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Abstract: Forest fires are highly unpredictable and extremely destructive. Traditional methods of
manual inspection, sensor-based detection, satellite remote sensing and computer vision detection all
have their obvious limitations. Deep learning techniques can learn and adaptively extract features
of forest fires. However, the small size of the forest fire target in the long-range-captured forest fire
images causes the model to fail to learn effective information. To solve this problem, we propose an
improved forest fire small-target detection model based on YOLOv5. This model requires cameras
as sensors for detecting forest fires in practical applications. First, we improved the Backbone layer
of YOLOv5 and adjust the original Spatial Pyramid Pooling-Fast (SPPF) module of YOLOv5 to the
Spatial Pyramid Pooling-Fast-Plus (SPPFP) module for a better focus on the global information
of small forest fire targets. Then, we added the Convolutional Block Attention Module (CBAM)
attention module to improve the identifiability of small forest fire targets. Second, the Neck layer
of YOLOv5 was improved by adding a very-small-target detection layer and adjusting the Path
Aggregation Network (PANet) to the Bi-directional Feature Pyramid Network (BiFPN). Finally, since
the initial small-target forest fire dataset is a small sample dataset, a migration learning strategy
was used for training. Experimental results on an initial small-target forest fire dataset produced
by us show that the improved structure in this paper improves mAP@0.5 by 10.1%. This demon-
strates that the performance of our proposed model has been effectively improved and has some
application prospects.

Keywords: forest fire detection; YOLOv5; BiFPN; CBAM; transfer learning

1. Introduction

As an important part of terrestrial ecosystems, forests not only provide a variety
of forestry products, but also have an irreplaceable role in regulating ecological balance
and provide powerful economic and ecological benefits. However, forest fires are major
forest disasters that cause global forest resource loss and human injury and impact forest
ecosystem safety. Therefore, it is necessary to research initial forest fire identification.

Forest fires spread rapidly due to rapid convection of air and abundant oxygen in
forests. Therefore, it is necessary to detect forest fires at the early stage of their formation.
Forest fire detection was first done by manual inspection, but the cost of human and
material resources is high, and the efficiency is low. due to this, manual inspections were
soon replaced by sensor-based detection. The sensor-based detection system [1–3] works
well in small indoor spaces. Among the sensors that are used for forest fire detection are
smoke sensors, gas sensors, temperature sensors, humidity sensors, integrated sensors, etc.
However, the detection distance is limited, its installation cost is very high, and it also has
to face complex communication and power supply networking problems. In addition, the
sensors cannot provide important visual information which can help firefighters promptly
grasp the situation at the fire scene [4]. Therefore, this method may not be suitable for
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large spaces or large areas like forests which are very different from indoor environments.
Satellite remote sensing is not only unable to detect small-area fires, but the detection is
affected by weather as well as cloud cover. In addition, because satellites only provide a
complete image of the Earth every 1–2 days [5], real-time rapid detection is not possible.
The high spatial resolution multispectral satellites can not only take clearer satellite images,
but some of them can detect early forest fires through short-wave infrared and visible
near-infrared bands. However, satellites are still unable to combine temporal and spatial
resolution and are currently unable to achieve real-time detection of forest fires. The camera
as a sensor has better real-time performance than satellite images. When mounted on a
drone, it can also detect forest fires in more remote forests. Using cameras as sensors can
help firefighters get a more complete picture of the forest fire scene compared to sensors
which do not provide images, such as smoke sensors.

With the rise of computer vision technology, researchers have started to use digital
image processing technology for forest fire detection. C. Emmy Prema et al. [6] used
YUV color space analysis of smoke for multi-features to detect early forest fires. Pathare,
Suyog J. et al. [7] determined the filtering effect of the flame pixels from the intensity of
the R component by means of RGB color space and confusion estimation. The experiments
show that this method possesses a relatively good application prospect. Hossain et al. [8]
used a UAV to capture images of fires, using a special fire color and a multicolor local
binary spatial pattern to analyze and detect forest fire flames and smoke from the captured
images. Ding et al. [9] proposed an improved flame-recognition color space (IFCS) based on
chaos theory and a k-medoids particle swarm optimization algorithm. Khondaker et al. [10]
proposed a multi-level fire detection framework which analyzes the color information,
shape change and optical flow estimation patterns of fires. In addition, both static and
dynamic characteristics are considered to reduce the false alarm rate and computational
complexity. In summary, most studies in the field of fire detection methods based on image
processing techniques rely on manually extracted features such as colors, shapes, and
textures to detect fires.

