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Abstract: Structural complexity of trees is related to various ecological processes and ecosystem
services. To support management for complexity, there is a need to assess the level of structural
complexity objectively. The fractal-based box dimension (Db) provides a holistic measure of the
structural complexity of individual trees. This study aimed to compare the structural complexity of
Scots pine (Pinus sylvestris L.) trees assessed with Db that was generated with point cloud data from
terrestrial laser scanning (TLS) and aerial imagery acquired with an unmanned aerial vehicle (UAV).
UAV imagery was converted into point clouds with structure from motion (SfM) and dense matching
techniques. TLS and UAV measured Db-values were found to differ from each other significantly
(TLS: 1.51 ± 0.11, UAV: 1.59 ± 0.15). UAV measured Db-values were 5% higher, and the range
was wider (TLS: 0.81–1.81, UAV: 0.23–1.88). The divergence between TLS and UAV measurements
was found to be explained by the differences in the number and distribution of the points and the
differences in the estimated tree heights and number of boxes in the Db-method. The average point
density was 15 times higher with TLS than with UAV (TLS: 494,000, UAV 32,000 points/tree), and TLS
received more points below the midpoint of tree heights (65% below, 35% above), while UAV did the
opposite (22% below, 78% above). Compared to the field measurements, UAV underestimated tree
heights more than TLS (TLS: 34 cm, UAV: 54 cm), resulting in more boxes of Db-method being needed
(4–64%, depending on the box size). Forest structure (two thinning intensities, three thinning types,
and a control group) significantly affected the variation of both TLS and UAV measured Db-values.
Still, the divergence between the two approaches remained in all treatments. However, TLS and UAV
measured Db-values were consistent, and the correlation between them was 75%.

Keywords: forest structure; box dimension; ground-based LiDAR; unmanned aerial vehicle (UAV);
structure from motion (SfM); forest management

1. Introduction

Forest structure refers to all dimensional, architectural, and distributional features of
tree individuals in a given space at a given time [1,2]. The structure of a tree is influenced
by its genetics and biotic and abiotic external factors. Forest management causes trees
to allocate their growth differently, affecting the forest structure [3,4]. Forest structure is
an important driver of several ecosystem functions and services [5], and forest structural
complexity has been noticed to correlate, for example, with biodiversity [6], scenic beauty
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and recreational benefits [7], micro-climatic stability [8], and forest productivity [9]. In
addition, structural complexity enhances ecosystem carbon storage [10] and the ability of
forests to adapt to environmental changes [11]. To support forest management, the forest
structural complexity must be measured objectively.

Traditionally, structural complexity has been measured with different indices, which
use different subsets of one- or two-dimensional (2D) structural attributes. For example,
the structural complexity index [12] utilizes tree height and spacing, while the tree size
differentiation index [13] utilizes diameter and spacing [8]. Nowadays, forest structure can
be examined holistically with three-dimensional (3D) data derived from different remote
sensing systems [1,8,14].

Especially terrestrial laser scanning (TLS) has shown to be an efficient method for
assessing the 3D forest structure [14–18]. TLS is an active remote sensing system that uses
LiDAR (light detection and ranging) to measure the surrounding 3D space with millimeter-
level accuracy [19]. Basically, the structural complexity can be assessed whenever the
point cloud data is available. In addition to scanning LiDAR systems, point clouds can
be generated from images using photogrammetric methods. For example, structure from
motion (SfM) technology creates a 3D structure of a target by utilizing overlapping 2D
imagery taken from multiple viewpoints [20]. For finding correspondence between images,
different object recognition systems are used. Usually, a corresponding feature must appear
on at least three images but obtaining as many images as possible is recommended for
redundancy [20]. The matching features are then tracked and used to estimate the camera
positions and orientations [20,21]. For example, aerial imagery for SfM purposes can be
acquired with unmanned aerial vehicles (UAV).

TLS and UAV photogrammetry is widely used in examining 3D forest structure [22],
and both have advantages and disadvantages. TLS produces denser and more detailed
point clouds than UAVs [23–25]. However, aerial images can be acquired with consumer-
grade UAVs, digital cameras, and open-source software [16,20], which reduces costs. In
addition, the TLS approach is rather laborious and time-consuming due to equipment
transport and displacement in potentially challenging conditions [26] and the measuring
and co-registration of multi-scan point clouds [16]. Although the operational area of a UAV
is limited by battery duration [22], airborne data acquisition is quicker and allows larger
area coverage than TLS. Due to the limited field of view and occlusion caused by other
trees, the ability of TLS to capture the upper canopy can be limited [27,28]. In contrast, the
measurement geometry of UAVs is limited precisely to the upper canopy surface [29]. As
a passive remote sensing system, aerial photography cannot penetrate the canopy at the
same level as active systems. Therefore, mid- and understory might remain poorly defined
with the UAV approach [21,30].

Object structural complexity can be mathematically described by fractal analysis [31].
With the recent 3D data, it has become possible to utilize fractal analysis to determine
the structural complexity of trees. A fractal-like nature of a crown is an essential aspect
of a tree’s structure [32]. Fractals are self-similar geometric objects, that is, objects that
are formed of small parts that each resemble the whole [33]. Due to external and internal
factors, trees are not perfectly self-similar [34] but only fractal-like. Box dimension (a.k.a.
Minkowski–Bouligand dimension) is a method for estimating the complexity of fractal-like
objects [32,33]. For a tree, box dimension (Db) values can theoretically vary between 1 and
3, where 1 would be a branchless pole and 3 a solid cube [35]. Figure 1 shows two trees
with a Db-value between these extremes. According to the earlier studies, the physical limit
for a tree is somewhere near two, but trees growing in open or urban areas can reach higher
values [35,36].
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Figure 1. Illustration of objects with different box dimension (Db) values: a pole (Db = 1), two
structurally different Scots pine trees (Db = 1.49 and 1.73), and a cube (Db = 3). Modified after Figure 1
in Seidel [35].

