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Abstract: Discrimination of mangrove stage changes is useful for the conservation of this valuable
natural resource. However, present-day optical satellite imagery is not fully reliable due to its high
sensitivity to weather conditions and tidal variables. Here, we used the Vertical Transmit—Vertical
Receive Polarization (VV) and Vertical Transmit—Horizontal Receive Polarization (VH) backscatter
from the same and multiple-incidence angles from Sentinel-1 SAR C-band along with Normalized
Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized
Difference Moisture Index (NDMI), Normalized Difference Red Edge (NDVIRE) and Chlorophyll
Index Green (CIGreen) from the optical satellite imageries from Sentinel-2 to discriminate between
the changes in disturbance, recovery, and healthy mangrove stages in Samut Songkhram province,
Thailand. We found the mean NDVI values to be 0.08 (±0.11), 0.19 (±0.09), and −0.53 (±0.16) for the
three stages, respectively. We further found their correlation with VH backscatter from the multiple-
incidence angles at about −17.98 (±2.34), −16.43 (±1.59), and −13.40 (±1.07), respectively. The VH
backscatter from multiple-incidence angles was correlated with NDVI using Pearson’s correlation
(r2 = 0.62). However, Pearson’s correlation of a single plot (ID2) of mangrove stage change from
disturbance to recovery, and then on to the healthy mangrove stage, displayed a r2 of 0.93 (p value is
less than 0.0001, n = 34). This indicated that the multitemporal Sentinel-1 C-band backscatter and
Sentinel-2 data could be used to discriminate mangrove stages, and that a reduced correlation to
significant observations was the result of variations in both optical and SAR backscatter data.

Keywords: multitemporal data; Sentinel-1; C-band; Sentinel-2; mangrove stage discrimination

1. Introduction

Ecosystem services of mangrove forests are important for the inhabitants living along
these coastal areas, and to the wider population in general. These major ecosystem services
include wood for construction and fuel, habitats for coastal fauna, nurseries for juvenile
marine organisms, food for humans and animals, income sources from fishery, carbon (C)
storage, protection from strong winds during typhoons, and coastal erosion mitigation [1,2].
As referenced in [3], the National Economic and Social Development Plans (NESDP) of
Thailand 2011–2013 [4] include several mangrove restorations and conservation projects;
indeed, there exist ongoing mangrove restorations in Thailand at the present time. Never-
theless, the loss and diminution of these valuable natural resources still occurs apace [5].
In [2,6,7] the authors discuss that as the mangrove forests continue to decline and degrade,
regular assessment needs to be undertaken so that appropriate measures can be introduced
to identify their conditional stage. Such monitoring would be the basis for better informed
decision-making in pursuit of sustainable conservation, resource management, and the
restoration of existing mangroves.
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To monitor a mangrove’s stage changes (e.g., disturbances and recovery stages),
optical remote sensing techniques, such as NDVI and NDMI, are used. Additionally,
detailed spatial resolution satellites such as SPOT are employed. These satellites are
globally positioned and are highly accurate [8–11]. The studies by Cho and Lee recommend
NDVI and NDMI techniques. These are derived from Sentinel-2 data and have a high
capacity for discriminating mangroves in particular [8,9,11]. NDVI was widely applied
to detect a mangrove forest’s healthy conditional changes, while NDMI showed high
performance in detecting mangrove disturbance changes [5,10,12]. Furthermore, NDVIRE
and CIGreen were used to study leaf chlorophyll content, biomass, and map the extent of
the mangrove [13,14]. NDVIRE was the vegetation index composited from the red-edge
band. The red-edge bands were sensitive to vegetation’s biophysical variables (e.g., leaf
chlorophyll and water content) [11,14,15]. A study [16] revealed that in extracting the
mangrove extent and species from Sentinel-2 imagery, the red-edge bands were the most
informative variables in discriminating mangrove species, followed by shortwave infrared
and near-infrared bands. Red Edge B5, and its derived CIGreen and NDVIRE indices, are
ranked first, third, and fourth, respectively. The shortwave infrared B11 was the second
most important variable.

Several studies found that robustness of hyperspectral data from optical sensors have
a very promising potential in classifying mangrove forest, their species distributions, and
even their health conditions [17–20]. Unfortunately, the availability of hyperspectral data
from optical imagery is limited because it is highly sensitive to weather conditions, and
tidal variables [21,22]. Younes Cardenas et al. (2017) [23] conducted 55 reviewing articles on
monitoring the mangrove ecosystem from Landsat/Aster imagery. The authors found that
most of the studies between 2001–2016 did not make full use of the wealth of optical data
available to analyze the temporal changes of mangrove due to cloud cover; thus, making
it unfeasible to monitor mangrove forest changes over the course of an entire year when
climatic conditions intervene [24].

The phenological behaviors of mangrove forests can also affect detection using the
remote sensing technology. Their phenological behavioral changes can be detected through
the time-series of NDVI, NDMI from MODIS sensor, and Landsat satellite [25,26]. The high-
spatial resolution satellite imagery is known as best practice for detecting mangrove forest
conditions; however, this imaging method is cost prohibitive [27,28]. Consequently, the
budget concerns over the costs of high-resolution satellite imagery could understandably
lead to insufficient information, which can result in ineffective monitoring of mangrove
forests [18].

On the other hand, SAR remote sensing can penetrate almost any weather condition;
therefore, can provide more temporal frequency during the day and night [20–31]. The
study by Thomas [32] confirmed that the HH polarization channel of JERS-1SAR and
ALOS using L-band SAR (PALSAR) was able to monitor the global mangrove deforestation
and degradation from 1996 to 2010 by focusing on the drivers of such loss. Due to their
wavelength capacities, L-band can more deeply penetrate the dense foliage of mangrove,
resulting in a higher accuracy using this technology [32]. However, a single scene of the L
band is very costly [33–35], making this method impossible for the broad use for mangrove
monitoring, especially in conditions requiring a large volume of high-res temporal images.