With the development of hardware and software technology and the enhancement
of computer arithmetic, more and more scholars are beginning to study the use of deep
learning to detect forest fires. Muhammad et al. [11] propose a cost-effective fire detection
CNN architecture for surveillance videos. The early fire detection framework proposed
by them uses fine-tuned convolutional neural networks for CCTV surveillance cameras to
detect fires in different indoor and outdoor environments. Kinaneva et al. [12] propose a
platform that uses unmanned aerial vehicles (UAVs), which constantly patrol over areas
potentially threatened by fire. Li et al. [13] proposed novel image fire detection algorithms
based on the advanced object detection CNN models of Faster-RCNN, R–FCN, SSD, and
YOLO v3. Guan et al. [14] propose a color-attention neural network that consists of
repeated blocks of color-attention modules (MCM). Each MCM module is able to extract
color feature information from the region. Seyd Teymoor Seydi et al. [15] present Fire-
Net, a deep learning framework trained on Landsat-8 imagery for identifying active fires
and burning biomass. Sudhakar et al. [16] introduced the multi-UAV system utilized
in this examination for agreeable FFD. In conclusion, the researchers proposed multiple
network structures to extract image features step-by-step with the help of a multi-layer
structure which has higher precision, better robustness and better real-time performance
than traditional methods.

In this paper, an improved forest fire detection system based on YOLOv5 [17] is
proposed. First, the feature extraction module in the original YOLOv5 cannot extract the
effective information of small forest fire targets well because of the small forest fire targets at
the early stage of long-distance shooting. Therefore, the original SPPF module of YOLOv5
is modified in this paper. Second, in order to resolve the problem of missing information in
YOLOv5 caused by the low number of pixels in small targets of forest fires, the CBAM [18]
attention module is added. By using the CBAM attention module, small forest fire targets
can be paid attention to, and image features can be recognized more effectively. Third,
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by adjusting the Neck layer species PANet [19] structure to the BiFPN [20] structure, the
original YOLOv5 model can better balance information at different scales. Last but not
least, a transfer learning strategy is used for training, since the initial small-target forest fire
dataset is a small sample dataset.

The rest of this paper is organized as follows. In Section 2, the dataset and model
evaluation metrics used in the experiments are given, and the structure of the small-
target forest fire detection model in this paper is described in detail. Section 3 shows
the configuration of the experiments and some of the training parameters settings. In
addition, the effects of the CBAM attention module, SPPFP module, and BiFPN on forest
fire recognition are experimentally verified. The experimental results are discussed and
analyzed in Section 4. Section 5 concludes the entire work.

2. Materials and Methods
2.1. Datasets

Forest fire detection based on Yolov5 is heavily dependent on the quality of the dataset.
Due to this, using high quality datasets in the training process allows deep learners to
extract more effective features. First, we obtained images of forest fires not only from the
web by writing crawler scripts, but also from some public forest fire datasets. After that,
we selected the images that were suitable for training by hand. In order to ensure that our
deep learner is able to recognize different kinds of forest fires, we have selected images of
tree trunk fires, ground fires, long-distance photography of forest fires, etc. Finally, these
images were divided into 3170 forest fire datasets and 150 small-target forest fire datasets.
We used these two datasets for transfer learning training. In this article, targets smaller than
32 * 32 pixels are referred to as “small targets” according to the Microsoft coco standard.

The images in the forest fire dataset were taken after a number of large fires that had
large flame areas and dark flames. Representative samples of the forest fire dataset are
shown in Figure 1.
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The small-target forest fire datasets are initial forest fire photos, long-range photogra-
phy of forest fires, and UAV overhead photography of forest fires with small flame areas.
Representative samples of the small-target forest fire dataset are shown in Figure 2.
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Figure 2. Representative forest fire images from the small-target forest fire dataset: (a) long-range
photography of forest fires, (b) UAV overhead photography of forest fires, (c) initial forest fire photos,
and (d) UAV overhead photography of forest fires.

2.2. YOLOv5

YOLO is a fast and compact object detection model. In comparison to other networks
of the same size, YOLO offers superior performance. YOLOv5 is an advanced target
detection network model introduced by the Ultralytics LLC team. YOLOv5 has a faster
inference time and a higher detection accuracy than the YOLOv4. In addition, the YOLOv5s
module has a small memory footprint, making it easy to deploy in subsequent practical use.