Box dimension provides a holistic measure of the structural complexity related to
tree ecological functions and services [5]. When the level of structural complexity can be
measured, it can be enhanced with silvicultural choices. Trees develop a certain structure
to maximize the resources they need for growth, and the box dimension deepens our
understanding of how the structure and function of trees are connected. It gives an
insight into the balance between construction and maintenance costs on the one hand and
photosynthetic gains on the other by describing the structural efficiency, productivity, and
crowing conditions (i.e., competition, availability of light) [2,32,35,37]. Db measures the
density and distribution of plant material and simultaneously reflects several structural
attributes (e.g., crown dimensions, branching patterns) [2,34]. A point cloud’s architectural
information is combined into a single number [5]. However, this makes it difficult to
distinguish which aspect affects the complexity [35], and the direct comparison with other
measurement approaches remains uncertain [32]. In addition, as the box dimension of a
tree is nearly impossible to measure in field inventories, there is no direct reference data.
Hence, it is important to understand how different remote sensing techniques measure box
dimension values and whether these techniques are comparable.

In recent years, the box dimension method has been increasingly used to measure
individual trees’ structural complexity. It has been related, for example, to tree species
identification, availability of light [32], type and strength of competition [32,34], benefit-to-
cost ratio (i.e., the ratio between photosynthetically active surface and the volume of the
“wooden skeleton”) [35], and tree growth [4].

Box dimension values have mainly been calculated from LiDAR-based point cloud
data, while photogrammetric methods have received less attention. Our study bridges this
knowledge gap as the aim is to assess the structural complexity of individual Scots pine
trees by comparing TLS and UAV photogrammetry (hereafter referred to only as UAV).
TLS and UAV provide different perspectives for examining structural complexity; thus,
the calculated box dimension values may differ. In order for both methods to be used as
a basis for Db-values, it is important to know the level of comparability between them
and to understand what causes the possible differences. The research questions are: (1)
Do TLS and UAV measured box dimension values differ significantly from each other?
(2) what explains the possible divergence between the values? and (3) does the forest
structure influence the divergence between TLS and UAV measurements? The hypotheses
are that (1) the differences in the number and distribution of the points in the TLS and UAV
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measured point clouds explain the divergence between the values, (2) the differences in
the estimated tree heights and number of boxes explain the divergence, (3) the sparser the
forest, the better UAV measurements correspond to TLS, and (4) structurally complex trees
are characterized as complex by both methods.

2. Materials and Methods
2.1. Study Area

The study area consists of three study sites with nine rectangular 900–1200 m2 sample
plots in each. The sites have been originally described by Saarinen et al. [3,4] and Yrttimaa
et al. [28,38]. The Natural Resources Institute Finland established the study area in 2005–
2006 to investigate the effect of different thinning treatments on Scots pine (Pinus sylvestris)
trees. The sites are located in southern Finland (Figure 2), the biome is the southern boreal
forest zone, and the fertility is mesic heath. Even-aged Scots pine trees dominate all sites.
More detailed information on the study sites is presented in Table 1.
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Figure 2. Location of the study sites: Palomäki, Pollari, and Vesijako.

Table 1. Information on the study sites.

Palomäki Pollari Vesijako

Coordinates 62◦3.6′ N 24◦19.9′ E 62◦4.4′ N 24◦30.1′ E 61◦21.8′ N 25◦6.3′ E
Municipality Mänttä-Vilppula Mänttä-Vilppula Padasjoki

Elevation above sea level (m) 135 155 120
Temperature sum (◦ days) 1195 1130 1256

Year of establishment 2005 2006 2006
Age at establishment 50 45 59
Thinning treatments 2006 2006 2007

The latest field measurements April 2019 October 2018 April 2019

The first thinning was executed in the early 1990s (~30% of stems removed), and during
the 2000s, the study sites were exposed to six different thinning treatments plus one control
group with no treatment. Thinning treatments included two levels of thinning intensity
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(moderate, intensive) and three thinning types (from below, from above, systematic from
above) (Table 2).

Table 2. Different thinning treatments.

Thinning Treatment Number Explanation Number of Plots

Moderate thinning from
below 1 Moderate thinning refers to prevailing thinning

guidelines applied in Finland [39].

3

Moderate thinning from
above 2 4

Moderate systematic thinning 3 5
Intensive thinning from below 4 Intensive thinning corresponds 50% lower

remaining basal area (m2/ha) than in the plots with
moderate thinning intensity.

3
Intensive thinning from above 5 4
Intensive systematic thinning 6 5

Control/no treatment 7 No thinning treatment since the establishment. 3 (27 in total)

Small, suppressed, and damaged were removed in thinning from below and thin-
ning from above. In thinning from below, co-dominant trees were removed, whereas
mostly dominant trees were removed in thinning from above. In systematic thinning, only
dominant trees were removed while suppressed and co-dominant trees were left to grow.
Regular spatial distribution of trees was maintained in thinnings from below and above,
while in systematic thinning, it was not emphasized as much. The remaining basal area
after moderate thinning was ~68% of stocking before treatment and after intensive thinning
~34%. Figure 3 illustrates the effects of different thinning treatments on stand density.