With recent technology advancement and data availability, Sentinel-1 [27,33,34] has
provided SAR C band images free of charge since 2014 but the images covering Thailand
have only been available since late 2015 [30,36,37]. Eventually, the Sentinel-1 SAR C-band
has been employed to assess the vegetation behaviors and related change. For example,
a study by Nasirzadehdizaji [38] evidenced that Sentinel-1 SAR using VV + VH and VV
parameters in the growing season had a high capacity to estimate maize height, especially
during the early growing stage. Another study [39] used multitemporal Sentinel-1 to
monitor phenology and classify deciduous and coniferous forests in Northern Switzerland.
It found that in VH, deciduous species showed a higher backscatter in the winter than
in the summer, whereas spruce showed a higher backscatter in the summer than in the
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winter. In VV, this pattern was similar for spruce, while no distinct seasonal behavior
was apparent for the deciduous species. Although their successful studies provide the
fundamental understanding of the roles of remote sensing technology, comparatively fewer
studies have attempted to use multitemporal SAR backscatter method to discriminate the
mangrove stages.

This study was designed to investigate the potential use of multitemporal and multi-
incidence angle Sentinel-1 SAR backscatter on VV and VH polarizations, alongside veg-
etation indices (such as NDVI, NDMI, CIGreen, and NDVIRE from Sentinel-2 data), for
discriminating mangrove forest stages and their changes, using mangrove forests in Samut
Songkhram province, Thailand as a case study. The obtained potential uses of the above
remote-sensing technologies are important for monitoring the changes of mangrove forests
at different stages, where such changes are affected by natural or anthropogenic activities.
The information on change stages is also important for better informed decision-making in
the restoration and conservation of the mangrove forests.

2. Materials and Methods
2.1. Study Area

The mangrove forest selected for this study is located in Samut Songkhram province,
which is in the upper Gulf of Thailand (Figure 1). During various time periods in this
mangrove, the diverse magnitude of natural and anthropogenic stresses on mangroves led
to mangrove disturbance and recovery in different scales and periods in this area [40,41].
Mangrove forests here undergo changes in various stages due to several coastal project
developments and urban expansion.

Forests 2022, 13, x FOR PEER REVIEW 4 of 25 
 

 

 
Figure 1. Study Area. 

2.2. Satellite Data Preprocessing and Analysis 
2.2.1. Defining Polygon Samples of Different Mangrove Stages on Google Earth Pro 

The available past and current ground-truth data on general mangrove conditions 
are very rare due to the inconvenience of accessing mangrove forests, the personnel skill 
set required, and the labor intensity [42]. Richards and Friesse [34] employed multitem-
poral images from Google Earth Pro to view and identify the mangrove deforestation and 
regrowth patches, and inferred various changes in land circumstance including aquacul-
ture, rice field, oil palm plantation, urban sprawl, terrestrial forest, and coastal erosion. 
They found that Google Earth Pro provided similar accuracy for mapping mangrove com-
munities using visual interpretation compared to commercial images such as Rapid Eye 
satellite (RE) images. The accuracy was even greater when combining Google Earth Pro 
with NDVI [43]. In congruence with their findings, this study also based the interpreta-
tions on Google Earth imagery to identify stages in the sample areas of our subject man-
grove.  

Our study considered a time-series of mangrove change to identify their stage 
change. Mangrove stages were classed into three main groups, i.e., disturbance, recovery, 
and healthy mangrove stages. The size of each polygon was larger than 100 square meters 
to maximize the spatial resolution of Sentinel-1 imagery. Our interpretations were based 
primarily on the tonality and texture of mangroves. Other attributes, such as shape and 
closeness to other features, in conjunction with the tonality and texture attributes, helped 
to further interpret the images [44,45]. The total number of mangrove sample polygons 
was 245 overall. Figure 2 illustrates how the different mangrove stages are defined on 
Google Earth Pro using their historical imageries. 

Figure 1. Study Area.



Forests 2022, 13, 1433 4 of 23

2.2. Satellite Data Preprocessing and Analysis
2.2.1. Defining Polygon Samples of Different Mangrove Stages on Google Earth Pro

The available past and current ground-truth data on general mangrove conditions are
very rare due to the inconvenience of accessing mangrove forests, the personnel skill set
required, and the labor intensity [42]. Richards and Friesse [34] employed multitemporal
images from Google Earth Pro to view and identify the mangrove deforestation and
regrowth patches, and inferred various changes in land circumstance including aquaculture,
rice field, oil palm plantation, urban sprawl, terrestrial forest, and coastal erosion. They
found that Google Earth Pro provided similar accuracy for mapping mangrove communities
using visual interpretation compared to commercial images such as Rapid Eye satellite (RE)
images. The accuracy was even greater when combining Google Earth Pro with NDVI [43].
In congruence with their findings, this study also based the interpretations on Google Earth
imagery to identify stages in the sample areas of our subject mangrove.

