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Abstract: Triterpenes are natural products of plants that can defend against microorganisms and vari-
ous stresses. Oxidosqualene cyclase (OSC), the key rate-limiting enzyme of the triterpene biosynthetic
pathway, catalyzes 2,3-oxidosqualene into sterols and triterpenes with different skeletons through
the chair–boat–chair (CBC) conformation or chair–chair–chair (CCC) conformation. They were ex-
panded in plants mainly by tandem duplication and are distributed in many plant lineages. They
have multiple biological activities, including as functional foods and drugs. Here, we summarize
the current characterized forest OSCs and their potential functions, especially for pharmacological
applications. The study of triterpene-catalyzed enzyme OSC has an important scientific role and
potential economic value. This paper summarizes the research advances of the main members of the
OSC family in plants, their structure and function, the biosynthesis of triterpenes, and the molecular
evolution of OSC.
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1. Introduction

The long evolutionary process of plants over approximately 470 million years has been
a gradual development process from aquatic to terrestrial [1]. Different from animals or
microorganisms, plants have evolved a set of “weapons” to conquer various challenges
from the surrounding environment. Plant secondary metabolites (“weapons”) are small
molecular organic compounds that are unnecessary for cell life activities or plant growth
and development but help plants cope with various challenges. The known plant secondary
metabolites mainly include nitrogen-containing compounds, phenylpropanoids, flavonoids,
and terpenes [2]. Terpenes are the most abundant secondary metabolites in plants, with
more than 80,000 structures reported [3]. Based on the number of isoprene units, they can
be divided into monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesquiterpenes
(C25), triterpenes (C30), and polyterpenes [4]. Triterpenes are a class of compounds, and
more than 20,000 different triterpenes have been reported. Generally, triterpene skeletons
widely exist in nature in the form of glycosides (triterpene saponins) or esters [5]. According
to its structure, the plant triterpene skeleton (non-sugar part) mainly includes cucurbitanes,
dammaranes, lupanes, ursanes, and friedelanes [6].

Oxidosqualene cyclase (OSC) can catalyze the cyclization of 2,3-oxidosqualene to
sterols and triterpenes with different skeletons [7,8]. It is a pivotal enzyme and promotes
triterpene scaffold diversification by a set of programs including protonation, cyclization,
rearrangement, and deprotonation [9]. According to the properties of its catalytic inter-
mediates, two groups of intermediates were named: protosteryl cation and dammarenyl
cation. In sterol biosynthesis, protosteryl cations are cyclized from 2,3-oxidosqualene
through the “chair–boat–chair” conformation (CBC), including cycloartenol, lanosterol, and
cucurbitadienol (Figure 1). In triterpene biosynthesis, the dammarenyl cation is cyclized
from 2,3-oxidosqualene through the “chair–chair–chair” conformation (CCC) into products
such as lupeol, α-amyrin, β-amyrin, and friedelin.
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Figure 1. OSC catalyzes 2,3-oxidosqualene to produce different skeletons through two confor-
mations. LS, lanosterol synthase; CAS, cycloartenol synthase; LUS, lupeol synthase; α-AS, α-amyrin 
synthase; β-AS, β-amyrin synthase; FS, friedelin synthase. 

More than 150 OSC genes in more than 75 plants have been functionally character-
ized through the heterologous expression of related OSC genes in yeast or tobacco [10]. 
The largest numbers are of β-amyrin synthase (β-AS), cycloartenol synthase (CAS), and 
lupeol synthase (LUS), which account for 23.3%, 20.7%, and 14% of the total identified 
OSCs, respectively [10]. Others, such as friedelin synthase (FS), α-amyrin synthase (α-AS), 
cucurbitadienol synthase (CPQ), and lanosterol synthase (LS), have also been identified 
in various plant species.  

These compounds have multiple biological activities. For example, OsOSC12 cata-
lyzes the substrate to generate poaceatapetol, and the mutation of OsOSC12 causes the 
rapid dehydration of pollen grains, showing a humidity-sensitive genic male sterility phe-
notype [11]. β-amyrin-derived triterpene glycosides from Barbarea vulgaris show certain 
resistance to flea beetle larvae (Phyllotreta nemorum) [12]. In Artemisia annua, OSC2 pro-
duces triterpenoids for the cuticle of aerial organs and probably plays a role against biotic 
and abiotic stress [13].  