Tree-wise field inventory was carried out during 2018–2019, and for all trees, tree
species, diameter at breast height (DBH), crown layer, and health status were recorded.
Roughly half of the trees were selected as sample trees for which tree height, crown
base height, and the height of the lowest dead branch were recorded with an electronic
clinometer. The heights of the other trees were estimated with allometric models calibrated
for each plot using the sample trees. In total, there were 2203 trees in the study area: 2107
Scots pines, 90 Norway spruces (Picea abies), 4 grey alders (Alnus incana), and 2 downy
birches (Betula pubescens). Accordingly, the portion of Norway spruce was 4.1%, and the
portion of deciduous trees was 0.3%.

2.2. Point Cloud Data Acquisition

Acquisition of the point cloud data used in this study has been originally described in
Saarinen et al. [3,4] and Yrttimaa et al. [28,38]. TLS data were obtained between September
and October 2018 using a multi-scan approach and a Trimble TX5 3D phase-shift laser
scanner (Trimble Inc., Sunnyvale, CA, USA) operating at a 1550 nm wavelength and mea-
suring 976,000 points per second. The scanner delivers a hemispherical (300◦ vertical, 360◦

horizontal) point cloud with an angular resolution of 0.009◦ in both vertical and horizontal
directions. These scanning parameters resulted in a point spacing of approximately 6.3 mm
at 10 m distance from the scanner in an individual TLS point cloud. Each sample plot
was scanned from eight scan positions evenly distributed on the sample plot to obtain a
comprehensive characterization of each of the 27 sample plots. Two scans were conducted
from the plot center and six scans closer to the plot borders. The scanner was placed on a
tripod at a height of ~1.7 m from the ground. Artificial reference targets (i.e., white spheres
of 198 mm in diameter) were used for co-registering the scans into one coordinate system.
The registration was implemented using FARO SCENE software (version 2018) with a
mean distance error of 2.9 ± 1.2 mm, mean horizontal error of 1.3 ± 0.4 mm, and mean
vertical error of 2.3 ± 1.2 mm. The average point density of the multi-scan point clouds
was 52,000–91,000 points/m2, depending on the sample plot structure.

UAV point clouds were acquired in October 2018 using Gryphon Dynamics quadcopter
equipped with an Applanix APX-15 EI UAV positioning system consisting of a multiband
GNSS and IMU, a Harxon HX-CHX600A antenna, and two Sony A7R II digital cameras
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(CMOS sensors of 42.4 MP with Sony FE 35 mm f/2.8 ZA Carl Zeiss Sonnar T* lenses).
The cameras were mounted at +15◦ and −15◦ oblique zenith angles to improve the 3D
digitization of trees [40] and the inclusion of more ground control points (GCPs) [41].
Images were acquired every two seconds and triggered via Sony Timelapse software to
record precise positions and orientation angles for each captured image. Post Processed
Kinematic (PPK) GNSS solutions and angles for each camera were computed in an Applanix
POSPac UAV (version 8.2, Applanix, Richmond Hill, ON, Canada) software, using a RINEX
service of the National Land Survey of Finland, which offers observation data from the
FinnRef stations. During the UAV campaign, the flying altitude was 140 m and the speed
was 5 m/s.
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(TLS) data. Tree density (stems/ha) includes all tree species.

The number of captured images was 639 (Palomäki), 614 (Pollari), and 663 (Vesijako).
The imaging forward overlap was ~90%, and the side overlap was ~80%. Eight GCPs
were placed and measured for each study site using the Topcon Hiper HR RTK GNSS
receiver (Topcon, Tokyo, Japan). The photogrammetric processing was carried out using the
Agisoft Metashape software (version 1.5.0) following the workflow presented by Viljanen
et al. [42]. The photogrammetric UAV point clouds were generated from images with
two-times magnified pixel size (i.e., using the quality setting ‘high’). A depth filtering (with
the setting ‘mild’) was applied for the resulting point clouds to reduce erroneous points
while retaining small features of interest as much as possible, such as treetops [41,43]. In the
bundle adjustment, the root mean square errors (RMSEs) of GPCs were 0.29–1.75 cm for the
x-, y-, and z-coordinates (Table 3). As a result, the dense UAV point clouds were obtained
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with a reprojection error of 0.65–0.70 pixels, point cloud resolution of 3.11–3.53 cm/pixel,
and a point density of 804–1030 points/m2, depending on the study site.

Table 3. The average root mean square errors (RMSEs) of ground control points (GCPs) for x-, y- and
z-coordinates in each study site.

Study Site
RMSEs of GCPs (cm)

x y z

Palomäki 0.64 1.36 0.68
Pollari 0.48 0.47 0.29

Vesijako 1.25 1.75 1.19

TLS and UAV point clouds were normalized using LAStools software [44]. TLS point
cloud normalization followed the procedure and parameters initially presented in Ritter
et al. [45]. This included classifying the point cloud into ground points and vegetation
points. The ground points were used to generate a digital elevation model (DTM), which
was used to convert the z-coordinates of vegetation points into heights above the ground.
In the case of UAV point clouds, the normalization was carried out with a DTM provided
by the National Land Survey of Finland.

Due to differences in the applied coordinate reference systems (CRSs), the normalized
TLS (scanner’s local CRS) and UAV point clouds (global CRS) were registered together
by manually searching for common tie points and carrying out a 3D rigid transformation
between the datasets. Manually extracted locations of the tops of sample trees (minimum of
4 per each sample plot) were used as the tie points for the coordinate transformation. The
sample trees were selected to completely characterize their crown structure in TLS and UAV
point clouds. The top locations were determined by picking the highest point representing
the top of each sample tree. The coordinate pairs (i.e., TLS-derived and UAV-derived tree
top location) were used to compute a 3D rigid transformation matrix that was then used
to transform the TLS point cloud into the UAV point cloud’s CRS. Canopy height models
(CHMs) at a 20 cm resolution were then generated from the normalized point clouds.
Treetop positions were identified with the Variable Window Filter approach [46], and
crown segments were delineated with Marker-Controlled Watershed Segmentation [47].
The crown segments were then used to extract TLS and UAV points of individual trees.
Prior to further analyses, TLS points classified as ground points and UAV points with a
height close to zero were omitted. The workflow of the point cloud data processing is
presented in Table 4.