Our study considered a time-series of mangrove change to identify their stage change.
Mangrove stages were classed into three main groups, i.e., disturbance, recovery, and
healthy mangrove stages. The size of each polygon was larger than 100 square meters
to maximize the spatial resolution of Sentinel-1 imagery. Our interpretations were based
primarily on the tonality and texture of mangroves. Other attributes, such as shape and
closeness to other features, in conjunction with the tonality and texture attributes, helped to
further interpret the images [44,45]. The total number of mangrove sample polygons was
245 overall. Figure 2 illustrates how the different mangrove stages are defined on Google
Earth Pro using their historical imageries.Forests 2022, 13, x FOR PEER REVIEW 5 of 25 
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2.2.2. Sentinel-2 Data

Data from the Sentinel-2 Multi-spectral Instrument (MSI) level-1C (Level 1C Top-of
Atmosphere reflectance products) were acquired for the period covering January 2016
to August 2020. The specification of the Sentinel-2 Data is illustrated in Supplementary
Table S1: The Specification of Sentinel-2 Data. Each vegetation index including NDVI,
NDMI, NDVIRE and CIGreen derived from Sentinel-2 was processed on the Google Earth
Engine (GEE) platform and the results were encapsulated in GeoJSON file format. The
overall Sentinel-2 images numbered 495 scenes. The pre-processing started with importing
polygons to the GEE platform. Next, we selected satellite images of Sentinel-2 and imported
polygons of identified mangrove stages from the GEE platform. The cloud covering in
Sentinel-2 scenes was masked using bands 10 and 11. Red edge and SWIR bands, which had
a spatial resolution of 20 m, were resampled to 10 m (to match the same spatial resolution of
Sentinel-1 SAR) before band composites were made. Then Green, Red, Red edge1, NIR, and
SWIR bands were selected for a vegetation index composite using NDVI, NDMI, NDVIRE
and CIGreen. The formula of the vegetation indices used in this study is shown in Table 1.

Table 1. Vegetation Indices Formula.

Name of Vegetation Indices Formula

• Normalized Difference Red (NIR)/Normalized
Difference Vegetation Index (NDVI)

(NIR − Red)/(NIR + Red) or (B8 − B4)/(B8
+ B4)

• Normalized Difference Moisture Index (NDMI) (SWIR − NIR)/(SWIR + NIR) or (B11 −
B8)/(B11 + B8)

• Normalized Difference Red edge/Red NDVIRE) (NIR − Red edge)/(NIR + Red edge) or (B8
− B5)/(B8 + B5)

• Chlorophyll Index Green (CIGreen) (NIR/Green) − 1 or (B8/B3) − 1

Next, zonal statistics were used to extract the averaged 10 maximum random values
of vegetation indices. The averaged 10 maximum random values were used because they
can provide higher values than others, such as the averaged vegetation indices of each
polygon. This might be the result of some values which were mixing with soil or moisture
reflectance. In addition, we assigned 10 random points because we proposed the minimum
size of polygon was 100 square meters for this study.

Then, these vegetation indices were grouped monthly, thus, some of the missing pixels
were filled in this step. The data were exported using GeoJson format for converting to
CSV format in the Jupyter notebook. Some of the missing data were not filled in this study
to observe the amount of missing data from Sentinel-2 and invest their correlation to order
to fill the gap of missing values from atmospheric variability from optical sensors [46].

2.2.3. Sentinel-1 Data

Accessing via the Copernicus Sentinel Scientific Data Hub, this study used the Sentinel-
1 C-band level-1 Ground Range Detected High Resolution (GRDH) product from both an
ascending and descending pass with a 10 m spatial resolution. We investigated both the
Vertical transmit—Horizontal (VH) and Vertical transmit—Vertical (VV) polarizations. The
relative orbit numbers covering the study area were 62 and 172. Both orbits had nominal
incident range between 32.9–38.3◦, or, alternatively, Interferometric Wide swath 1 (IW1)
and Interferometric Wide swath 2 (IW2), respectively. As the 2015 study [47] indicated,
the incidence angle of the C-band image was effective in detecting parts of trees, with the
larger incidence angle being better suited at detecting the vertical tree components (i.e., tree
trunks and branches) as they presented a greater surface area to the radar. Moreover, a
smaller incidence angle tended to have a greater interaction with the upper canopy and
hence, greater attenuation by the branches. Due to fears over signal variations causing
data misinterpretation, it was found advisable that the data be analyzed using the same
sensor characteristics. [48]. As such, to reduce the effects of C-band incidence angle and
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their varying backscatter, this study considered the influence of incidence angle together
with pass direction to investigate their efficacy on the discrimination of mangrove stages.

Sentinel-1 SAR data covering the study areas are available from both ascending and
descending direction modes (Supplementary Figure S1: Sentinel-1 C-band Fly Directions
Over the Study Area). However, the SAR data from ascending mode were only made
available as of February 2017, while the data from descending mode were available since
October 2014. To comparatively analyze variables between Sentinel-1 SAR and Sentinel-2,
the correlation analysis between the two data sources was started in February 2017. There
were approximately 257 images made available at that time, with 105 images in ascending
mode and 152 in descending mode. Image processing consists of five steps and is designed
for optimal reduction of error propagation in the subsequent processes [49]; to obtain
precise orbits, we downloaded the orbit file and updated the orbit state vectors from the
product’s metadata. A subset was then recommended to reduce the processing time. Next,
we converted digital pixel values to radiometrically calibrated SAR backscatter. Specifically,
this is a calibration vector included as an annotation in the product and allowed the simple
conversion of image intensity values into sigma nought values. This was used because
most coastal areas around the Gulf of Thailand do not vary much in topography and Range
Doppler Terrain Correction is sufficient to geolocate the data to a common spatial grid. The
last step of image preprocessing was to convert the backscatter coefficient to dB using a
logarithmic transformation. Finally, six SAR variables are illustrated below (Figure 3).
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2.2.4. Discrimination of Mangrove Stages using Vegetation Indices and SAR
Backscatter Variables
Discrimination of Mangrove Stages from Previous Studies

To analyze the correlation between the vegetation indices and SAR backscatter, the
values of different vegetation indices and SAR backscatter of each mangrove stage needed
to be defined. The values of the vegetation indices and SAR Backscatter from previous
studies are illustrated in Tables 2 and 3, respectively.