YOLOv5 is divided into four parts: Input, Backbone, Neck, and Output. The forest fire
detection model proposed in this paper is based on YOLOv5s in version 6.1 of YOLOv5.
The structure of the YOLOv5 model in version 6.1 is shown in Figure 3. First, the input
contains Mosaic data augmentation, adaptive anchor frame calculation, and adaptive image
scaling. By randomly scaling, randomly cropping, and randomly arranging four images,
mosaic data augmentation dramatically improves the dataset sample and strengthens the
network. Second, CSP1 and CSP2 are designed with reference to CSPNet [21] and have two
different Bottleneck CSP structures. The purpose is to reduce redundant information. As a
result, the parameters and FLOPS of the model are reduced, not only to increase the speed
and accuracy of inference, but also to decrease mode size. Among them, CSP1 is used for
feature extraction, i.e., Backbone, while CSP2 is used for feature fusion, i.e., Neck. Third,
Backbone not only has CSP1, but also CBS and SPPF modules. The SPPF module connects
three MaxPool layers of 5 * 5 size in a series, passes the input through these three MaxPool
layers in turn, and performs a Concat operation on the output of these three MaxPool
before performing a CBS operation. The output of SPPF is the same as that of SPP, but
SPPF runs faster. Fourth, Neck utilizes a path aggregation network (PANet) [19]. In PANet,
low-level features are propagated using a new feature pyramid network (FPN) structure
with enhanced bottom-up paths. In addition, adaptive feature pooling, which links feature
grids to all feature levels, propagates useful information within each feature level directly
to the next layer. As a result, PANet can improve the accuracy of the location of objects
in lower layers by utilizing accurate localization signals. Finally, Output generates three
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feature maps of different sizes, enabling the model to handle small, medium, and large
objects for multi-scale [22] prediction.
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2.3. SPPFP

SPPF is available as the last module of Backbone in YOLOv5 version 6.1. The SPPF
module is a series of three MaxPool layers of 5 × 5 size through which inputs are then
passed in turn, and a Concat operation is performed on the output of the three MaxPool
layers before the CBS operation is performed. The structure of SPPF is shown in Figure 4.
Maximum pooling and jump connection at different scales enable the image to learn features
at different scales, and then fuse local and global features to enrich the representativeness
of the feature map. Among them, maximum pooling divides the image into several
rectangular regions outputting the maximum value for each sub-region. Although the
maximum pooling operation can reduce the redundant information, it also tends to cause
the loss of feature information.
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In this paper, the SPPF is improved by borrowing BenseNet’s [23] construction of
dense links and enhancing the idea of feature reuse. We then obtain the SPPF module,
thereby reducing the loss of feature information caused by maximum module pooling.
The SPPFP module is used to better retain global information on small-targets forest fires.
Figure 5 shows the structure of SPPFP.
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2.4. CBAM

Due to the problem of small forest fire targets with low pixels in the picture, it is easy
for missing information to occur. CBAM consists of a channel attention module and a
spatial attention module in series. First, feature F is input into the channel attention module
to get channel attention weight MC(F). Then, MC(F) is multiplied by bit with feature F
to get feature F′. Next, the feature is input into the spatial attention module to get spatial
attention weight Ms

(
F′
)
. Finally, Ms

(
F′
)

is multiplied by bit with feature F′ to get feature
F′′. The structure of the CBAM attention module is shown in Figure 6.
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In the CBAM attention module, the channel attention module can utilize the informa-
tion between feature channels, and the spatial attention module can utilize the information
between feature spaces. The advantages of the two attention modules can be complemented
to achieve effective attention to small targets. Adding the CBAM attention module to the
Backbone of YOLOv5 can effectively improve the feature extraction ability and detection
accuracy of the network. The CBAM attention module is added to YOLOv5 in the Backbone
way as shown in Figure 7.
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In this paper, two types of additions are designed. In the first one, the CBAM attention
module is added before the SPPF module; in the second one, the CBAM attention module
is added before the add operation in BottleNeck1.

2.5. BiFPN

The full name of BiFPN is Bi-directional Feature Pyramid Network, which is a modified
PANet structure. The structures of BiFPN and PANet are shown in Figure 8.
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Using BiFPN to improve YOLOv5’s Neck allows for simpler and faster multi-scale
feature fusion. Moreover, introducing learnable weights to Bi-FPN enables it to learn the
importance of different input features and apply top-down and bottom-up multi-scale
feature fusion repeatedly. Bi-FPN has better performance with fewer parameters and
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FLOPS than Yolov5’s Neck PANet. Due to this, it allows for better real-time forest fire
detection.

