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Abstract: Tree-ring latewood is a key proxy for the reconstruction of climate, especially for tempera-
ture. The mechanisms of latewood formation and its responses to climates remain uncertain. Given
that the tree-ring latewood of the taproot is absent belowground under conditions of low temperature
gradients, we thus hypothesize that low diurnal temperature ranges (DTRs) may be one determining
factor for latewood production. To evaluate this hypothesis, we designed experimental investigations
by adding heat-protecting layers to the trunks of Pinus massoniana Lamb. to lower DTRs and simulate
the environmental conditions underground in the Fuzhou area of humid subtropical China (HSC).
We found that a decreased DTR induces a significant decline in latewood cell thickness and a slight
reduction in latewood cell number and latewood density. DTRs played an important role in the
formation of tree-ring width (TRW) and latewood width (LWW) rather than precipitation. Our study
highlighted the effects of DTRs on tree growth and wood anatomical changes and provided a possible
explanation for the “divergence problem” in dendroclimatology.

Keywords: tree ring; latewood; wood anatomy; diurnal temperature range; divergence problem

1. Introduction

Tree-ring latewood of seasonally temperature-sensitive species that are in the Northern
Hemisphere with seasonality was widely used for the reconstruction of past climate change,
particularly for temperature reconstructions [1–3]. Although the latewood generally forms
in autumn when the temperature drops, the latewood proxies (e.g., latewood width and
density) are often not negatively correlated to temperature [4,5]. On the contrary, the
maximum latewood density data are generally positively correlated with summer temper-
ature in the high latitudes of the Northern Hemisphere [6–8]. The “divergence problem”
refers to the reduced sensitivity of latewood density and tree-ring width to temperature in
some high latitude regions since the 1980s, and it is worth noting that this phenomenon
is not ubiquitous [9,10]. The mechanisms of the tree-ring latewood formation are still
under debate, which limits our ability to understand the relationships between latewood
and climate.

Compared to water availability, the temperature has a greater impact on adult tree
growth, seed output and seedling recruitment [11]. Temperature can also significantly
affect lumen area and cell wall thickness depending on the phenology of the cambium [12].
For instance, an increase in temperature by short-term stem heating during early spring
induced an increase in the tracheid diameters and lumen area in Cryptomeria japonica D.
Don. [13]. Localized stem heating from the rest to the growth phase showed that woody
rings formed more latewood-like cells in Picea abies (L.) H. Karst. [14], and the Eucalyptus
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grandis W. Hill ex Maiden. seedlings grown at high temperatures had thicker fiber cell
walls and a higher density [15]. Photoperiod and precipitation are important external
factors that affect the production of latewood. Longer photoperiods tend to correspond
to higher growth rates, and short photoperiods normally induce latewood formation and
cambial dormancy in the stems of conifer species [16–18]. Drought stress can constrain
cell enlargement and lead to latewood formation [19–21]. In other words, as an important
physiological factor, changes in hormones strongly modulate the formation of latewood,
such as a decrease in indole-3-acetic acid (IAA) or the centration of inhibitor abscisic acid
(ABA) [22–24]. Studies have also shown that the amount of crown and growth of foliar also
affect the production of latewood [25,26].

In addition to the factors mentioned above, other less studied factors, such as the
diurnal temperature range (DTR), may relate to the latewood formation. The diurnal
temperature range (DTR), defined as the difference between maximum temperature (Tmax)
and minimum temperature (Tmin) on a daily scale, is considered an important index of
climate change and has been shown to influence tree growth [27–29]. We consider this
mechanism possible because tree rings of the taproots often have no latewood belowground
but form latewood when exposed to the surface. One potential reason for this difference is
largely attributed to the lower DTR belowground. In addition, related studies on exposed
roots showed that the distinct temperature fluctuations due to the loss of surface soil caused
abrupt anatomical shifts in tree roots [30,31]. Buried stems were found to form narrower
rings with less distinct transitions [32]. Accordingly, we hypothesize that the latewood
formation may be hindered by the reduction in the DTR. The reduced DTR, due to a more
rapidly increasing pace of night temperature under the global warming background [33],
may cause a decrease in the latewood density and partly explain the mechanisms of the
divergence problem.