Table 2. Values of Vegetation Indices for Discrimination of Mangrove Stages/Previous Studies.

Mangrove
Stages NDVI References NDMI References NDVIRE References CIGreen References

Disturbance ≤0.30 [50–52] - - - - - -
Healthy >0.70 [53,54] 0.10–0.80 [8,9] 0.07–0.16 [55] 1.50–7.00 [56]

Recovery 0.10–0.30 [50–52] - - - - - -

Table 3. The Values of VH and VV backscatter for Discrimination of Mangrove Stages/Previous Studies.

Mangrove Stages VH References VV References

Disturbance −16 to −26 [47] - -

Healthy −14 to −10 [47] −8 to −10 [57]
−14 to −15 [57] - -

Recovery −16 to −26 [47] - -

Rule-Based Discrimination of Mangrove Stages

According to SAR, the C-band cannot penetrate a forest canopy that is too complex.
It results in early saturation when compared with NDVI [58,59]. As such, we proposed
rule-basing to discriminate the mangrove stages. Rule-basing considers the capacity of
the vegetation indices and SAR backscatter on time-series. The values of NDVI, NDMI,
NDVIRE and CIGreen higher than 0.3, 0.1, 0.07 and 1.5, respectively, were regarded as
healthy mangroves.

NDMI, NDVIRE and CIGreen were rarely studied for disturbance or recovery mangrove
stages. To address this lack of data for the recovery mangrove stage, NDVI from previous
studies were used [50–52] combined with past observations of mangrove stages. We can
thus extrapolate that if the NDVI in the past was lower than the NDVI in recent times, a
conclusion can be drawn that the mangrove is in its recovery stage.

In addition, disturbance is a mangrove condition that provides a lower capacity to
supply products and services [60]. In remote sensing, forest disturbance can be monitored
using indicators such as time-series and biomass related to vegetation indices from optical
sensors [50–52]. It should be noted that the subject mangrove here in Thailand is sparse
and has a NDVI around 0.1–0.3. The NDMI value for a mangrove forest in disturbance
was less than 0.1 [8,9]. Due to fewer studies completed on the values of the mangroves
in disturbance stages using NDVIRE and CIGreen, their disturbance values were simply
defined as the values that were less than their healthy mangrove stages. Therefore, in this
study, the samples of NDVI, NDMI, NDVIRE and CIGreen that were less than 0.3, 0.1, 0.07,
and 1.5, respectively, and based on their time-series history or an earlier higher value of
mangrove stage, were to be regarded as a disturbance mangrove.

We also considered SAR backscatter and time-series to identify the disturbance and
recovery mangrove stages. A 2015 study [47] used Radarsat-2 (C-band) to model the
biophysical parameters of regenerating mangroves. The incidence angle of Radarsat-2
was 23.39–25.28 degrees. They found that the values of VH were about −26 to −16 dB
with the mean of all plots being −17 dB. These values were used as a reference for our
recovery mangrove stage. Additionally, the SAR backscatter before the present recovery
mangrove stage must be lower than this value. The SAR backscatter reference values of the
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disturbance mangroves were based on the mean values of VH, which were about −26 to
−16 dB (similar to the recovery mangrove stage), with the difference being that the SAR
backscatter values must have been higher before the mangroves were disturbed.

2.2.5. Analysis of Rule-Based Correlation and Capacity
Correlation of Mangrove Stage Discrimination Analysis

Correlation analysis was conducted on the data collected for the period February 2017
to August 2020. Monthly vegetation indices and SAR backscatter variables were analyzed
to find their correlation. Different models were applied to find the appropriate analytical
tool, e.g., linear regression, polynomial regression, and Pearson correlation coefficient.

Capacity of Rule-Based Mangrove Stage Discrimination Analysis

We analyzed the capacity of each parameter (from vegetation indices and SAR backscat-
ter) for mangrove stage discrimination using rule-based methodology and observed their
matching on time-series. To analyze how the rule-based works methodology when discrim-
inating the mangrove stages on time-series data, we labeled the values of each parameter on
the time series to identify the mangrove stage changes at their specific time of change. Here,
we also observed the change in values of vegetation indices and SAR backscatter variables
in the different mangrove stages to assess their capacity in discriminating mangrove stages.

2.2.6. Most Frequently Correlated Variables in Discriminating Mangrove Stages Analysis

We analyzed a pair of the most frequently correlated parameters with respect to their
capacity for performance and limitations in the discrimination of mangrove stages. Both the
vegetation index and SAR variables were investigated in plots which were representative
of different mangrove stages; then, we labeled them using rule-based methodology on
time-series data. Here, we could observe which variable had a higher capacity, and which
variable was more limited in discriminating mangrove stages. Furthermore, the rule-based
methodology for different mangrove stage discrimination was analyzed to assess the
capacity on time-series data using both clusters and density scatter plotting.

3. Results and Discussions
3.1. Comparison of the Values of Vegetation Indices and SAR Variables in Each Mangrove Stage

From February 2017 to August 2020, we found no Sentinel-2 data due to cloud cover
over the sample areas for approximately 18% of the days measured. As such, the number of
observations for all of the variables were 9218 in total. Specifically, there were 789 observa-
tions for disturbance mangrove, 569 for recovery mangrove, and 7860 for healthy mangrove
classes. The mean and standard deviation of vegetation indices and SAR backscatter
variables were compared in different mangrove stages, as shown in Tables 4 and 5.

Table 4. The Mean and Standard Deviation of Vegetation Indices for each Mangrove Stage.