The forest is a huge treasure, home to millions of secondary metabolites, but only tip 
of the iceberg has been discovered. Secondary metabolites from forests play important 
roles in improving plant resistance to biotic or abiotic stresses. In addition, they are valu-
able sources of medicinal ingredients that cannot be ignored, as triterpenes and glycosidic 
products have a wide range of medicinal functions. The study on the catalytic mechanisms 
of OSC can reveal the synthetic pathways of the medicinal components of plants in forests 
and thus advance the exploration of the medicinal value of these plants. 

2. The OSC Main Members and the Characterized OSCs from Forests 
2.1. Lanosterol Synthase (LS) 

LS can catalyze 2,3-oxidosqualene to lanosterol. Through the CBC cyclization, it takes 
the protosterol cation as the intermediate and transfers the positive charge of the cation 
from C-20 to C-8. After deprotonation, a double bond forms between C-8 and C-9 to pro-
duce lanosterol (Figure 1). Many lanosterol synthases have been heterologously charac-
terized from Arabidopsis thaliana, Panax ginseng, and Lotus japonicus [14–16]. Lanosterol has 

Figure 1. OSC catalyzes 2,3-oxidosqualene to produce different skeletons through two conformations.
LS, lanosterol synthase; CAS, cycloartenol synthase; LUS, lupeol synthase; α-AS, α-amyrin synthase;
β-AS, β-amyrin synthase; FS, friedelin synthase.

More than 150 OSC genes in more than 75 plants have been functionally character-
ized through the heterologous expression of related OSC genes in yeast or tobacco [10].
The largest numbers are of β-amyrin synthase (β-AS), cycloartenol synthase (CAS), and
lupeol synthase (LUS), which account for 23.3%, 20.7%, and 14% of the total identified
OSCs, respectively [10]. Others, such as friedelin synthase (FS), α-amyrin synthase (α-AS),
cucurbitadienol synthase (CPQ), and lanosterol synthase (LS), have also been identified in
various plant species.

These compounds have multiple biological activities. For example, OsOSC12 catalyzes
the substrate to generate poaceatapetol, and the mutation of OsOSC12 causes the rapid
dehydration of pollen grains, showing a humidity-sensitive genic male sterility pheno-
type [11]. β-amyrin-derived triterpene glycosides from Barbarea vulgaris show certain
resistance to flea beetle larvae (Phyllotreta nemorum) [12]. In Artemisia annua, OSC2 produces
triterpenoids for the cuticle of aerial organs and probably plays a role against biotic and
abiotic stress [13].

The forest is a huge treasure, home to millions of secondary metabolites, but only tip
of the iceberg has been discovered. Secondary metabolites from forests play important roles
in improving plant resistance to biotic or abiotic stresses. In addition, they are valuable
sources of medicinal ingredients that cannot be ignored, as triterpenes and glycosidic
products have a wide range of medicinal functions. The study on the catalytic mechanisms
of OSC can reveal the synthetic pathways of the medicinal components of plants in forests
and thus advance the exploration of the medicinal value of these plants.

2. The OSC Main Members and the Characterized OSCs from Forests
2.1. Lanosterol Synthase (LS)

LS can catalyze 2,3-oxidosqualene to lanosterol. Through the CBC cyclization, it takes
the protosterol cation as the intermediate and transfers the positive charge of the cation from
C-20 to C-8. After deprotonation, a double bond forms between C-8 and C-9 to produce
lanosterol (Figure 1). Many lanosterol synthases have been heterologously characterized
from Arabidopsis thaliana, Panax ginseng, and Lotus japonicus [14–16]. Lanosterol has been
excluded as an intermediate in phytosterol synthesis, as no relative product has yet been
detected in plants.
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2.2. Cycloartenol Synthase (CAS)

Cycloartenol synthase can also catalyze 2,3-oxidosqualene to cycloartenol through
the CBC conformation using protosteryl cations (Figure 1). Cycloartenol is one of the
key precursors for the biosynthesis of phytosterols such as campesterol, stigmasterol, and
sitosterol. Sterols, as essential components of the plasma membrane of all eukaryotic cells
and cell viability, are widely distributed in various tissues and organs.

More than 15 different types of CAS have been identified by heterologous expres-
sion [13,15,17–25]. CAS1 (At2g07050) from A. thaliana was the first characterized CAS in
plants and it is a tetracyclic triterpene synthase [26]. ASCS1 (AJ311790), which is mainly
expressed in root tip cells from Avena strigosa, was characterized using a yeast expression
system [27]. Interestingly, two cycloartenol synthase genes, BPX1 (AB055509) and BPX2
(AB055510), were identified in Betula platyphylla, and the study also proposed that LUS
and β-amyrin synthase were evolved from cycloartenol synthase [28]. A study on Costus
speciosus proved that CsOSC1 (AB058507) encodes cycloartenol synthase, the first reported
cycloartenol synthase in monocots [29].

