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Abstract: Rapid and accurate extraction of landslide areas triggered by earthquakes has far-reaching
significance for geological disaster risk assessment and emergency rescue. At present, visual inter-
pretation and field survey are still the most-commonly used methods for landslide identification,
but these methods are often time-consuming and costly. For this reason, this paper tackles the
problem of co-seismic landslide identification and the fact that there is little sample information in
existing studies on landslide. A landslide sample dataset with 4000 tags was produced. With the
YOLOv3 algorithm as the core, a convolutional neural network model with landslide characteristics
was established to automatically recognize co-seismic landslides in satellite remote sensing images.
By comparing it with the graphical interpretation results of remote sensing images, we found that
the remote sensing for landslide recognition model constructed in this paper demonstrated high
recognition accuracy and fast speed. The F1 value was 0.93, indicating that the constructed model
was stable. The research results can provide reference for emergency rescue and disaster investigation
of the same co-seismic landslide disaster.

Keywords: YOLOv3; deep learning; automatic landslide identification; remote sensing image

1. Introduction

Co-seismic landslides [1] are secondary hazards triggered by earthquakes in mountain-
ous regions and often account for a very substantial proportion of earthquake hazards [2].
Landslides are generally catastrophic, resulting in loss of life, destroying infrastructure
and houses and exerting a significant impact on the global economy [3]. For example, on
31 May 1970, Peru was struck by a 7.7 magnitude earthquake, triggering an avalanche that
buried the city of Yongai and killed an estimated 23,000 people [4]. The 2008 Wenchuan
earthquake triggered a landslide that directly killed nearly 30,000 people, accounting for
roughly 30% of the population killed by the earthquake [5]. Therefore, the ability to obtain
the information quickly and accurately about location, degree and scale of co-seismic land-
slides is of great significance for guiding earthquake emergency rescue and disaster risk
assessment [6]. Hence, the research on remote sensing for landslides has become the main
project to be addressed by various experts and scholars. In 1992, Wang [7] investigated
and monitored landslides by combining the advantages of remote sensing and proposed
to study and establish a landslide and debris flow information system, including the re-
search and establishment of database and a series of application models, such as landslide
and debris flow identification model, development model, impact evaluation model on
engineering, disaster relief model and other concepts. Combining the interferometer radar
and TM imagery, V. Singhroy et al. from Canada accurately extracted information about
landslides in the lower Rocky Mountain watershed and used such information to assess
the risk of the impacted area in 1995 [8]. In 2003, Wasowski [9] from Canada analyzed
the opportunities brought by the development of remote sensing technology for studying
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landslide hazards and discussed the feasibility of using radars, ETM+, RADARASAT-1 and
GPS and other multi-source data to observe landslides. In 2013, Wang [10] also proposed
that if the relationship between the surface landslide wall and the landslide body with the
ground slide surface and the slide bed could be determined, their spectral characteristics
could be understood and a computational model could be built, and that the landslide
patterns could be recognized by remote sensing technology. In 2016, Casagli et al. [11] used
optical remote sensing, InSAR data and target-based means to extract landslide hazards.
Gore et al. [12] proposed to extract mapping glacier features using hyperspectral remote
sensing images. Based on the surface characteristics of spectral reflection characteristics,
glaciers are divided into accumulation zone and ablation zone to make identification much
simpler. At present, remote sensing-based technology for landslide information extraction
is mainly through high-resolution, multispectral images on the texture, shape, hue and
other shallow features to build extraction models [13]. Although the visual interpretation
accuracy is somewhat high through this means, it is very dependent on the experience
of professionals, slow identification speed and it is difficult to meet the requirements of
emergency rescue, disaster timely assessment. In recent years, with the development of
artificial intelligence, deep learning has been introduced into various disciplines [14], and
it has been widely used in the field of remote sensing, providing a reliable solution to the
identification of co-seismic landslides.