2.6. Improved YOLOv5s Model

The original output layer of YOLOv5s version 6.1 generates only three feature maps of
different sizes for processing large, medium, and small target objects. However, the targets
of initial forest fires and long-distance shooting forest fires are very small, and the original
three feature maps of different sizes are less effective in dealing with initial forest fires and
long-distance shooting forest fires. Therefore, in this paper, one feature map is added to the
original output layer of YOLOv5s version 6.1 for dealing with very small targets.

The model structure of the improved version 6.1 of YOLOv5s in this paper is shown
in Figure 9.
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2.7. Transfer Learning

The deep neural network model needs a large number of samples for training in order
for the model to have a good effect. Since the initial fire data set belongs to a small sample
data set, it is difficult to obtain a good detection effect by training directly from scratch.

Transfer learning is a method of applying already-obtained knowledge about a known
domain to the target domain, fine-tuning is a method of making an entire pre-trained
network on a known dataset to train the target dataset, using the already-trained model
used as the initialized model on which the target dataset is trained.The trained model is
used as the initial model, and the target data set is trained on this basis.

In order to improve the accuracy of the small-target forest fire detection model in
this paper, the transfer learning method was used to train the small-target forest fire
detection model. The forest fire dataset is trained in order to obtain the forest fire detection
model, and then the knowledge is transferred to the forest fire detection model to train the
small-target forest fire training set and thusly obtain the small-target forest fire detection
model. Figure 10 shows the transfer learning process of training the small-target forest fire
detection model.
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2.8. Model Evaluation

In this paper, we evaluate the model using the evaluation criterion of PASCAL VOC,
one of the evaluation criteria that is widely used in target detection tasks. The evaluation
metrics of PASCAL VOC are measured by the mean average precision when the IOU is set
to 0.5, which is mAP@0.5. To calculate mAP, we need to use precision and recall, and the
calculation formula is as follows.

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

AP =
∫ 1

0
P(r)dr (3)

mAP =
C

∑
i=1

APi/C (4)

In those equations, TP indicates that the target is a forest fire, and the network model
detects the forest fire target. FP indicates that the target is not a forest fire, and the network
model detects the non-forest fire target. FN indicates that the target is a forest fire, and the
network model detects the non-forest fire target.
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P(r) denotes a P–R curve with precision as the vertical coordinate and recall as the
horizontal coordinate. AP is the area enclosed by precision and recall on a curve. The mAP
is the average of the AP values for all categories.

3. Results
3.1. Training

The experimental conditions in this paper are shown in Table 1. The training parameter
settings for the forest fire detection model are shown in Table 2. The training parameters
for the small-target forest fire detection model are set as shown in Table 3. Both the forest
fire dataset and the small-target forest fire dataset are divided into training set, validation
set, and test set in 8:1:1. In addition, the small-target forest fire dataset was enhanced with
data for the training set, validation set, and test set, respectively, after the allocation was
completed. Details of the forest fire dataset and the small-target forest fire dataset are
shown in Table 4.

Table 1. Experimental conditions.

Experimental Environment Details
Programming language Python 3.9

Operating system Windows 10
Deep learning framework Pytorch 1.8.2

GPU NVIDIA GeForce GTX 1070

Table 2. Training parameters of the forest fire detection model.

Training Parameters Details
Epochs 300

batch-size 16
img-size (pixels) 640 × 640

Initial learning rate 0.01
Optimization algorithm SGD
Pre-training weights file None

Table 3. Training parameters of the small target forest fire detection model.

Training Parameters Details
Epochs 250

batch-size 16
img-size (pixels) 640 × 640

Initial learning rate 0.01
Optimization algorithm SGD

Pre-training weights The best.pt obtained by training the
corresponding forest fire detection model

Table 4. Details of the two datasets.

Dataset Train Val Test
Forest fire dataset 2537 282 314

Small target
forest fire dataset 240 30 30

3.2. Ablation Experiments

The training process for each experiment is as follows. First, the forest fire detection
model was obtained by training using the forest fire dataset and tested using the test set to
obtain mAP@0.5. Then, the data of the forest fire detection model are used as pre-training
weights for the training of the small-target forest fire model and are trained using the
small-target forest fire dataset. Finally, the small-target forest fire detection model is tested
using the test set in the small-target forest fire dataset to obtain mAP@0.5-S and FPS. The



Forests 2022, 13, 1332 11 of 15

data of the ablation experiments are shown in Table 5; VST denotes the very-small-target
detection layer.