2.3. Lupeol Synthase (LUS)

Taking the dammarenyl cation as the intermediate, the lupyl cation is generated
through E-ring expansion through CCC conformation (Figure 1). The lupyl cation is
quenched by eliminating methyl protons, resulting in the formation of lupeol. Lupeol,
one of the pentacyclic triterpenes, is extensively studied due to its pharmacological activ-
ities. Matsuda’s team found that LUP1 (At1g78970) has 57% homology with A. thaliana
cycloartenol synthase, and its product is mainly lupeol [30]. In Bruguiera gymnorrhiza,
the authors verified that the product of BgLUS (AB289586) is lupeol by using a yeast
system [31]. Ebizuka’s group identified BPW (AB055511) as LUS from the suspension
cell culture line of B. platyphylla [28]. KdLUS (HM623871) from Kalanchoe daigremontiana
was heterologously expressed in yeast, and the mixed product contained 94% lupeol. RT-
qPCR analysis showed that KdLUS was only expressed in the epidermal cells [32]. OSC3
(AB181245) in L. japonicus has 81% homology with BPW, and the product is also lupeol,
mainly accumulated in plant roots [33]. OEW (AB025343) from Olea europaea was expressed
in yeast to produce lupeol. The OEW product was unexpected, as oleanolic acid is the main
triterpene of O. europaea leaves; however, no lupeol skeleton product was discovered in
leaves. In Ricinus communis, RcLUS (DQ268869) was found to make lupeol in the cuticular
region, which in turn is responsible for the formation of epicuticular wax crystals on the
stem and hypocotyl surfaces, resulting in its glaucous phenotype [20]. In Malus × domestica,
the lupeol, which is mainly accumulated in the peel, was the catalytic product of MdOSC5
(KT383436) [34].

2.4. α-Amyrin Synthase (α-AS)

The catalytic mechanism of α-amyrin synthase is to take the dammarenyl cation as
the intermediate and form the ursanyl cation through E-ring expansion (Figure 1). The
homology of MdOSC1 (FJ032006) and MdOSC3 (FJ032008) in Malus × domestica is nearly
99%, and α-amyrin accounted for 85% of the mixed product [34]. In Pisum sativum, α-
amyrin synthase produced up to 50% of the total product [35]. Interestingly, among the
identified α-amyrin synthase species, most genes were from the Rosaceae family, implying
common α-amyrin synthases in this plant lineage.

2.5. β-Amyrin Synthase (β-AS)

β-amyrin synthase is a common OSC that has been found in more than 30 plants, in-
cluding in A. thaliana, Glycyrrhiza glabra, L. japonicus, Nigella sativa, and P. ginseng [18,33,36–38].
The catalytic mechanism of β-amyrin synthase also involves the dammarenyl cation as the
intermediate; the ring is expanded on the basis of the lupyl cation to obtain the oleanolyl
secondary cation. Furthermore, 1,2-hydride displacement and deprotonation at C-12 form
β-amyrin [7] (Figure 1). Phylogenetic analysis showed that AsbAS1 (AJ311789) from A.
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strigosa and lanosterol synthase from animals and fungi were more related than cycloartenol
synthase from plants. AsbAS1 is the only single-functional β-amyrin synthase found in
monocotyledonous [27]. The first gene reported to be involved in the triterpene synthesis
pathway in Euphorbiaceae plants was the β-amyrin synthase coded by EtAS (AB206469) in
Euphorbia tirucalli [39]. β-amyrin synthase is encoded by AsOXA1 (AY836006), whose tran-
scripts were found to accumulate strongly in leaves but weakly in roots in Aster sedifolius.
The results showed a higher level of triterpenes in roots, which may be due to the transport
of triterpenes from leaves to roots [40].