Mangrove Stage
Vegetation Index

NDVI STD (±) NDMI STD (±) NDVIRE STD (±) CIGreen STD (±)

Disturbance 0.08 0.11 0.28 0.20 0.00 0.04 1.06 0.22
Recovery 0.19 0.09 0.27 0.16 0.01 0.04 1.22 0.21
Healthy 0.53 0.16 0.32 0.11 0.08 0.04 2.05 0.40
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Table 5. The mean and standard deviation of SAR variables for each mangrove stage.

Mangrove
Stage

VV VH

Ascn. STD
(±) Descn. STD

(±)
Ascn. and

Descn.
STD
(±) Ascn. STD

(±) Descn. STD
(±)

Ascn. and
Descn.

STD
(±)

Degradation −11.42 2.83 −12.86 3.20 −12.26 2.71 −17.21 2.24 −18.53 2.69 −17.98 2.34
Recovery −9.84 2.13 −10.48 2.10 −10.23 1.67 −16.10 1.71 −16.65 1.95 −16.43 1.59
Healthy −8.24 1.15 −8.36 1.09 −8.32 0.86 −13.30 1.21 −13.63 1.30 −13.40 1.07

Our findings of mangrove stages using the NDVI (Table 4) were in the range of the
reference data [53,55,56]. In contrast to NDMI, their values in each stage were higher
than 0.1 as our references [8,9]. However, our findings of the mangrove stages using SAR
backscatter variables were similar to studies by Hu. They compared mangrove forest
mapping at a national scale using Sentinel-1 and Sentinel-2 time-series data on GEE, and
found the mean of the NDVI was about 0.5, and the means of VH and VV backscatter on
mangroves were about −14 to −15 and −8 to −10, respectively [57]. These values were
similar to our healthy mangrove stages in Tables 4 and 5 and Figure 4.

In addition, a study by Cougo et al. [47] used Radarsat-2 (C-band) to model the
biophysical parameters of regenerating mangroves. The incidence angle of Radarsat-2 was
23.39–25.28 degrees. They found that variable at their initial stage of mangrove, which
was characterized as bare soil with a recent colonization of single seedlings of mangrove
vegetation. Their mean values of VH were about −26 to −16 dB, with the mean of all of the
plots being—17 dB. This compares with our disturbance mangrove stage where our finding
of a VH backscatter mean was −17.98 (from multiple-incidence angles). From Cougo et al.’s
advanced regeneration mangrove stage study, the trees reached 15 m in height. The VH
values were about −14 to −10 dB, with the mean of all of the plots being −12 dB. This
compared to our healthy mangrove stage, where our VH backscatter mean for the healthy
mangrove stage from multiple-incidence angles was −13.40.

In addition, the SAR backscatter of both the VV and VH polarizations from the
descending mode, which has an incidence angle of about 38.3 degrees over this study
area, had a lower backscatter than the backscatter from the ascending mode (Table 5). The
2006 study on maize [61] indicated that the shallow incidence angles (>35–40 degrees)
increased the path length through vegetation and maximized the vegetation scattering
distribution, whereas the steep incidence angles (<30 degrees) reduced the vegetation
attenuation and maximized the ground scattering contribution in return. This lower
backscatter variable from a descending mode might be the result of mangrove canopy
backscatter, while the backscatter variable from the incidence angle (ascending mode)
was derived from the ground, mangrove roots, or stem angles. Thus, the different SAR
incidence angles have no effects on dense mangrove forests. Furthermore, the standard
deviation values of the backscatter from each direction are in an acceptable range of each
other. The multiple-incidence angles of 32.9–38.3 degrees enhanced the correlation with the
vegetation indices. Consequently, these multiple-incidence angles can be useful for future
studies on mangrove stage discrimination.
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3.2. Correlation Analysis: Investigating Capacity in Discriminating Mangrove Stages
3.2.1. Correlation Analysis between Vegetation Indices and SAR Variables

We found that VH had a higher correlation with the vegetation indices than VV
backscatter. The SAR variables from descending fly direction (IW2) have a higher correla-
tion with the vegetation indices compared to SAR variables from ascending fly direction
(IW1) (Table 6). However, the integrated SAR fly directions could enhance the correlation
with the vegetation indices. NDVI had the highest correlation with SAR variables compared
to the other vegetation indices. Using Pearson’s correlation, NDVI and VH from ascending
and descending modes had r2 = 0.62, followed by CIGreen and VH which had r2 = 0.51.
The r2 between NDVI and VH from the multiple-incidence angle using the polynomial
regression model was 0.48, while the r2 of CIGreen and VH was 0.44.

Our results correspond to a study by Banks et al. on wetland classification using
RADARSAT-2 data [62]. They found that using multiple incident angle SAR data provided
a more accurate classification for all of the land covers. In addition, another study by Xu
et al. using RADARSAT-2 proved that using a multi-incidence angle image produced better
classification results than any single-incidence angle image for land cover classification [63].

The correlation between NDVI and VH from the multiple-incidence angles using the
polynomial regression model, r2 was 0.48 (p < 0.0001) (Figure 5). Pearson’s correlation
between the NDVI and VH backscatter from multiple-incidence angles revealed that
r2 was 0.62 (p < 0.0001) (Supplementary Figure S2: The Pearson’s Correlation Between
NDVI and VH Backscatter from Multiple-incidence Angle). A study by Veloso et al. [22]
used a square of the Pearson’s linear correlation coefficient to find the correlation between
the temporal interpolated NDVI and SAR backscatter (VV, VH, and VH/VV) on different
crops from November 2014 to December 2015. They identified the suitability of certain SAR
variables for specific crops. For example, the VH/VV backscatter was poorly correlated
with NDVI (r2 was 0.08, n = 15) for a sunflower crop, while their VV correlated well with
NDVI (r2 was 0.77). In contrast to the sunflower, the VH/VV backscatter correlated well
with NDVI (r2 was 0.89, n = 13) for maize.
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Table 6. Comparison of Correlations Between SAR Variables and Vegetation Indices Using Different Models.