Table 5. The data of the ablation experiments.

MODEL
Forest Fire
Detection

Small Target Forest
Fire Detection

mAP@0.5 mAP@0.5-S FPS
YOLOv5s 76.1 60.2 55.2

YOLOv5s + CBAM 79.8 62.5 56.5
YOLOv5s + SPPFP 79.4 64.2 53.1
YOLOv5s + BiFPN 78.9 64.8 55.3

YOLOv5s + VST 79 64.7 51.5
YOLOv5s + VST + CBAM 79.9 65.7 51.7

YOLOv5s + VST + CBAM + SPPFP 81.1 66.1 52.1
YOLOv5s + VST + CBAM + SPPFP + BiFPN 82.1 70.3 54.1

3.3. Comparison

After the ablation experiments, we can see that, although YOLOv5 is one of the most
advanced target detection models available, its mAP@0.5 and mAP@0.5-S are relatively low.
In addition, the CBAM was added to YOLOv5s, the SPPF was replaced with SPPFP, the
very-small-target detection layer was added and the Neck layer, and the PANet structure
was replaced with the BiFPN structure in Experiments 2–5, respectively. In Experiment 2,
mAP@0.5 and mAP@0.5-S improved by 3.7% and 2.3%. This demonstrates that adding the
CBAM attention module to YOLOv5s can effectively improve the detection performance
on small-target forest fires. In Experiment 3, mAP@0.5 and mAP@0.5-S improved by 3.3%
and 4.0%. In addition, the FPS was even improved. These prove that the improved SPPF
module can effectively improve the detection performance of the module. In Experiment 4,
mAP@0.5 and mAP@0.5-S improved by 2.8% and 4.6%. This indicates that modifying the
PANet structure in YOLOv5s to a BiFPN structure can effectively improve the detection
performance of the module. In Experiment 5, mAP@0.5 and mAP@0.5-S were boosted
by 2.9% and 4.5%. This demonstrates that adding a very-small-target detection layer can
improve the performance of the model for detecting small-target forest fires. By comparing
the data, we can conclude that all four changes improve the performance of the forest fire
detection model and the small-target forest fire detection model to different degrees.

More importantly, these four changes were fused sequentially in Experiments 6–8.
The mAP@0.5 and mAP@0.5-S of Experiment 6 are higher than those of Experiments 1, 2,
and 5, and the FPS is also lower than the FPS of these three experiments. These evidence
that adding both the very-small-target detection layer and the CBAM attention module
can increase the detection performance of the module for small-target forest fires. Both
of these improvements are effective improvements. Experiment 7 has higher mAP@0.5
and mAP@0.5-S than Experiments 1, 2, 3, and 5, and the mAP@0.5 and mAP@0.5-S of
Experiment 7 are higher compared to Experiment 6. These prove that fusing the very-
small-target detection layer, CBAM attention module, and SPPFP module together can
effectively improve the detection performance of the model for small-target forest fires.
Experiment 8 has higher a and b than the previous Experiments 1–7. We can conclude that
the improved YOLOv5s structure proposed in this paper possesses better performance
compared to YOLOv5s. mAP@0.5 showed a 6.1% improvement compared to baseline;
mAP@0.5-S showed a 10.1% improvement compared to baseline.

After this comprehensive improvement, the small-target forest fire detection model
has better detection performance for small-target forest fires, and facing a target like a forest
fire, our model suffers less interference (Figures 11 and 12).
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Figure 12. Comparison of YOLOv5s and our model. Our model suffers less interference. (a) Five
detection errors detected by YOLOv5s. (b) Three detection errors detected by our model. (c) Three
detection errors detected by YOLOv5s. (d) No error detections detected by our model.

4. Discussion

Compared to common objects in fixed form such as chairs, tables, doors, etc., forest
fires are dynamic objects [24]. Many large forest fires have developed from small forest
fires. If small forest fires are not detected and acted upon immediately, they can lead to
large forest fires and have very serious consequences. Therefore, it is important to study
the detection of early small forest fires. In addition, forest fires have a variety of shapes,
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sizes, textures, and colors, making forest fire targets very complex. Furthermore, the small
size and low pixel size of a forest fire target from a long distance can cause serious missing
of forest fire target features. For the above reasons, it is very difficult to detect small-target
forest fires photographed at a distance.