2.6. Friedelin Synthase (FS)

Through the CCC conformation cyclization, the friedelin synthase takes the dammarenyl
cation as the intermediate and undergoes 10 positive charge shifts from C-20 to C-2
(Figure 1). It crosses the largest range of skeleton modification of the dammarane cy-
clization pathway and is one of the most complex pentacyclic triterpenes [32]. Through
RNAi and tissue expression pattern analysis, Zhou determined that TwOSC1 (QHT64456)
and TwOSC3 (QHT64454) in Tripterygium wilfordii were responsible for the biosynthesis
of the medicinal compound celastrol, thereby proving that friedelin was a precursor of
celastrol [41], laying the foundation for the biosynthesis of celastrol in engineering yeast
in the future. Friedelin is also a leptin sensitizer, which is expected to be utilized in the
treatment of obesity [42]. Friedelin synthases were also identified in K. daigremontiana,
Maytenus ilicifolia, Populus davidiana, and some other species [32,43,44].

2.7. The Characterized OSCs from Forests

Ilex asprella is a medicinal plant that is used extensively in southern China. It contains
ursane-type triterpenoids and triterpenoid saponins with well-known pharmacological ac-
tivities. The ursane triterpene α-amyrin is catalyzed by the key gene laAS1(AIS39793) [45].
The leaves of loquat (Eriobotrya japonica) possess high medicinal value due to the high
amount of ursolic acid, which is one of the most effective active compounds. Similarly,
α-amyrin, the precursor of ursolic acid, was catalyzed by EjAS (JX173279) [46]. P. ginseng
is one of the most universally used herbal medicines, and most of the biological activi-
ties of ginseng are derived from its main constituents, ginsenosides. Oleanolic acid-type
ginsenosides are one type of ginsenoside molecules, and β-amyrin, the precursor of oleano-
lic acid-type ginsenosides, was catalyzed by PNY (AB009030) [18]. Glycyrrhizic acid in
G. glabra is an oleanolane-type triterpene, and β-amyrin was catalyzed by the key gene
GgbAS1 (AB037203). Yu found that glycyrrhizic acid was a non-toxic, broad-spectrum,
anti-coronavirus molecule in vitro, especially to SARS-CoV-2 [47]. The medicinal value of
forest trees enriches the source of medicinal ingredients, rendering forest trees as invaluable
human medical resources.

Interestingly, some specific triterpenes are accumulated in the wax layers of K. dai-
gremontiana, Ligustrum vulgare, and Macaranga ant plants and are believed to be involved
in defense against herbivores or insects [48–50]. However, the molecular mechanism of
biosynthesis of these chemical compounds is still unclear. Characterizations of these OSCs
would advance their contribution to forest plants.

3. Molecular Evolution of OSC

The ancestral lanosterol synthase-like (ALSL) and ancestral cycloartenol synthase-like
(ACS) appeared before the differentiation of dicotyledons and monocotyledonous plants
about 140 million years ago [51,52]. LS and CAS have been found in bacteria, indicating that
OSC in bacteria may be the ancestors of the sterol pathway [53–55]. After the differentiation
of monocotyledons and dicotyledons, the LS gene was replicated multiple times, resulting
in the expansion of the OSC gene in dicotyledons. The duplication of the ACS gene led
to the amplification of the OSC gene in monocotyledons. The amplification of the OSC
gene in the genomes of dicotyledons and monocotyledons was mainly due to tandem
duplication [56]. Tandem duplication may contribute to plant defense against biological
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and abiotic stresses [57–63]. Thus, OSC gene families derived from tandem duplication
often respond to external stimuli. Xue showed that local tandem duplication is crucial
in expanding the OSC family [56]. Ober also reported that gene families involved in
secondary metabolism are generated through gene duplication and form gene clusters on
chromosomes [64].

After duplication and expansion, OSCs were widely distributed among multiple
plant lineages. LUS, β-amyrin synthase, and cycloartenol synthase account for a large
proportion of the OSC family and are mainly distributed in asterids and rosids. LUS is
mainly distributed in Contortae, Fabales, Asterales, Solanales, Brassicales, and Rosales.
β-amyrin synthase is mainly distributed in Gentianales, Apiales, Fabales, Solanales, and
Ranunculales. Cycloartenol synthase is mainly distributed in Sapindales, Cucurbitales,
Fabales, Brassicales, Saxifragales, Solanacea, Solanales, Apiales, and Asterales. Interestingly,
cucurbitadienol synthase is only found in Cucurbitaceae plants [10].

4. Research Progress on OSC Structure and Function

The catalytic activity of an enzyme is primarily determined by a few key amino acids
located in the active center. Thus, it is important to understand the relationship of these
amino acids with enzyme structure and function.