Table 4. Workflow of terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) measured
point cloud data processing. DTM = digital terrain model, CRS = coordinate reference systems, CHM
= canopy height model, R = statistical software R.

Data
Acquisition

Point Cloud
Generation

Height-
Normalization Co-Registration Tree Segmentation Box Dimension

M
ul

ti
-s

ca
n

TL
S

Co-registration of
individual scans:

FARO SCENE
software

LAStools
(lasground) 3D rigid

transformation from
the scanner CRS

(TLS) to global CRS
(UAV) based on

manually extracted
tie points:
MATLAB

1. CHM generation: LAStools
(lascanopy);

2. Variable window
filtering to detect

treetops: R, ForestTools [48]
3. Marker-controlled

watershed
segmentation to

segment tree
crowns: R, ForestTools;

4. Point-in-polygon
approach to

extract tree point
clouds: LAStools

Assessment of tree
structural

complexity using
box

dimension: R

U
A

V
ph

ot
og

ra
m

m
et

ry

Photogrammetric
processing:

Agisoft Metashape
Quality setting: ‘high’

Depth filtering:
‘mild’

Open-source
DTM +

LAStools
(lasheight)
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2.3. Methods

The box dimension (Db) of a tree is determined by counting how many cubic boxes are
needed to cover all the points in the 3D point cloud and how the number of boxes changes
when the box size changes [35]. The counting starts with the largest box needed to cover
the whole tree (edge length = tree height) and proceeds with smaller boxes, always having
half the edge length of the previous box [34,37]. The calculation has the following steps
described by Feldman [33]:

1. count the number of boxes needed to cover the object (N);
2. repeat with smaller box sizes (r = length of the box edge/length of the largest

box edge);
3. collect the values of N and 1/r into a table;
4. take the logarithm of the values;
5. plot the data with log(N) on the vertical axis and log(1/r) on the horizontal axis;
6. Db is then the slope of the trendline.
In this study, the box dimension for each detected tree was calculated from TLS and

UAV measured point clouds using statistical software R (version 4.0.2). Only trees detected
with TLS and UAV were included in this study, so the sample size was 2065. Eight box
sizes were used so that the edge length of the initial box corresponded to tree height, and
the following box sizes were tree height divided by 2, 4, 8, 16, 32, 64, and 128. The values
were calculated with natural logarithms. Figure 4 exemplifies the process: the eight points
on the graph represent the calculations with eight different box sizes, and the slope of the
fitted straight line expresses the Db-value.
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Figure 4. Box dimension (Db) is the slope of the fitted straight line (x = 1.493). Modified after Figure 1
in Seidel [32].

The means of TLS and UAV measured Db-values were compared with Welch’s t-test. To
understand the statistical dispersion, point clouds were examined with standard deviation.
The correlations between TLS and UAV measured Db-values, and the number of points
was tested with the Pearson correlation test. The differences between the ranges of TLS
and UAV measured x-, y- and z-axes were examined by subtracting UAV ranges from TLS
ranges. Furthermore, the distributions of TLS and UAV measured points were examined by
dividing trees longitudinally into two equal parts and calculating the proportion of points
below and above. Simple linear regression was used to examine whether the number of TLS
and UAV measured points explained the variation in Db-values and whether the number
of the boxes explained the variation in Db-values. A linear mixed-effect model was used
to examine whether different thinning treatments affected the Db-values. p-values below
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0.05 were considered statistically significant. Tests were executed with either R or SPSS
Statistics software (version 27). Figures of point clouds were created with CloudCompare
software (version 2.11.1) or with the lasview tool from LAStools software [44].

3. Results
3.1. Tree Detection

Out of all 2107 Scots pine trees identified during the field measurements in the study
area, TLS detected 2075 trees and UAV 2065. TLS therefore missed 32 trees (1.5%) and UAV
42 (2.0%). In the sparsest plots (intensive below, 286 trees/ha), all the Scots pine trees were
detected, and in the densest plots (no treatment, 1315 trees/ha), the detection rate was the
weakest: 96–97% (Table 5).

Table 5. Tree density, including all tree species, number of undetected Scots pine trees by terrestrial
laser scanning (TLS) and unmanned aerial vehicle (UAV), and detection rates within different thinning
treatments.

Treatment Number Trees/ha
Undetected Scots Pines Detection Rate (%)

TLS UAV TLS UAV

Moderate below 1 712 1 3 99.6 98.7
Moderate above 2 924 2 2 99.5 99.5

Moderate
systematic 3 958 11 15 97.8 97.0

Intensive below 4 286 0 0 100.0 100.0
Intensive above 5 450 3 3 98.5 98.5

Intensive
systematic 6 473 3 4 98.9 98.5

No treatment 7 1315 12 15 97.1 96.3

All plots 727 32 42 98.5 98.0

3.2. Box Dimension Values

The means and standard deviations of TLS and UAV measured Db-values for all
plots were 1.51 ± 0.11 and 1.59 ± 0.15, respectively. The range for TLS measured values
was 0.81–1.81 and for UAV 0.23–1.88. Other descriptive statistics within different thinning
treatments are shown in Table 6. Db-values were higher in the intensive thinning treatments
than in moderate thinnings and lowest in the control plots. According to the thinning type,
the order of Db-values from highest to lowest is below, above, and systematic. Figure 5
demonstrates how TLS and UAV measured Db-values vary in thinning treatments.

