.0673 ***
(8.928 × 10−4)

−0.0655 ***
(8.902 × 10−4)

0.5535
(0.4239)

β4
0.0226 ***

(4.153 × 10−4)
0.0080

(0.0073)
0.0233 ***

(4.434 × 10−4)
0.0212 ***

(4.404 × 10−4)
−0.0407 ***

(0.0118)

Covariance matrix of
random effects variance block 0.1821 4.414 × 10−9 0.1924 0.1920 0.1107

R2 0.6183 0.4690 0.5991 0.5990 0.6596

RMSE 386.2009 455.4711 395.6937 394.6932 364.7028

TRE 23.9796 32.2448 22.2586 22.2183 20.8995

Note: *** p < 0.0001, ** p < 0.001, * p < 0.05. The value (0.1107) is generated when the random effect is added to
the coefficient of variable AK of the logistic model; other random effects were added to the intercept. All other
parameters, symbols, and definitions are the same as those listed in Table 3.



Forests 2022, 13, 1482 11 of 16

Among the three tested variance functions (Equation (14)–(16)), the power function
(Equation (15)) most effectively accounted for the variance heteroscedasticity (Table 6,
Figure 6). The RMSE and TRE values of the NLME DBS Model (21) were (RMSE = 364.7028;
TRE = 20.8995) based on the full dataset. Therefore, we added the random effect to β3,
which produced the largest R2 (0.6596) and was assumed to be an optimal NLME model to
estimate DBS, that is, the final NLME model form given by

DBSij =
a

1 + e[β0+β1 NBSij+β2 MHCBijk+(β3+µ)AKijk+β4 HNij ]
+ ξij

where µ is the random effect at block level for β3. ξij ∼ N(0, Ri = σ2G0.5
i ΓiG0.5

i ), Gi =

diag(σ2NBS2γ
i1 , . . . σ2NBS2γ

in ), Γi = Ii. The other parameters and variables were the same
as described above.

Table 6. Comparisons among three variance functions (exponential function, power function, and
constant plus power function) of the NLME DBS model (LL, log-likelihood).

Variance Functions
NLME DBS Model

AIC LL

Equation (11) 949.0738 −466.5369

Equation (12) 948.1784 −465.0892

Equation (13) 950.1784 −465.0892
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3.3. Parameter Estimates

Model parameter estimations were significantly different from 0, except for β3, in
the NLME DBS Model (21). After introducing the parameter estimates, the NLME DBS
Model (21) is:

DBSij =
2146.0780

1 + e[1.8096−0.0012NBSij+0.0677MHCBijk+(0.3627+µ0)AKijk−0.0210HNij ]
+ ξij

where
µi = [µ0] : N

{
[0], ψ̂ = (1.13 ∗ 10−10)

}
ξij ∼ N(0, Ri = 137382.4G0.5

i ΓiG0.5
i )

Ĝi = diag(0.0092NBS1.0635
i1 , . . . 0.0092NBS1.0635

in )
Γi = Ii
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Using the variance function can reduce the variance in the Model (27) to a certain
extent, which indicates that a large part of the DBS change is explained by the block-level
random effects.

3.4. Model Evaluation

We evaluated the prediction performance of the logistic NLME model, which showed
best-fit statistics using the LOOCV method. The validation showed a large proportion of
variation in DBS (R2 = 0.4324, RMSE = 467.9945, and TRE = 57.4346). This result further
shows that blocks have a large random impact on DBS, and the prediction ability of NLME
DBS Model (21) at the block level was the best.

4. Discussion

We evaluated seven functions commonly used in modeling count data [23,24] and
attempted to evaluate other model forms, such as the zero-inflated negative binomial
and hurdle negative binomial models; however, they were not retained for subsequent
analyses because of their non-convergence. Collinearity between the predictor variables
was controlled with VIF, which is a common practice, while multiple predictor variables
were involved in fitting the models. Among the various potential predictor variables
that we evaluated, only four, namely, NBS, MHCB, HN, and AK, showed significant
contributions to the model.

Other studies have also used NBS and NB to predict DBS [16,36], as these variables
could have a remarkably strong influence on DBS variations across bamboo forests. NBS
and NB may reflect the nutrient supply in the stand and the impact of the site quality of
the bamboo forest [5,18]. Zhang et al. (2012) used BA in their counting model (mortality
model) for Larix olgensis, which reflects stand DBH growth and may describe DBS caused
by stand competition [37–39]. The random effect could account for the variability across
forest blocks, which could be caused by the effects of site quality and other environmental
factors, including climate. The combined effects of these factors on variations in DBS can
be described by introducing a random effect into the model.

In the present study, the effect of NBS was positive (Tables 4 and 5). The results of
this study are consistent with those of Liao and Huang (1984) and Xu et al. (2008). Under
certain growth conditions, NBS resulted in more degraded bamboo. This may be because
the nutrient content in the sample plot was limited and could only meet the survival
requirements of certain bamboo shoots.