DCTAE and QW are conserved motifs in OSC proteins [65]. DCTAE is related to
substrate binding. The QW motif is generally a negative non-tandem repeat with a length
of 16 amino acids, namely, Arg/Lys Gly/Ala X2-3 Tyr/Phe/Trp Leu X3 Gln X2-5 Gly X
Trp [66]. The QW motif, which is located on the exterior of the enzyme, can stabilize carbon
cations during cyclization [67]. When Trp259 in PNY (β-amyrin synthase) is mutated into
Leu, a product ratio of 2:1 (lupeol and β-amyrin) is found. When Leu256 in OEW (lupeol
synthase) is mutated into Trp, this results in β-amyrin as a major product with very few
lupeols. This finding indicates that Trp259 is a key amino acid to determine the formation
of β-amyrin synthase, which is speculated to occur through the stabilization of the oleanyl
cation [68].

Research on the β-amyrin synthase of E. tirucalli has shown that steric hindrance
is another effect on cyclization. The substitution of aliphatic amino groups significantly
reduces the yield of bicyclic compounds. This result shows that the appropriate steric size
is critical to the cyclization reaction [69].

The conformation of amino acid residues in the active center also affects triterpene
skeleton formation. OSC2 has a unique catalytic domain (FLALA and LMVLA) and a
special amino acid residue, Y531. Site-directed mutagenesis showed that a catalytic triad,
Y-LL, was responsible for the migration and deprotonation of C-29 methyl [70]. This key
active site was found to be important for the plasticity of the catalytic mechanism of OSC.

5. Biosynthesis of Triterpenes in Yeast

Various strategies were employed for the heterologous synthesis of high-value triter-
penes, such as ginsenosides [71–73]. By increasing the optimizing module, regulating
metabolic flow, engineering organelles, assembling enzymes, and expanding carbon sources,
the target triterpene products can be optimized in engineered yeast.

The yeast strain GY-1 can produce 17.2 mg/L protopanaxadiol by overexpressing
3-hydroxy-3-methylglutaryl-CoA reductase, squalene synthase, and 2,3-oxidosqualene
synthase genes [74]. By manipulating 3-hydroxy-3-methylglutaryl-CoA reductase, the yield
of β-amyrin yield increases by 50% [75]. Glycerol and xylose can serve as a carbon source
to improve the acetyl-CoA supply and thus enhance the yield of target products [76,77].
In addition, inhibition of the expression of sterol can also induce more substrate (2,3-
oxidosqualene) to flow through the triterpene metabolic pathway [78]. Kim expanded the
endoplasmic reticulum space to increase the synthesis and folding capacity, and the yield
of protopanaxadiol increased by 72-fold [79].

Yuan increased the supply of substrate 2,3-oxidosqualene so the yield of α-amyrin
would be 11.97 ± 0.61 mg/L [80]. In addition, OSC activity can be improved by site-
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directed mutagenesis of key amino acids. The triple-mutant MdOSC1N11T/P250H/P373A

was employed to increase the yield of α-amyrin by 11-fold compared with the control
group. Interestingly, the intracellular storage capacity was expanded by the overexpression
of diacylglycerol acyltransferase to yield 106-fold α-amyrin (1107.9 ± 76.8 mg/L) in the
aAM12 yeast strain [81].

Adding methylated β-cyclodextrin promoted the transport of the nonvolatile hy-
drophobic terpenes from yeast cells into the culture medium, thus greatly improving
productivity [82].

6. Conclusions and Prospects

In general, while secondary metabolites do not participate directly in plant growth
and development, they are believed to be involved in plant defense against various
stresses [83,84].

In addition, many active medicinal ingredients are derived from triterpene skele-
tons [85]. Much progress has been achieved in biological research on characterizing OSCs
and elucidating amino acids that are important for enzyme activity and product speci-
ficity [68,70]. Researchers have introduced reasonable design approaches such as the
regulation of metabolic flow, compartmentalization engineering, and other methods to im-
prove the chassis of triterpene biosynthesis [79,81]. However, due to the complex structure
of triterpenes and the wide variety of modifying enzymes, the specific catalytic mechanism
of triterpenes is not yet clear.

This paper reviews the progress of research on the main members of OSCs and
expounds their biosynthesis, molecular evolution, structure, and function. We also summa-
rized characterized OSCs from forests and their potential pharmacological roles. We expect
that extensive studies on the catalytic mechanism and further functional characterization
of numerous OSCs, especially from forests, can provide the foundation for the application
of synthetic biological strategies to produce high-value terpenes from forests in the future.
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