Table 6. Means (with standard deviations, ±), minimums, maximums, and ranges of terrestrial laser
scanning (TLS) and unmanned aerial vehicle (UAV) measured box dimension (Db) values within
different thinning treatments.

Treatment
Mean Minimum Maximum Range

TLS UAV TLS UAV TLS UAV TLS UAV

Moderate below 1.51 ± 0.10 1.59 ± 0.17 0.81 0.34 1.71 1.86 0.90 1.51
Moderate above 1.50 ± 0.09 1.57 ± 0.12 1.17 1.16 1.71 1.80 0.54 0.64

Moderate systematic 1.49 ± 0.10 1.57 ± 0.14 1.11 0.23 1.76 1.85 0.65 1.62
Intensive below 1.65 ± 0.06 1.72 ± 0.07 1.49 1.58 1.81 1.88 0.32 0.30
Intensive above 1.60 ± 0.08 1.68 ± 0.07 1.32 1.46 1.80 1.86 0.48 0.39

Intensive systematic 1.59 ± 0.08 1.68 ± 0.08 1.22 1.39 1.77 1.84 0.55 0.45
No treatment 1.43 ± 0.11 1.49 ± 0.16 1.09 0.48 1.71 1.86 0.63 1.38

All plots 1.51 ± 0.11 1.59 ± 0.15 0.81 0.23 1.81 1.88 1.01 1.65



Forests 2022, 13, 1305 10 of 19Forests 2022, 13, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 5. Boxplots of terrestrial laser scanning (TLS, left) and unmanned aerial vehicle (UAV, right) 
measured box dimension (Db) values (y-axis) within different thinning treatments (x-axis). Treat-
ment numbers are explained in Table 2. 

TLS and UAV measured Db-values differed significantly from each other (p-value < 
0.001), and on average, UAV measured Db-values were 5% higher than TLS measured. A 
linear mixed-effects model was used to examine whether different thinning treatments 
affected Db-values. It was found that forest structure significantly affected both TLS and 
UAV measured Db-values (p-values < 0.001). However, in every treatment, the divergence 
between the TLS and UAV measured Db-values was statistically significant (p-values < 
0.001). The correlation between TLS and UAV measured Db-values was 75%, and the co-
efficient of determination (R2) was 56% (Figure 6). 

 
Figure 6. Relationship between the box dimension (Db) values measured with terrestrial laser scan-
ning (TLS) and unmanned aerial vehicle (UAV). The coefficient of determination (R2) is 0.559. 

3.3. Number and Distribution of Points 
The average point density for all plots with TLS was 494,000 points/tree, and with 

UAV, 32,000 points/tree. For both TLS and UAV, the highest point densities were obtained 
from the plots with intensive thinnings and the lowest from the control plots (Table 7). In 
addition, with TLS and UAV, high point densities and high Db-values occurred together, 
and the correlation between the number of measured points and Db-values was 52% with 
TLS and 71% with UAV. 

1 2 3 4 5 6 7

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

TLS

1 2 3 4 5 6 7

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

UAV

Figure 5. Boxplots of terrestrial laser scanning (TLS, left) and unmanned aerial vehicle (UAV, right)
measured box dimension (Db) values (y-axis) within different thinning treatments (x-axis). Treatment
numbers are explained in Table 2.

TLS and UAV measured Db-values differed significantly from each other (p-value < 0.001),
and on average, UAV measured Db-values were 5% higher than TLS measured. A linear
mixed-effects model was used to examine whether different thinning treatments affected Db-
values. It was found that forest structure significantly affected both TLS and UAV measured
Db-values (p-values < 0.001). However, in every treatment, the divergence between the
TLS and UAV measured Db-values was statistically significant (p-values < 0.001). The
correlation between TLS and UAV measured Db-values was 75%, and the coefficient of
determination (R2) was 56% (Figure 6).

Forests 2022, 13, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 5. Boxplots of terrestrial laser scanning (TLS, left) and unmanned aerial vehicle (UAV, right) 
measured box dimension (Db) values (y-axis) within different thinning treatments (x-axis). Treat-
ment numbers are explained in Table 2. 

TLS and UAV measured Db-values differed significantly from each other (p-value < 
0.001), and on average, UAV measured Db-values were 5% higher than TLS measured. A 
linear mixed-effects model was used to examine whether different thinning treatments 
affected Db-values. It was found that forest structure significantly affected both TLS and 
UAV measured Db-values (p-values < 0.001). However, in every treatment, the divergence 
between the TLS and UAV measured Db-values was statistically significant (p-values < 
0.001). The correlation between TLS and UAV measured Db-values was 75%, and the co-
efficient of determination (R2) was 56% (Figure 6). 

 
Figure 6. Relationship between the box dimension (Db) values measured with terrestrial laser scan-
ning (TLS) and unmanned aerial vehicle (UAV). The coefficient of determination (R2) is 0.559. 

3.3. Number and Distribution of Points 
The average point density for all plots with TLS was 494,000 points/tree, and with 

UAV, 32,000 points/tree. For both TLS and UAV, the highest point densities were obtained 
from the plots with intensive thinnings and the lowest from the control plots (Table 7). In 
addition, with TLS and UAV, high point densities and high Db-values occurred together, 
and the correlation between the number of measured points and Db-values was 52% with 
TLS and 71% with UAV. 

1 2 3 4 5 6 7

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

TLS

1 2 3 4 5 6 7

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

UAV

Figure 6. Relationship between the box dimension (Db) values measured with terrestrial laser
scanning (TLS) and unmanned aerial vehicle (UAV). The coefficient of determination (R2) is 0.559.