The Correlation between SAR Variables and Vegetation Indices Using Linear Regression Model

Vegetation Indices
SAR Variables

VV(Ascn.) VV(Descn.) VV(Ascn. and Descn.) VH(Ascn.) VH(Descn.) VH(Ascn. and Descn.)

NDVI 0.21 0.33 0.35 0.26 0.36 0.38
NDMI - - - −0.01 −0.10 −0.01

NDVIRE 0.10 0.20 0.20 0.12 0.22 0.22
CIGreen 0.14 0.25 0.25 0.18 0.25 0.26

The correlation between SAR variables and vegetation indices using polynomial regression model

Vegetation Indices
SAR variables

VV(Ascn.) VV(Descn.) VV(Ascn. and Descn.) VH(Ascn.) VH(Descn.) VH(Ascn. and Desc.)

NDVI 0.28 0.41 0.45 0.34 0.44 0.48
NDMI 0.05 0.04 0.05 0.05 0.05 0.06

NDVIRE 0.04 0.27 0.28 0.22 0.30 0.31
CIGreen 0.26 0.40 0.43 0.32 0.41 0.44

The correlation between SAR variables and vegetation indices using Pearson’s model

Vegetation Indices
SAR variables

VV(Ascn.) VV(Descn.) VV(Ascn. and Descn.) VH(Ascn.) VH(Descn.) VH(Ascn. and Descn.)

NDVI 0.45 0.57 0.59 0.51 0.60 0.62
NDMI 0.01 0.00 0.01 0.08 0.10 0.10

NDVIRE 0.31 0.45 0.44 0.37 0.47 0.47
CIGreen 0.38 0.48 0.50 0.42 0.50 0.51
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In addition, we investigated the correlation between NDVI and VH from the multiple-
incidence angles on the plot ID2 (data available in Supplementary Figure S3: Data Available
of Plot ID2 From Sentinel-1 SAR And Optical Data from Sentinel-2 During February 2017 to
August 2020), which represented the mangrove’s change from healthy to disturbance stage
(Figure 6). We found that the Pearson’s correlation r2 was 0.93 (p < 0.0001, n = 34), while
the r2 was 0.91 using a polynomial regression model. Compared to overall observation
(n = 9258), a decrease in the correlation of the large observations might result from the
variation of both optical and SAR backscatter.
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3.2.2. Investigating Capacity of Vegetation Indices in Discriminating Mangrove Changes

We found that NDVI had the highest correlation, while NDMI had lower correlations
with the SAR backscatter variables than other vegetation indices. Thus, all of the vegetation
indices were then investigated using their time series. Their values were revealed due to
the mangrove stage changes witnessed therein. Here, we selected two plots to represent
the mangrove stage changes in the time series. The first plot is plot ID2, representing the
healthy mangroves that were changed to a disturbance mangrove stage (Figure 7). The
second plot was plot ID376. It represented a disturbed mangrove that had been changed
to a healthy mangrove stage (Figure 8). These illustrated that NDMI had significantly
varied with no (or less) vegetation cover in comparison to other vegetation indices. In some
periods, the NDMI values were still higher than the disturbed mangrove forest. However,
the NDMI values on the dense mangrove cover had no significant fluctuation. On the other
hand, NDVI, NDVIRE and CIGreen had a similar pattern of mangrove change. They had the
same reduced values, while NDMI had increasing values, as shown in purple dash circles
(which might have resulted from a high sea level or soil moisture). Consequently, NDMI
was deemed unsuitable for discriminating the mangrove stages, especially during times of
poor vegetation cover. This finding was contrary to other studies which found that NDMI
could detect disturbance vegetation better than NDVI [5,64].
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3.3. Rule-Based Analysis of the Highest Correlation Variable and the Capacity for Discriminating
Mangrove Stages
3.3.1. Rule-Based Analysis on NDVI Time-Series of Different Mangrove Stages

NDVI was selected to analyze value changes using the rule-based methodology on
the time-series of different mangrove stages because it had the highest correlation with
VH. This analysis used Sentinel-2 data dating back to January 2016. This was the available
data that covered our study area and was most suitable for understanding mangrove stage
changes over a longer period.

The sample plot ID87 represented mangrove stage changes, including disturbance,
recovery, and healthy mangroves (Figure 9). The observations were labeled following the
rule-based methodology. The representative symbols of disturbance, recovery, and healthy
mangroves were defined by rule-based red, green, and blue dots. The red, green, and blue
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lines were representative of disturbance, recovery and healthy mangrove stages defined
by the time aspect. We can see that some of the observations did not match the rule-based
system when they were coupled with time. Indeed, five observations did not match with
the rule-based methodology. Considering the time aspect, one errant observation was
in the recovery mangrove class. It had an NDVI value higher than 0.30, and would be
considered a healthy variable with respect to the rule-based system. Three other time
aspect observations in the healthy class did not match the rule as their values were less
than 0.30. In addition, one observation in the healthy mangrove class (based on time/blue
line) had an NDVI value less than 0.10; this would put it into the disturbance class under
the rule-based methodology.
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Figure 9. NDVI Time-Series Representative Plot ID87—Mangrove Stage Changes Using Rule-based
Methodology Degradation to Recovery; The Circled Showed Some NDVI of Each Mangrove Stage
Did Not Follow NDVI Rule-Based on Time-series Data.