Pinus massoniana Lamb. is one of the most widely used endemic tree species for
dendrochronological studies in humid subtropical China (HSC) due to their high climate
sensitivity and long duration [34–36]. In this study, we conducted a novel experiment by
covering the Pinus massoniana trunks with heat-protecting layers for one year to simulate
the belowground thermal conditions with a reduced DTR. The disparity between the
latewood characteristics of stems with and without heat-protecting layers were evaluated
to investigate the possible effect of the DTR on latewood formation in HSC.

2. Materials and Methods
2.1. Study Region

The experimental site (119.30◦ E, 26.03◦ N, 101 m a.s.l.) is located in the Changanshan
Mountains of Fuzhou City, the provincial capital of Fujian province of China in the west
of the Taiwan strait (Figure 1a). This site is dominated by naturally growing evergreen
forests mixed with Pinus massoniana trees. According to the climate records from the
Fuzhou meteorological station (119.17◦ E, 26.05◦ N, 84 m a.s.l) nearby, the study area
is characterized by a humid subtropical climate with an annual mean temperature of
19.9 ◦C and total precipitation of 1366 mm. The study region is influenced by the spring
persistent rainfall with increasing precipitation from the beginning of the year to June. In
summer, the western Pacific high controls the study region, showing a hot and relatively
dry climate [37]. However, the hottest months in July and August often correspond
to insufficient precipitation due to the control of the western Pacific subtropical high
(Figure 2a). Changes in the DTR and precipitation showed a significantly (p < 0.01) inverse
relationship, i.e., dry conditions corresponding to a higher DTR (Figure S1). No significant
tendency was found in the annual total precipitation for the study area during 1953–2015
based on the linear fitting model. The temperature changes maintained a notable upward
trend, while the DTR showed a marked downward trend (Figure 2b–d). At this site, we
selected 8 healthy and mature Pinus massoniana trees for the heat-protecting experiments
(Figure 1b).
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mine its reliable section [42,43]. 

Figure 1. (a) Location of the Changanshan site in Fujian province of China, (b) photos of monitoring
instruments on trees at Changanshan site. The temperature sensors were equipped in the heat-
protecting layers, the soil beneath the forests, ambient air and the uncovered trunks, respectively.

2.2. Tree-Ring Width Chronology

We collected 75 tree-ring cores (3 to 4 cores per tree) from 20 healthy natural Pinus
massoniana trees around the experimental site. The cores were air-dried and polished with a
series of sandpaper until the cellular structure was visible [38,39]. Given the distinct bound-
ary between latewood and earlywood, cross-dated tree-ring width (TRW) and latewood
width (LWW) series were measured to a 0.001 mm precision using a LINTAB 6.0 measuring
system. We divided the LWW by the TRW to calculate the sequence of the latewood ratio
(LWR) of each core. The cross-dating quality of these tree-ring samples was again checked
with the program COFECHA [40]. Age-related growth trends of the raw measurements
were removed by fitting smoothed cubic spline curves with two-thirds of the mean lengths
of each series. The chronology is developed by the mean of the dimensionless tree-ring
indices via a biweight robust mean methodology [41]. To account for the potentially re-
duced signal strength with a low sample size, for example, its early portion, we used the
statistic of the subsample signal strength (SSS) of higher than 0.85 to determine its reliable
section [42,43].