Therefore, it is important to improve the performance of the detector to identify small-
target forest fires. Through experiments, it was found that YOLOv5 has good detection
performance for large and medium-sized forest fires, but not for small forest fires. YOLOv5
often misses small-target forest fires. Therefore, this paper improves the detection per-
formance of YOLOv5 by adding a very-small-target detection layer, a CBAM attention
module, and improving the original SPPF feature extraction module. However, these three
operations lead to an increase in the number of parameters of the model, resulting in a
decrease in the FPS of the model. This eventually leads to a decrease in the real-time
performance of the small-target forest fire detection model.

In order to solve the problem of the decreasing real-time performance of model
detection, we modify the original PANet structure of the Neck layer of YOLOv5 into a
BiFPN structure. BiFPN not only has fewer parameters and FLOPS compared to PANet,
but also has a much better performance. Therefore, after optimizing the PANet structure to
a BiFPN structure in the experiment, the model not only has better performance but also
better real-time performance.

However, the small-target forest fire detection model in this paper still has shortcom-
ings. Therefore, we will continue to optimize this small-target forest fire detection model.
First, we will research an annotation strategy for the forest fire dataset and use this strategy
to help the model to better extract the features of the target. As the performance of the
model is very much related to the good or bad labeling of the dataset, a well-labeled dataset
can greatly improve the detection performance of the model. Second, we will examine
other ways to improve the performance of the model and reduce the likelihood of the
model being disturbed by non-forest fire targets. Last but not least, in order to have better
deployment of the model, we will also study the light-weighting of the model and improve
the real-time detection performance of the model.

The experimental results show that the model proposed in this paper has good
prospects for practical application. Since forests are mostly found in remote areas, the
cameras are mounted on UAVs or helicopters in practical applications. However the model
proposed in this paper can generate false alarms due to the pixels of the camera and fire-like
objects. That said, compared with forest fire detection methods that lay a large number
of sensors in the forest, the method proposed in this paper not only saves cost, but also
provides firefighters with on-the-spot fire reference. The use of camera images not only has
better real-time functioning compared to the use of satellite remote sensing images, but it
can also detect initial forest fires and thereby reduce damage. Therefore, we think that the
method proposed in this paper may have more advantages.

The small-target forest fire identification model proposed in this paper requires cam-
eras as sensors in practical deployment. Although good real-time performance can be
obtained by using a camera as a sensor, it is susceptible to factors such as light and occlu-
sions. The model in this paper has been improved to reduce the false alarm rate, but there
are still false alarms. We will continue to investigate how to reduce the false alarm rate and
further improve the detection performance of the model in subsequent research.

In the follow-up study, we will deploy different cameras on the UAV for forest fire
detection experiments. Camera types include 360-degree panoramic cameras, conventional
HD cameras, and OAK cameras. In addition, we note that Sengan et al. [25] proposes a real-
time automatic survey of Indian road animals by using deep learning for 3D reconstruction
detection. This paper uses deep learning for deep-learning real 3D motion-based YOLOv3
(R-3D-YOLOV3) image classification and filtering. This article provides some inspiration
for our subsequent work. Last but not least, we note that Zhang et al. [26] proposed a
forest fire detection system based on acoustic sensors. In the simulation experiments, the
recognition rate of the method can reach about 70%. The use of acoustic sensors can detect
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early forest fires that cannot be detected using cameras. It is hoped that the advantages of
multiple forest fire detection methods can be combined with each other in future research,
and that the accuracy of forest fire detection will be greatly improved.

5. Conclusions

Many of the large forest fires that occur globally have evolved from small forest fires.
In addition, since forest fires are dynamic targets, it is impossible to have good performance
using conventional target detection models. Therefore, it is important to study how to
detect initial forest fires and small-target forest fires.

To address these problems, a small-target forest fire detection model is proposed in
this paper. First, the CBAM attention module and the very-small-target detection layer are
added to YOLOv5 to enhance the model’s attention to small targets of forest fires. Second,
the closely connected structure is used to improve the SPPF module and reduce the loss
of feature information due to maximum pooling in the SPPF module. Finally, optimizing
PANet to BiFPN allows the model to have better performance with fewer parameters.

The experimental results show that the performance of our model is significantly
improved compared to YOLOv5s, which makes the model promising for small-target forest
fire detection. In subsequent research work, we will proceed to test the small-target forest
fire detection module proposed in this paper for practical applications.
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