The sample plot ID148 represented a healthy mangrove that was changed to a dis-
turbance mangrove. Regarding time (Figure 10), this plot was considered to be a healthy
mangrove until December 2019 (blue line). Using the rule-based methodology, this plot
shows that some of the values were labeled as a disturbance as they were less than 0.30. Af-
ter December 2019, with regards to time (red line), the mangrove stage became disturbance.
However, some observations were labeled as healthy as their values were higher than 0.30.

The mismatch between the rule-based and time methodologies in identifying the man-
grove stages was approximately 20% of all observations. The total number of observations
was 9258. When using a rule-based labeled mangrove disturbance stage on time-series,
there were 6 mismatches from 789 observations or 0.76%. These observation values in the
time series were labeled as a disturbance, but their values were higher than 0.3 in respect to
rule-based values.

For the recovery mangrove stage, there were 43 mismatches from 569 observations or
7.56%. These were labeled as disturbances using the rule-based methodology but were not
matched with time-series. As in time-series, the mangrove stage was recovery, but their
values were less than 0.10. In addition, the NDVI values greater than 0.29 numbered 34 from
569 total observations using the rule-based methodology; or a 5.98% mismatch to the healthy
mangrove class based on the time-series. Therefore, the mismatched values totaled 13.54%
for the recovery class using the rule-based methodology on time-series. For the healthy
mangrove stage, there were 434 mismatches from 7860 observations (which were less than
0.30) or a 5.52% mismatch with healthy class values based on the time methodology.
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Not Follow NDVI Rule-Based on Time-series Data.

As was determined by Li et al. [21], the NDVI time-series data had some variations
resulting from atmospheric conditions and other effects. Some of the values suddenly
dropped whilst some peaked when the nearby month values were stable on the trend
line. Although we masked the clouds out, these uncertainties led to undesirable noise. In
addition, the mangrove stage changes take time to develop due to changes in their biomass
or canopy cover.

3.3.2. Analysis of the Capacity of NDVI and VH from Multiple-Incidence Angles in
Discriminating Mangrove Stage Changes

We analyzed the NDVI capacity for discriminating mangrove stage changes in cor-
relation with VH variables from multiple-incidence angles. The plots ID145 and ID307
illustrated the mangrove stage changes from a healthy stage to a disturbance stage using
NDVI (A) and VH from multiple-incidence angles (B). Plots ID12 and ID398 illustrated a
mangrove stage change from disturbance to recovery; then, on to a healthy stage using
NDVI (C) and VH from multiple-incidence angles (D) (Figure 11). Furthermore, we found
that NDVI and VH in plot ID145 had higher values during the healthy mangrove stage than
seen in plot ID307 (in the blue dash square); however, using VH gave more variations than
using NDVI. In the blue dash square, the ID12 and ID398 plots’ VH values were also similar
during the healthy stage (D), but the values of these two plots showed distinct differences
using NDVI (C). Thus, it is concluded that NDVI displayed better discriminating capacity
for mangroves in the healthy stage in comparison with VH.

During the disturbance mangrove stage, we found that VH from plot ID145 did not
reduce clearly compared to NDVI. It showed higher VH fluctuations during this period
(B). We then investigated the mangrove stages using high spatial resolution on Google
Earth Pro. We found that after the mangroves were disturbed, some of the mangrove stems
and branches were still on the soil or bare land (Supplementary Figure S4: The Satellite
Images from Google Earth Pro Before and After Mangrove Forest Was Disbanded on Plot
ID145). These could result in high variations on VH readings in the red dash square (B). The
SAR C band could still detect tree trunks, stems, or branches even when the canopy was
reduced [65]. Contrary to plot ID307, VH reduced and corresponded with NDVI, where
stems (or trunks) were already removed and the land converted to ponds or otherwise
covered with water (Supplementary Figure S5: The Satellite Images from Google Earth Pro
Before and After Mangrove Forest Was Disbanded On Plot ID307).
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disturbance and recovery mangrove stages overlapped with the healthy mangrove stage 

Figure 11. Example plots of mangrove stage changes. (A) Two sample plots of healthy mangrove
changing to disturbance mangrove stages using NDVI, (B) Two sample plots of healthy mangrove
changing to disturbance mangrove stages using VH from multiple-incidence angles, (C) Two sample
plots of disturbance mangrove changing to recovery and on to healthy mangrove stages using NDVI,
(D) Two sample plots of disturbance mangrove changing to recovery and on to healthy mangrove
stages using VH from multiple-incidence angles, The red rectangles showed the lower period of
mangrove forest covering, while the blues rectangle showed the high period of mangrove covering.

Meanwhile, we found that the trends from both of the variables revealed similar
increasing values during the recovery mangrove stages (C and D). Both NDVI and SAR
variables could be employed to discriminate the recovery mangroves. However, before the
mangroves recovered, a reduced mangrove canopy illustrated high fluctuation in NDVI
(C) and VH (D) in the red dash squares. This resulted from moisture, tidal flow, or other
waterborne effects [66].

Next, the correlation between NDVI and VH from multiple-incidence angles was
analyzed using clusters of different mangrove stages (Figure 12). We found that both the
disturbance and recovery mangrove stages overlapped with the healthy mangrove stage in
density scatter plots of NDVI (A) and VH (B). These were caused by using the rule-based
methodology on time-series data. We can deduce that both the NDVI rule-based system
and VH backscatter on time-series data had some variations resulting from atmospheric
variability and other effects [21,66]. Therefore, using only the rule-based methodology (or
the algorithms which are not concerned with their time series counterpart) would not be
adequate to classify the mangroves from each other. They had overlap values that could
not be classified accurately using a single scene of satellite data.
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backscatter from multiple-incidence angles illustrating the cluster of each mangrove stage. (B) The
density scatter plot of NDVI for each mangrove stage. (C) The density scatter plot of VH for each
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NDVI and VH could both be used to discriminate the mangrove stages, with VH
reaching saturation faster when the canopy is well-developed. In situations where the
mangrove trunks, stems, and branches were still on the ground, the VH values were not
recommended. Rather, the use of NDVI was suggested instead. Both NDVI and VH could
be used to discriminate in the recovery mangrove stage as they accurately revealed the
developing changes (C and D). However, it should be noted that NDVI (from the optical
sensor) and VH backscatter (from SAR C-band) will exhibit variations when discriminating
mangrove stages affected by environmental factors. This is due to their design capacity or
sensitivity to external factors. In these circumstances, applying moving average calculations
on the NDVI and VH data should enhance their accuracy in mangrove discrimination.