2.3. Heat-Protecting Experiments on Tree Trunks

As shown in Figure 1b, the heat-protecting layers were used to wrap up the tree
trunks to simulate the soil environment with relatively low temperature differences among
seasons and between days and nights. The temperature sensors were equipped in the
heat-protecting layers, the soil beneath the forests, ambient air and the uncovered trunks,
respectively. The soil temperatures were used to compare with the monitored air tempera-
ture and temperature in the heat-protected layer. The temperature dynamics were recorded
at a step of 30 min. We conducted heat-protecting experiments starting from the dormancy
stage on 13 February to the end of the growing season on 16 December in the year of
2015. At the end of the growing season in December, we collected tree-ring cores from
the trunks within the heat-protecting layers and 30 cm below without the heat-protecting
layers, respectively.
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2.4. Tree-Ring Paraffin Section and Blue Intensity and Anatomical Structures of Tree-Ring Data

In this research, latewood blue intensity (LWBI) was measured as an alternative
indicator of maximum latewood density (MXD). Before the measurement of BI, the mixture
of benzene and ethanol with a purity greater than 99.5% (2:1) was used for Soxhlet extraction
for 48 h to reduce the color transition between heartwood and sapwood. The samples
were air-dried and polished again with 1200 grit sandpaper until smoothed surfaces.
The prepared cores were scanned using a flatbed scanner (Epson Perfection V800 photo,
Epson, Los Alamitos, CA, USA) equipped with SilverFast Ai Studio 8.8 (SilverFast, Kiel,
Germany) software with an optical scanning resolution of 3200 dpi. In this study, the image
analysis software CooRecorder 9.3/CDendro 9.3 (CybisElektronik & Data AB, Saltsjöbaden,
Sweden) [44] was used to measure LWBI. We used the “Mean of sorted pixels” to collect
color data, specifically the mean of the 15 percent darkest pixels for the latewood parameter.
Since the original BI reflection values were negatively correlated with the tree-ring density,
we converted the original BI data according to the method introduced by [45]. We only
measured the LWBI of the annual ring formed in 2015 to verify the effect of heat-protecting
on density. The selected samples were softened in hot water, then dehydrated in successive
ethanol solutions (70%, 90%, 95% and 100%) and pure D-limonene, and finally embedded
in paraffin. Transverse sections, 9–12 µm thickness, were cut with a rotary microtome
((YD315, Jinhua YIDI Medical Appliance Co., Ltd., Jinhua, China) and stained with 3%
safranin (Merck, Darmstadt, Germany) and 0.5% Astra blue (Sigma-Aldrich, Steinheim,
Germany), both in 95% ethanol. The image of each micro-section was captured with a light
microscope (DM750P, LEICA, Wetzlar, Germany). With these micro-section images, we
measured the following radial parameters of each sample in 2015: cell number (N), radial
lumen diameter (LD) and double cell wall thickness (2CWT) and lumen area (LA) in ImageJ
(National Institutes of Health, Bethesda, MD, USA). All the parameters were averaged
along three radial files. Tracheids were classified as earlywood or latewood according to
Mork’s formula [46]. The ratio of latewood cells is equal to the ratio of the number of
latewood cells to the total number of tree-ring cells.

2.5. Climate Data

We employed the instrumental data of monthly mean temperature, and monthly
total precipitation from the Fuzhou meteorological station, and calculated Vapor Pressure
Deficit (VPD). Gridded DTR and self-calibrating PDSI (scPDSI) data were obtained from
Climate Research Unit (CRU) TS4.03 dataset with a resolution of 0.5◦ by 0.5◦. CRU TS
(Climatic Research Unit gridded Time Series) is a widely used climate dataset over all
land domains of the world except Antarctica. It is derived by the interpolation of monthly
climate anomalies from extensive networks of weather station observations [47].

2.6. Analytical Methods

The Pearson correlations of the TRW, LWW and LWR chronologies with climate records
were calculated. The correlation analyses between tree-ring data and climate variables
were calculated from the start of the previous growing season (previous October) to the
end of the current year (current October). In addition, the 21-year running correlations
between climate and tree-ring data were further conducted to reveal the temporal changes
of the climate–growth relationships. Then, we selected the climate factors with the highest
correlations and explored their contribution to tree growth through the boosted regression
tree (BRT) model. The BRT analyses were implemented in R version 3.63 [48] using the
DISMO package [49,50]. We fitted the BRT models using five-fold cross-validation to
identify the optimum number of trees [49].