In contrast, MHCB negatively correlated with DBS. HCB reflects the growth, vitality,
and productivity of bamboo [40], as well as the level of competition within the bamboo
forest stand [41,42]. The smaller the MHCB, the larger the crown and the faster the nutrient
metabolism, indicating that the bamboo competitiveness of the original bamboo forest is
stronger, and the number of DBS has increased.

DBS were significantly negatively correlated with AK (Tables 4 and 5, Figure 5).
Enzyme activation is one of the most important functions of AK in plant growth. AK is
closely related to many metabolic processes in plants, such as photosynthesis, respiration,
and the synthesis of carbohydrates, fats, and proteins. These processes are essential
during the early stages of shoot emergence. In the absence of K, the number of DBS can
increase. It has been found that AK concentrations in each organ of the growing shoots
were higher in the younger parts than in mature organs [43]. More AK is required during
the shooting period. Therefore, AK content is a key factor in determining the number of
DBS. We also observed a negative correlation between DBS and HN. The utilization of
nitrogen was mainly concentrated after the leaf development of new bamboo [44] because,
at this stage, the physiological metabolism of moso bamboo is vigorous, and dry matter
accumulates rapidly.

Some studies have reported that other stand variables, such as arithmetic mean
diameter and stand density, contribute significantly to DBS prediction [18,23,24,45]. We
also evaluated these variables, but the results were not statistically significant. Both stand
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arithmetic mean diameter and stand density were derived from DBH and thus showed
little effect on the DBS model.

Stand measures, such as BA and quadratic mean DBH (QMD), could be obtained
more accurately than other measures, which are the most commonly used predictors in
any forestry model [37–39]. However, our model showed non-significant effects for these
variables in the DBS model. This may be due to the small DBH differences among the
bamboo in the study area, where the density of bamboo forests fluctuates within a limited
range. However, the stand variables NBS and NB may have a significant effect on DBS.
The NBS was positively correlated with DBS, indicating that increased NBS also promoted
DBS (Figure 5). Because soil nutrients are limited, they can only supply a certain amount of
bamboo growth. When NBS increased, the number of DBS also increased. Some studies
(e.g., [46,47]) have shown that fertilization and reclamation can reduce DBS to a certain
extent by supplementing certain soil-available nutrients.

As an important index of stand characteristics, DBS determine the growth and harvest
of bamboo forests [5]. This is because bamboo grows from bamboo shoots. For cultivated
bamboo, DBS consume much of the nutrients from the mother bamboo, but this does not
increase yield. Therefore, studies focused on modeling DBS are of great importance for
bamboo forest management.

The hierarchical data problem was solved by introducing block-level random effects
in the β3 parameter (e.g., the correlation of observed values of different plots and clumps
in the same block). Previous studies on forest mortality (data type was also counting
form) also found that the mixed-effects model was better than the traditional nonlinear
least-squares model [4,23,24]. When the random effect (block) was included in the logistic
model, the prediction accuracy of LOOCV improved to a certain extent, indicating that the
block had an impact on degraded bamboo shoots. This also largely justifies the application
of mixed-effects modeling in our study.

During the modeling process, by evaluating the impact of individual bamboo, stands,
and soil nutrient content variables on the number of DBS, variables (MHCB: mean height to
crown base, HN: hydrolytic nitrogen, AP: available potassium) that have a greater impact
on the number of DBS were selected, and these variables were adjusted through some forest
management, such as applying N and P fertilizer in the growing season, or carrying out
tending measures (pruning) in the bamboo forest to provide sufficient growth space and
nutrients for new bamboo, to reduce the number of DBS, increase the biomass of bamboo
forests, and maintain the stability of bamboo ecosystem. It can provide an important basis
for investigating the carbon sink properties of bamboo forests and help formulate more
effective bamboo forest management plans.

In this study, we only considered the number of DBS, and not the depth of shoots or
topographic factors, such as altitude, slope, and aspect of the sample plot. Some studies
have pointed out that changes in nutrient levels are also key factors affecting the survival
of bamboo shoots [5,48]. Thus, nutrient changes during DBS might also be important for
understanding nutrient deficiencies and how to supplement the soil [49–51]. Therefore, it
is important to study the nutritional changes associated with DBS.

5. Conclusions

We established a nonlinear mixed-effects model to appropriately describe the vari-
ations in DBS of moso bamboo. The stand and soil content variables used as predictors,
such as NBS, MHCB, HN, and AK, were identified as the major factors affecting DBS. Intro-
ducing the block-level random effect improves the fitting effect of the model. Among the
various model formulations (basic and mixed models), random effects for the logistic model
described the largest variation in DBS. Additionally, we found that DBS in bamboo stands
increased with decreasing MHCB and AK but decreased with decreasing NBS and HN.
Reducing the number of DBS and increasing biomass through fertilization, tending, and
other measures can provide an important basis for investigating the carbon sink properties
of bamboo forests and help formulate more effective bamboo forest management plans.
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