Therefore, multi-temporal NDVI, NDVIRE and CIGreen show promising capacity in
discriminating the mangrove stage including disturbance, recovery, and healthy mangrove
stages. Unfortunately, about 20% of the optical data from Sentinel-2 are not available
due to cloud cover. This limits the continuous monitoring of the mangrove forest stage
changes [18]. If the status of the mangrove is recently known, it could prevent the loss
of the mangroves and their ecosystem. Here, we found that SAR backscatter can be used
to fulfill the uncertainty of unavailable optical data as there are correlations with the
vegetation indices. VH from multiple-incidence angles is recommended for discriminating
the mangrove stages changes to reduce the bias for monitoring time-series data, as the
different incidence angle of SAR data detects different parts of mangrove trees.

The spatial map of the mangrove forest stage changes during February 2017 to July
2020, which are discriminated using the NDVI rule-based method correlated with VH
backscatter from multiple-incidence angles, is shown in Figure 13. VH backscatter is used
to fill the gap of cloud cover over the mangrove forest. The image on July 2020 is selected
to illustrate the cloud cover over the mangrove forest and the use of combine NDVI and
VH backscatter.
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Figure 13. Mangrove Stage Change During February 2017 to July 2020 Using NDVI Rule-based
Correlated with VH Backscatter from Multiple-incidence Angles (A) Mangrove Forest Stages in
Samut Songkhram Province (B) Cloud Cover Over Mangrove Forest During July 2020 (C) Sample
Area of Disturbance Mangrove Stages using NDVI Rule-based Correlated with VH Backscatter (in
Red) (D) Sample Area of Recovery Mangrove Stages using NDVI Rule-based Correlated with VH
Backscatter (in Light Green).

Our findings of the SAR backscatter values from the effects of different multiple-
incidence angles correspond with previous studies [62,63]. In addition, this study found
that the SAR backscatter can discriminate the recovery mangrove stage well, especially
in the early stages of recovery because it can detect even the mangroves’ stems; thus,
this benefit of SAR backscatter gives an opportunity to discriminate the mangrove stage
changes continuously. The recent information on mangrove stages can introduce early
rehabilitation which can complete ecological loss [67,68].

However, SAR backscatter has limitations in the discrimination disturbance mangrove
stages during the early disturbance mangrove stages, such as stress in the mangroves
or crown dieback, because SAR can still detect the branches or stems of mangrove trees.
Future studies might use other new Radar Vegetation indices. For example, a study by
Mandal et al. (2020) [69] found that DpRVI (compared with the cross and co-pol ratio
(σVH0/σVV0) and dual-pol Radar Vegetation Index (RVI = 4σVH0/(σVV0 + σVH0)) has a
high correlation with biophysical parameters (including Plant Area Index (PAI), Vegetation
Water Content (VWC), and dry biomass (DB)) of a canola crop. The new vegetation index
from Sentinel-1 might enhance capacity in discriminating the mangrove stage in early
disturbance mangrove stages.
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4. Conclusions

Using data from Sentinel-1 SAR backscatter and Sentinel-2, we found that NDVI
and VH could discriminate the mangrove stage changes. The disturbance, recovery, and
healthy mangrove stages determined by NDVI values were approximately 0.08 (±0.11),
0.19 (±0.09), 0.53 (±0.16), respectively. VH backscatter values for disturbance, recovery,
and healthy stages from multiple-incidence angles were approximately −17.98 (±2.34),
−16.43 (±1.59), −13.40 (±1.07), respectively. The correlation between NDVI and VH from
the multiple-incidence angles using Pearson’s correlation was r2 = 0.62 (n = 9258).

It is possible to conclude that using NDVI is best for detecting disturbance mangroves
in their early stages, VH is best for detecting the recovery stage of mangroves because, if
there is a mixing reflectance from the soil, water, and moisture that can skew the NDVI
values, and both NDVI and VH have the capacity to detect healthy mangroves. Remarkably,
the high sensitivity of SAR could detect such small details as the stems of newly generated
mangroves. We found that the combined optical data from Sentinel-2 and SAR data from
Sentinel-1 can be analyzed and used to discriminate mangrove forest change stages.

Moreover, our findings on the correlation between multitemporal NDVI and VH
should benefit timely and efficient mangrove management and contribute to sustaining
mangrove services. The mangrove forest areas in their individual conditional stages can be
addressed using both of the variables. This can supplement the data of optical sensors when
such data are unavailable. This is particularly useful in early mangrove rehabilitation from
general stress or at the disturbance stage. It could prevent the loss of mangrove biomass
and quicken mangrove restoration. Prompt and accurate information on mangrove stages,
and the changes incurring within, will aid appropriate remedial policies and ultimately
lead to knowledge-based decision-making on sustainable conservation and the competent
management of this precious natural resource.

Time-series data from both optical and SAR data can be analyzed and interpolated to
enhance the mangrove stage discrimination’s accuracy. Even better, machine learning or
deep learning can be employed to expedite the analysis.
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