We classified the extreme years of DTR based on the mean ± 1.5 standard deviations
of DTR and used the Tukey test to compare the differences between extreme high and low
DTR scenarios for different tree-ring indicators (TRW, LWW and LWR). Considering the
assumption of normality was not met by all parameters of wood anatomy. The differences
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in wood anatomy between samples with different treatments were determined using the
Mann–Whitney U test (not normality).

3. Results
3.1. Wood Anatomy Changes after the Heat-Protecting

The heat-protecting layers reduced the hourly temperature gradients (Figure 3a) and
lagged the peak and bottom of the interior temperatures for 1–2 h relative to the ambient
atmosphere, indicative of a marked thermal insulation effect. It should be noted that the
temperature gradients within the heat-protecting layers are still larger than those in the
soil. The seasonal temperature gradients within the heat-protecting layers and under the
soil are quite similar to those in the ambient atmosphere (Figure 3), indicating that the
heat-protecting measure has limited influence on the seasonal temperature gradients.

Forests 2022, 13, x FOR PEER REVIEW 6 of 18 
 

 

2.6. Analytical Methods 
The Pearson correlations of the TRW, LWW and LWR chronologies with climate rec-

ords were calculated. The correlation analyses between tree-ring data and climate varia-
bles were calculated from the start of the previous growing season (previous October) to 
the end of the current year (current October). In addition, the 21-year running correlations 
between climate and tree-ring data were further conducted to reveal the temporal changes 
of the climate–growth relationships. Then, we selected the climate factors with the highest 
correlations and explored their contribution to tree growth through the boosted regression 
tree (BRT) model. The BRT analyses were implemented in R version 3.63 [48] using the 
DISMO package [49,50]. We fitted the BRT models using five-fold cross-validation to iden-
tify the optimum number of trees [49]. 

We classified the extreme years of DTR based on the mean ± 1.5 standard deviations 
of DTR and used the Tukey test to compare the differences between extreme high and low 
DTR scenarios for different tree-ring indicators (TRW, LWW and LWR). Considering the 
assumption of normality was not met by all parameters of wood anatomy. The differences 
in wood anatomy between samples with different treatments were determined using the 
Mann–Whitney U test (not normality). 

3. Results 
3.1. Wood Anatomy Changes after the Heat-Protecting 

The heat-protecting layers reduced the hourly temperature gradients (Figure 3a) and 
lagged the peak and bottom of the interior temperatures for 1–2 h relative to the ambient 
atmosphere, indicative of a marked thermal insulation effect. It should be noted that the 
temperature gradients within the heat-protecting layers are still larger than those in the 
soil. The seasonal temperature gradients within the heat-protecting layers and under the 
soil are quite similar to those in the ambient atmosphere (Figure 3), indicating that the 
heat-protecting measure has limited influence on the seasonal temperature gradients. 

 
Figure 3. (a) Mean hourly and (b) monthly temperatures for the soil, heat-protecting layer, trunk 
and air from 13 February to 16 December in the year 2015. 
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air from 13 February to 16 December in the year 2015.

After the heat-protecting treatment, the number of earlywood and latewood cells
decreased slightly according to the Mann–Whitney U test (p > 0.05), resulting in a slight
disparity of xylem cells among trees (p > 0.05) (Figure 4a–c). The ratios of the earlywood
(latewood) cells to total xylem cells increased (declined) but the changes were insignificant
(p > 0.05). The blue intensity of the latewood decreased after the heat-protecting treat-
ment, indicating that the low DTR can reduce the latewood density, but the decrease was
nonsignificant (Figure 4). A decline was found in all of the anatomical parameters for the
trees due to the heat-protecting treatment (Figure 5). However, only the decreases in the
double cell wall thickness variations in earlywood and latewood were significant (p < 0.05)
(Figure 5a,d).
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Figure 4. Comparison of the cell numbers of (a) earlywood and (b) latewood and (c) total cells and
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3.2. Tree-Ring Chronology and Climate–Growth Relationship