3.3. Number and Distribution of Points

The average point density for all plots with TLS was 494,000 points/tree, and with
UAV, 32,000 points/tree. For both TLS and UAV, the highest point densities were obtained
from the plots with intensive thinnings and the lowest from the control plots (Table 7). In
addition, with TLS and UAV, high point densities and high Db-values occurred together,
and the correlation between the number of measured points and Db-values was 52% with
TLS and 71% with UAV.
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Table 7. Means of terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) measured box
dimension (Db) values and average point densities/ tree in thousands (K) (with standard deviations,
±) within different thinning treatments.

Treatment
TLS UAV

Db Points (in K) Db Points (in K)

Moderate below 1.51 515 ± 318 1.59 36 ± 18
Moderate above 1.50 460 ± 286 1.57 27 ± 17

Moderate systematic 1.49 428 ± 290 1.57 28 ± 15
Intensive below 1.65 912 ± 435 1.72 70 ± 22
Intensive above 1.60 615 ± 308 1.68 39 ± 17

Intensive systematic 1.59 577 ± 348 1.68 42 ± 17
No treatment 1.43 384 ± 282 1.49 19 ± 12

All plots 1.51 494 ± 330 1.59 32 ± 20

It was further examined whether the number of UAV points affected the difference
of the means in TLS and UAV measured Db-values. That is, are the means similar when
more UAV points are obtained? To test this, trees were divided into five classes according
to how many UAV measured points they contained (Table 8). In every class, the differences
between the means in TLS and UAV measured Db-values were statistically significant
(p-values < 0.001).

Table 8. Detected Scots pine trees (n = 2065) are divided into five classes according to the number of
measured points of unmanned aerial vehicles (UAV). The average number of terrestrial laser scanning
(TLS) measured points in each class was consistent with UAV points.

Number of UAV Points Average Number of TLS Points Db-TLS Db-UAV n

≥80,000 1,149,000 1.68 1.77 39
80,000 > x ≥ 60,000 795,000 1.64 1.73 166
60,000 > x ≥ 40,000 626,000 1.58 1.69 385
40,000 > x ≥ 20,000 483,000 1.53 1.62 826

20,000 > x ≥ 0 315,000 1.41 1.44 649
x ≥ 0 494,000 1.51 1.59 2065

The distribution of the points was examined by dividing trees in half with respect
to the z-axis (i.e., longitudinally) and calculating points above and below (Table 9). On
average, 65% of TLS measured points originated below and 35% above the midpoint of tree
heights. With UAV, the percentages were 22% below and 78% above. The largest difference
between TLS and UAV measurements was found in the control plots. With the intensive
thinnings, TLS and UAV measured above and below percentages were closest to each other.

Table 9. Percentages of terrestrial laser scanning (TLS) and unmanned aerial vehicle (UAV) measured
points above and below the midpoint of the z-axis (i.e., the height of trees).

Treatment
TLS UAV

Above (%) Below (%) Above (%) Below (%)

Moderate below 30 70 83 17
Moderate above 34 66 82 18

Moderate systematic 32 68 81 19
Intensive below 44 56 69 31
Intensive above 44 56 72 28

Intensive systematic 42 58 72 28
No treatment 26 74 87 13

All plots 35 65 78 22
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Compared to TLS measurements, the standard deviations of the points concerning
all axes were larger in UAV measurements, but the ranges of point distances were smaller
(Table 10). Figure 7 illustrates how TLS points are clustered in the center (i.e., in the stem),
whereas UAV points are more evenly distributed.

Table 10. On the left, the standard deviations of terrestrial laser scanning (TLS) and unmanned aerial
vehicle (UAV) measured points with respect to all axes, and on the right, the difference between the
ranges with standard deviations (UAV measured ranges subtracted from TLS measured).

Standard Deviation (cm) Difference between
Ranges, TLS–UAV (cm)Axis TLS UAV Difference

x 46 78 32 6 ± 15
y 46 78 32 6 ± 15
z 480 540 60 1 ± 191
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20,000. The histograms (TLS top, UAV bottom) illustrate the number and distribution of the points
with respect to the x-coordinate.

3.4. Tree Heights and Number of Boxes

The mean differences between field measured tree heights, and TLS and UAV mea-
sured tree heights were 34 cm and 54 cm, respectively. Both TLS and UAV-derived tree
heights were underestimates. Compared to field measurements, the RMSE of the point
cloud-derived tree heights was 1.32 m for TLS and 1.44 m for UAV. RMSE was highest in
the plots with no treatment and lowest in the intensive thinnings. The mean tree heights,
mean differences, and RMSEs within different thinning treatments are presented in Figure 8
and Table 11.
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Table 11. Mean tree heights (with standard deviations, ±) measured in the field and with terrestrial
laser scanning (TLS) and unmanned aerial vehicle (UAV), and mean difference and root mean square
error (RMSE) compared to the field measurements.

Mean Tree Height (m) Mean Difference (m) RMSE (m)

Treatment Field TLS UAV Field–TLS Field–UAV TLS UAV

Moderate below 21.2 ± 2.1 20.8 ± 2.2 20.5 ± 2.3 0.43 0.68 1.47 1.55
Moderate above 20.4 ± 1.6 20.1 ± 1.7 19.9 ± 1.7 0.26 0.49 0.97 1.01

Moderate systematic 19.5 ± 2.1 19.4 ± 2.1 19.2 ± 2.1 0.18 0.31 1.54 1.49
Intensive below 21.3 ± 1.7 20.8 ± 1.9 20.7 ± 1.9 0.41 0.60 0.67 0.78
Intensive above 19.2 ± 1.5 18.9 ± 1.6 18.4 ± 1.6 0.28 0.72 0.77 0.97

Intensive systematic 18.9 ± 2.5 18.5 ± 2.5 18.3 ± 2.5 0.36 0.60 0.91 1.01
No treatment 20.4 ± 3.0 19.8 ± 2.8 19.8 ± 2.9 0.59 0.64 1.72 2.10

All plots 20.0 ± 2.3 19.7 ± 2.3 19.5 ± 2.4 0.34 0.54 1.32 1.44

Since UAV underestimated the tree heights slightly more than TLS, the average number
of required boxes was larger with all eight box sizes. Simple linear regression was used to
determine whether the number of boxes affected TLS and UAV measured Db-values, and
R2 for the three smallest box sizes varied between 76–80% with TLS and 64–68% with UAV
(p-values < 0.001) (Table 12).