The reliable timespan of the TRW and LWW chronologies extended from 1966 to
2015, and the reliable LWR chronologies spanned from 1969 to 2015 (Figure 6). The TRW
STD chronology was significantly positively correlated with precipitation from May to
September, and significantly negatively correlated with temperature in June. Significant
negative correlations between the STD and DTR were also seen in the current June and
June–October (Figure 7a). The LWW chronology was significantly and positively correlated
with precipitation in July but showed significant and negative relationships with the DTR
in June and October (Figure 7b). For LWR chronology, STD had a significantly positive
relationship with precipitation in July and July–October and had a negative relationship
with the DTR in July–October (Figure 7c). Only June VPD was significantly negatively
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correlated with TRW, while the relationship between VPD and scPDSI and the tree-ring
metrics was not significant in any other month (Figure S2). Thus, drought stress induced
by high temperature and relative lower precipitation was the most determining factor for
tree growth in the study region. The DTR changes also had a strong negative effect on the
growth of Pinus massoniana.
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After screening, we found that 1975, 1984, 1985, 1990, 2000, 2012 and 2015 were
extreme low DTR years, while 1966, 1967, 1971, 2003 and 2004 were extreme high DTR
years (Table S1). Enhanced tree growth was found at a lower DTR in the absence of severe
drought. However, it is noteworthy that only the change in latewood width reached
significance (Figure 8).

Moving correlation analysis with the 21-year window revealed that the influence
of temperature on the different indices of chronology was unstable and indicated index
difference. The negative effect of temperature and the DTR declined for TRW and LWW
but not for LWR. Whereas the positive effect of precipitation was strengthened only for
LWR, it seemed static for LWW and decreased for TRW (Figure 9).
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(May–September of the current year), temperature (June–September of the current year) and DTR
(June–October of the current year); the (b) LWW chronology and the mean precipitation (May–October
of the current year), temperature (June–September of the current year) and DTR (June–October of
the current year); the (c) LWR chronology and the mean precipitation (July–October of the current
year), temperature (July–October of the current year) and DTR (June–September of the current year).
Dotted and dashed horizontal lines indicate the p = 0.05 and p = 0.01 significance levels, respectively.

3.3. The Contribution of Climatic Factors in Climate–Growth Relationships

Variability in the DTR in June, the precipitation in May–September and the temperature
in June played the dominant roles in the formation of the annual rings, which accounted
for 47%, 44.4% and 8.6% of the TRW chronology, respectively. For LWW chronology, the
contributions of the June–October DTR and May–October precipitation were 50.8% and
49.2%, respectively. For LWR chronology, the contribution of July–October precipitation
was 73.7% and the contribution of the July–October DTR was 26.3%. Overall, the DTR
contributes more to TRW and LWW in Pinus massoniana than precipitation, but precipitation
is the most important factor to regulate the change in LWR (Figure 10).
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4. Discussion
4.1. The Effect of Heat-Protecting on Latewood Formation and Wood Anatomy

Abrupt temperature shifts were considered as one of the major factors that induce
the anatomical structure changes in trees [32]. In this study, no significant decrease was
found in the latewood caused by the heating-protecting treatment (Figure 5), suggesting
that the DTR was not the major factor for the latewood formation of Pinus massoniana.
Pinus massoniana trees in Southeast China produced latewood in June and July rather
than the late growing season [51]. The distinct disparity between the cellular morphology
between earlywood and latewood is also interpreted as an important adaptation strategy
of trees to maintain equilibrium for their capacity to conduct water, mechanical stability
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and resistance to cavitation [52]. Latewood formation can occur in the middle stage of
the growing season when adverse conditions arrive earlier than normal [25]. Drought
stress is one of the important triggers for the formation of latewood [19,20]. For instance,
in arid areas, the lumen area of the earlywood diminishes markedly to reduce the risk of
cavitation [53,54]. Therefore, it is assumed that an increase in the latewood ratio may store
a large amount of stored water and increase resistance to drought [55,56]. The latewood
formation of Pinus massoniana occurred exactly in summer when tree growth was suffering
drought stress [35,36].