Table 12. The average number of different box sizes required by terrestrial laser scanning (TLS) and
unmanned aerial vehicle (UAV), h = tree height measured with either TLS or UAV, and h/n = tree
height divided by n. The coefficient of determination (R2) explains how much the number of boxes
affects the box dimension (Db) values; UAV > TLS shows how much more boxes UAV used than TLS.

Average Number of Boxes

Box Size TLS R2 UAV R2 UAV > TLS

h 2.6 0.01 2.7 0.00 4%
h/2 4.6 0.02 5.1 0.02 13%
h/4 9.5 0.19 11.7 0.19 23%
h/8 25.2 0.54 31.7 0.18 26%

h/16 82.5 0.71 106.8 0.71 29%
h/32 308.3 0.76 408.8 0.64 33%
h/64 1066.2 0.80 1566.6 0.68 47%
h/128 3293.3 0.79 5400.1 0.67 64%
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4. Discussion

TLS and UAV measured Db-values of individual Scots pine trees differed significantly
from each other. Four reasons were found for this: the differences in the number and
distribution of the points, the estimated tree heights, and the number of boxes. Different
thinning treatments significantly affected both TLS and UAV measured Db-values, but the
forest structure had no significant effect on the divergence between TLS and UAV measured
Db-values. Although TLS and UAV measured Db-values differed, their correlation was
high.

4.1. Tree Detection

Db-values are relatively easy to calculate, but individual trees must first be detected
and extracted from the point cloud data. In this study, TLS detected trees more efficiently
than UAV, and the undetected trees were located mainly on the plots where no treatments
or only moderate treatments had been performed, that is, on the plots with denser forest
structures (Table 5). These results coincide with Liang et al. [19], who remarked that tree
density is inversely proportional to the detection rates, and with Yrttimaa et al. [38]. They
noted that tree and undergrowth density causes occlusion.

4.2. Box Dimension Values

The main result of this study was that TLS and UAV measured Db-values differed
significantly, which answers research question 1. On average, UAV measured Db-values
were 5% higher than TLS measured, and therefore UAV defined trees to be structurally more
complex than was observed with TLS. The standard deviation and range of Db-values were
larger with UAV than TLS, implying that the UAV measurements were not as consistent
(Table 6). Although TLS and UAV measured Db-values differed, the correlation between
them was 75%. This indicates that structurally complex trees were defined as complex by
both methods, which confirms hypothesis 4.

The relationship between tree structural complexity and the forest structure has been
examined in several studies, and the competitive pressure has been found to reduce Db-
values [4,34,35,49]. The same observation was made in this study: stronger thinnings led to
higher Db-values (Table 6). This is reasonable since, with intensive thinnings, there are less
competition and more space to grow, which leads to the higher structural complexity of
remaining trees.

As an answer to research question 3, the forest structure did not eliminate the di-
vergence between TLS and UAV measurements, but with sparse forest structure, UAV
obtained more points. The distribution of these points was more even than with dense
forest structures (Tables 7 and 9), which partly confirms hypothesis 3—the sparser the
forest, the better UAV measurements correspond to TLS.

4.3. Number and Distribution of Points

Point density is one of the most important metrics for evaluating the quality of LiDAR
equipment [50]. If the number of points per tree is limited, the structural complexity cannot
be fully characterized [38]. As TLS measured 15 times more points than UAV (Table 7), it
can be assumed that TLS described the structural complexity with a higher resolution and
finer detail. However, the UAV measured Db-values with the highest amount of obtained
points differed significantly from the TLS values (Table 8), implicating that the points’
distribution might be more important than the number of them.

Most TLS obtained points below the tree’s middle and vice versa with UAV. This
is reasonable since TLS recorded tree characteristics below and UAV above the canopy.
Regarding the point cloud density, the parameter settings used in the photogrammetric
processing software while generating dense point clouds may influence the resulting point
cloud properties and the respective complexity metrics derived from the point clouds.

The differences in standard deviations of points with respect to x- and y-axes (Table 10)
can be explained by the measurement geometry and the fact that TLS was capable of
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characterizing the tree stem, whereas, with UAV, there were not that many observations
of the stem and the points from the outer edges of the crown affected more to the point
distribution. Furthermore, with UAV, more points were obtained from the upper part of
the tree (Table 9). Still, at the same time, the ground vegetation was not properly excluded,
which increased the standard deviation of the points on the z-axis. Therefore, the standard
deviations of the points with respect to all axes were larger in UAV measurements. The
ranges of UAV measured points, on the other hand, were smaller because UAV could not
observe the extreme points and TLS and was averaging the treetops and sides. As in the
Wilkinson et al. [51] study, UAVs rounded off the sharp edges of crowns. In addition,
UAV-estimated tree heights were smaller than TLS-estimated, which affected the z-range.

4.4. Tree Heights and Number of Boxes

Typically, both TLS and UAV underestimate the tree heights [38,52]. Krooks et al. [53]
reported a −2.2 m mean difference with 0.25 m standard error between TLS and the
reference data in the stands, which were dominated by ~75-year-old Scots pine trees
(600–800 stems/ha). In the study by Yrttimaa et al. [38], TLS underestimated the heights of
Scots pine trees on average by 0.3 m with 1.6 m RMSE. Kameyama & Sugiura [52] examined
the accuracy of UAV-SfM in the tree height measurements with Sakhalin fir trees (Abies
sachalinensis) and noticed that the UAV-measured tree heights tended to be lower than the
field measured. With the flight altitude of 140 m, the RMSE varied between 5.2 m (22%)
and 7.2 m (35%) [52].

In this study, UAV underestimated tree heights more than TLS. Several studies have
measured smaller tree heights with UAV photogrammetry than with TLS [54,55], but there
are also opposite results [56]. Due to the occlusion caused by the terrestrial perspective,
TLS could be expected to measure tree heights less well than UAV. Still, the sparse canopy
of the pine forest and a multi-scan approach might have improved the situation.

From the box dimension perspective, the estimated tree height is important as it is used
to choose the initial box size in Db-calculations. The more the tree height is underestimated,
the smaller the initial box is, and the smaller the boxes, the more of them are needed to
cover a tree. The more boxes, the higher the Db-value. In this study, UAV underestimated
tree heights more than TLS, which led to more boxes (Tables 11 and 12). The larger standard
deviations of the UAV points further increased the number of boxes; accordingly, the
observed structural complexity was higher with UAVs (Tables 10 and 12). Due to the
incapability of characterizing terrain through the forest canopy, the UAV point clouds were
normalized using publicly available DTM at a resolution of 2 m × 2 m, which could affect
the variation in the tree height estimation accuracy compared to TLS.

Based on the results of this study, hypotheses 1 and 2 can be confirmed. As an answer
to research question 2, the differences in the number and distribution of the points in the
TLS and UAV measured point clouds and the differences in the estimated tree heights and
number of boxes explain the divergence between TLS and UAV measured Db-values.

4.5. Limitations and Future Work

The tree segmentation explains the differences in standard deviations and ranges
of TLS and UAV acquired points. In this study, the plot-specific UAV point clouds were
segmented so that all the points under each crown segment were included in the point
cloud of an individual tree. Consequently, the individual trees included points from
the ground vegetation (Figure 7). With TLS, the ground vegetation was excluded more
efficiently. In contrast, UAV point clouds were more prone to inaccurate observations from
near-ground vegetation due to their limited capacity to penetrate the forest canopy. The
ground vegetation points in the UAV point clouds may thus have hampered the comparison
between TLS and UAV measured Db-values. Further research should focus on methods to
better eliminate the ground vegetation points.

Saarinen et al. [4] observed that the crown dimensions (i.e., crown width, projection,
and volume) affected the structural complexity more than the stem attributes (i.e., DBH,



Forests 2022, 13, 1305 16 of 19

height, and stem volume). In this study, TLS point clouds were divided into the canopy and
stem points, but UAV point clouds were not, and the structural complexity of the canopies
could not be compared. In future research, it would be noteworthy to investigate whether
TLS and UAV measured Db-values of the canopies differ significantly from each other. This
could also minimize the problem caused by UAV-measured ground vegetation points.

It should be noted that UAV data was originally acquired to supplement TLS measure-
ments [28], and the sensor selection, imaging parameter selection, and data processing were
performed specifically for this purpose. The results could have been closer to each other if
the choices had been made from a different perspective. For example, by using lower flight
altitude and larger oblique angles, it could be possible to obtain better penetration of the
point clouds to capture more points from the ground level and inside the canopy. Camera
technologies and point cloud extraction methods are also developing, thereby providing
better image quality and greater resolution, which is assumed to impact the SfM-based
point cloud quality.

In this study, UAV was equipped with digital cameras, but in recent research, also
laser scanners have been used for this purpose (e.g., [57–60]). UAV laser scanning could
have provided a more detailed vertical characterization of the trees and thus point clouds
more comparable with TLS [61,62]. On the other hand, the measurement geometry of
close-range terrestrial photogrammetry could have been better in line with that of TLS,
resulting in more focus on the lower parts of the tree characteristics as with TLS [63,64].
Altogether, TLS represents the state-of-the-art geometric accuracy in point cloud characteri-
zation [65] and thus enables the comparison of other close-range sensing techniques such
as UAV photogrammetry.

5. Conclusions

Since the structural complexity of trees supports various ecological processes and
ecosystem services, complexity must be measured. Only with this knowledge can the
structural complexity be fostered through forest management. A fractal-based box di-
mension method combined with point cloud data acquired with different remote sensing
systems provides an objective and holistic measure of structural complexity. In this study,
the structural complexity of individual Scots pine trees was assessed with box dimension
values that were generated with point cloud data from TLS and aerial imagery acquired
with a UAV. Photogrammetric point clouds collected above the canopy did not provide an
identical characterization of the structural complexity compared to laser scanning point
clouds collected under the canopy. The divergence between TLS and UAV measurements
was found to be explained by the differences in the number and distribution of the points
and the differences in the estimated tree heights and number of boxes in the box dimension
method. Forest structure affected the variation of TLS and UAV measured Db-values,
but the divergence between TLS and UAV remained significant. However, TLS and UAV
measured box dimension values were highly correlated, and structurally complex trees
were characterized as complex by both methods.
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Republic, 18–20 March 2020; Kačmařík, M., Růžička, J., Eds. Available online: http://gisak.vsb.cz/GIS_Ostrava/GIS_Ova_2020
/proceedings/papers/gis20205e3c1766d2e87.pdf (accessed on 11 August 2022).
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