The decrease in the cell wall thickness and radial lumen diameter of earlywood and
latewood cohered with the decreased DTR (Figure 5). Temperature is closely linked with
carbon mobilization and deposition rates at the time of wall thickening [57]. Thus, the lower
daytime temperature due to heat-protecting may constrain cell wall deposition rates and
lead to the thinning of the cell wall [58]. Wall thickening involves high energetic costs and
depends mainly on the carbohydrates produced by photosynthesis [59,60]. Under natural
conditions, the increased cell wall thickness of the tracheid occurred due to the greater
availability of photosynthate in the cambial zone [61]. Stem temperature had a critical effect
on stem respiration [62]. Nighttime warming and less precipitation aggravated carbon loss
through intensified respiration, and limited plant growth [63–66]. Indeed, previous studies
have found that low photosynthate supply as a result of factors, such as higher night
temperatures leading to increased respiration, may result in the reduced cell wall thickness
of gymnosperm seedlings and saplings [61]. The changes in the concentrations of soluble
sugars might affect the osmotic potential of cells to provide the turgor pressure for cell
expansion [67]. We, therefore, speculate that the nonsignificant reduction in cell diameter
may be caused by a decrease in starch content due to increased nighttime respiration, which
affects osmotic pressure and thus limits cell expansion. (Figure 5b,e) [68].

However, the heat-protecting treatment failed to cause a remarkable decrease in
latewood density in Pinus massoniana in the study area. It is worth noting that BI is still
a prototype parameter as it is still less tested relative to MXD in representing the density,
although recent researchers in the immediate region have demonstrated the effectiveness of
BI in representing density to some extent [69,70]. Latewood density is mainly determined
by the cell wall thickness and lumen area [71,72]. Previous research found the Eucalyptus
grandis seeding reduction in the lumen area of xylem with increasing temperature [15],
and nighttime temperatures having a greater effect on tracheid expansion than daytime
temperatures in Larix sibirica Ldb. and Podocarpus latifolius (Thunb.) R.Br. ex Mirb. [73,74].
The nonsignificant decrease in the lumen area and the number of latewood cells may
offset the impact of the thickening of the cell wall, resulting in a nonsignificant decrease in
latewood density.

4.2. Tree Growth Relationship

Different parts of an annual ring may contain different environmental signals, or they
contain the same signal but with different strengths [69]. The LWW and LWR tended to be
more sensitive to summer drought, which demonstrated that Pinus massoniana in the study
area possibly produced latewood in summer [51]. Summer droughts limited tree growth
via modulations of evapotranspiration, leading to a decrease in stomatal conductance
and photosynthesis rate [75–77]. Such response patterns of trees to summer drought in
subtropical China have been verified by previous tree-ring studies and observations of
intra-annual wood formation monitoring [35,36,78,79].

The DTR strongly influences the net photosynthetic product of trees via modulations
of photosynthesis in the daytime and respiration at night [28,80]. The DTR played a
dominant role in regulating the growth of TRW and LWW instead of drought. The DTR
variations were commonly [81] affected by land surface, atmospheric boundary layer
processes, clouds, aerosols and atmospheric circulations [82]. Thus, the correlations of
the DTR with the Tmax, Tmin and precipitation were examined to explain the negative
correlations between the tree-ring index and DTR (Figure S1). Enhanced precipitation and
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soil moisture usually reduced the DTR through surface evaporative cooling [83]. Generally,
cloudy, mild and wet conditions during the vegetation period may lower the DTR and
enhance photosynthetic activity and biomass productivity [84]. However, in the study area,
a high DTR during the summer season likely corresponded to cloudless weather, which
reduced soil moisture availability due to high temperatures, little rainfall and enhanced
evapotranspiration. This also explains why all tree-ring indices are at low values in the
extreme high DTR scenario. The close DTR–growth relationships were also reported in the
eastern Tibetan plateau and central Spain [29,85]. It is worth noting that the consequences
of the reduced DTR on tree growth remain uncertain. Greater nighttime than daytime
warming, associated with a wetter climate, has been demonstrated to be beneficial to
plant growth [81]. For instance, a reduced DTR mitigates drought impacts on larch and
benefits tree growth in North China [28]. However, the reduced DTR with warmer summer
night conditions could lead to an unfavorable tree carbon budget and cause tree mortality
in Southeast Alaska [66]. Studies about the effects of the DTR on tree growth in humid
subtropical regions are still limited. Given the decreasing trends of the DTR in the study
region, we suggest the DTR could become an increasingly important factor for tree growth
in the future.

The “divergence phenomenon” was found in the climate–growth relationships of
Pinus massoniana trees in the study area, which showed a strengthened (weakened) linkage
with precipitation (temperature). Consistent with the warming climate, such a response
pattern has been frequently reported in cold and alpine regions [9,86]. In recent years, the
phenomenon was also found in warm and humid subtropical regions [87–89]. Great effort
has been made to indicate the possible mechanism of the “divergence problem”, but the
associated knowledge is still too fragmental by far due to various driving factors [90–94].
Temperature-induced drought stress has been proved to be one of the driving mechanisms
of the “divergence problem” [90,92]. For instance, the increasing influence of precipitation
in May and July weakened the relationship between temperature and tree rings at low
altitudes in the Dabie Mountains [87]. Although a significant temperature increase did
occur in the study area, no significant drought trend was found, so we suggest that growth
divergence in Pinus massoniana may not be caused by water deficit in this research. In
addition, the decrease in the DTR may also be an important reason for the “divergence
problem”. Previous research confirmed the cause of the reduced temperature sensitivity of
whitebark pine in the western Canadian Cordillera is related to the interaction between the
DTR and cloud cover patterns [95].

5. Conclusions

In the present work, we designed a novel experiment to investigate the effect of the
DTR on latewood formation of Pinus massoniana in HSC. We used the heat-protecting layers
to wrap up the tree trunks to lower the temperature gradients and mimic the environmental
conditions underground. In addition, we developed the TRW, LWW and LWR chronologies
of Pinus massoniana trees to analyze the climate–growth relationships and temporal stability.
Although the heat-protecting treatment did not lead to a significant reduction in the number
of latewood cells, it could reduce the cell wall thickness of the latewood. On the interannual
scale, we found that the DTR strongly limited the TRW and LWW of Pinus massoniana, even
though precipitation is still the most important factor to regulate the LWR. LWW and LWR
have become more sensitive to moisture availability and less sensitive to temperature in
recent decades. Such an unstable relationship might be linked to the DTR. Our research
provides more insights into explaining the formation of latewood and understanding the
generation of the “divergence problem”.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13091439/s1, Figure S1. (a) Correlation matrix about the DTR,
Precipitation, Maximum temperature and minimum temperature. red and blue indicate the positive
and negative relationship, respectively. The “*” indicate the p = 0.05 significance level. The linear fit
about DTR and minimum temperature (b), Maximum temperature (c) and precipitation (d). Figure S2.
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Correlations between (a) tree-ring width (TRW), (b) latewood width (LWW), (c) latewood ratio (LWR)
and scPDSI (left), VPD (right). The correlations were calculated from previous (capital letter) October
to current (lowercase letters) October, with significant correlations shown in gray (p < 0.05) and black
(p < 0.01). Table S1. tree-ring width (TRW), Latewood width (LWW) and latewood ratio (LWR) in
extreme Low and high DTR year.
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