Deep learning has become a mainstream research tool in the fields of speech recog-
nition, image recognition, image classification, target detection, etc. [15,16]. Song et al.
proposed a method to transform spectral information into images and extract texture
features for recognition and classification using CNN [17]. The reference [18] recognized
and classified spectral features by calculating the value of the cost function through a
5-layer neural network. The reference [13] used mask region-based convolutional net-
works (Mask R-CNN) target detection module for automatic landslide identification.
Liu et al. [19] classified frozen landslides on the Tibetan Plateau by applying migration
learning. Arabameri et al. [20] created a landslide inventory map using GPS points, high-
resolution satellite images, topographic maps, and historical records obtained from various
machine learning methods and field analysis. Then, they compared the applicability of
FLDA, RF, and ADTree models for establishing LSM in the Gallicash River basin in northern
Iran near the Caspian Sea and succeeded in further applying deep learning in the field of
landslide identification. Chen et al. [21] obtained a landslide sensitivity map based on the
evidence confidence function model by using the slope element of hydrologic analysis and
the slope element based on curvature watershed. After that, they calculated the success
rate and prediction rate of the landslide susceptibility map. More and more advanced
algorithms are used in landslide research, such as C5.0 decision tree (DT) model and K-
means clustering algorithm, which can generate regional landslide susceptibility maps
well [22]. With the development of computer vision technology [23], there are numerous
algorithms for image recognition using deep learning methods, whose main objective is to
pinpoint the class and location of various targets in an image or sequence of images [24].
Girshick et al. [25] proposed R-CNN convolutional neural network in 2013 for target detec-
tion using a deep convolutional neural network. Joseph Redmon, Ali Farhadi et al. [26]
proposed the YOLO algorithm in 2015, a target detection system based on a single neural
network. With modeling detection as a regression problem, it directly obtains the coordi-
nates of the bounding box, the confidence of the objects contained in the bounding box
and the class probability from all pixels of the whole picture, which effectively improves
detection and recognition efficiency. At present, many experts and scholars have applied
deep learning to the study of co-seismic landslide recognition. However, according to the
most cutting-edge research results, few scholars can automatically recognize co-seismic
landslide by deep learning, and many of the existing studies are about co-seismic automatic
landslide extraction based on traditional machine learning or deep learning.

For the purpose of landslide recognition, this paper adopted the popular object detec-
tion algorithm YOLOv3 based on deep learning to build a convolutional neural network
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for co-seismic landslide recognition. TensorFlow [27] platform was used to construct the
convolutional neural network, and YOLOv3 convolutional neural network to train the
sample set. The convolutional neural network model with landslide characteristics was
obtained, and then the landslide detection and recognition of satellite remote sensing
images of co-seismic landslides were achieved. The recognition accuracy was close to that
of visual interpretation in the experimental area with much faster recognition speed.

2. Study Area and Data
2.1. Study Area

The study area of this paper is in the Hokkaido region of Japan, as shown in Figure 1.
Hokkaido, the largest island in Japan other than Honshu, lies between latitude 40 degrees
33′ and 45 degrees 33′ north, and longitude 139 degrees 20′ and 148 degrees 53′ east, and
is bounded by Honshu Island in the south by the Tsugaru Strait and by the Soya Strait
in the north by the Kuril Islands. It covers a large area, accounting for about 22% of the
total area of Japan. At least 70% of the island is covered by forests. The vegetation consists
mainly of bright coniferous forests and grasslands. The terrain is high in the center and low
in the surroundings with volcanoes. There are mountains and ranges in the central part
of Hokkaido, so the terrain is generally undulating, while the surrounding area is a vast
plain. The co-seismic landslide is the major threat to people’s lives and development. A
6.7 magnitude earthquake hit Hokkaido, Japan, at 3:08 am local time on 6 September 2018,
with an epicenter at 42.671 N, 141.933 E, and a source depth of 35 km. The earthquake, with
a maximum observed intensity of magnitude 7, was the highest magnitude earthquake
observed in Hokkaido, Japan, by the Japan Meteorological Agency since 1923 [28]. During
the earthquake, 44 people were killed, 32 houses were completely damaged and 18 were
partially damaged. The casualties and house damage were mainly caused by lare landslides
and liquefied ground settlement and seismic subsidence [29]. The disaster damage caused
by some of the co-seismic landslides is shown in Figure 2.
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2.2. Data

The satellite remote sensing images in this paper were downloaded from Planet
satellite (https://www.planet.com/explorer/ (accessed on 18 September 2018)), with a
resolution of 3 m taken on 18 September 2018. Planet’s SuperDove image, which went
online in April 2020, features a 3-m resolution and eight spectral bands (temporarily open
red, green, blue, near infrared and red-edge bands), integrating the advantages of PL
small satellite clusters with a 3-m resolution, and RapidEye red-edge bands. ENVI 5.6
software was used to enhance the recognition of co-seismic landslides through image
true-color synthesis. Finally, orthophotos were generated by combining the images of the
co-seismic landslide affected area with red, green and blue bands. The image-covered
area after splicing was the whole landslide region with many landslides of small scale. To
provide better training samples, images were cut into 800 m × 800 m images in ArcGIS,
and 120 images with the dense landslide area were selected to make data sets as training
samples, including 100 as training sets and 20 as test sets. The satellite remote sensing
images were transformed into image samples and XML format label samples using the
LablImg label production platform and then interpreted by the experts in this field from
the State Key Laboratory of Geological Hazard Prevention and Geological Environment
Protection. In this paper, we use the open YOLOv3 algorithm to recognize the co-seismic
landslides. The open YOLOv3 algorithm is a public algorithm, which is one of the most
widely used deep learning-based object detection methods and uses the K-means cluster
method to estimate the initial width and height of the predicted bounding boxes. According
to the open YOLOv3 algorithm, the parameters of YOLOv3 algorithm were adjusted to
make it more suitable for co-seismic landslides. Figure 3 shows some of the orthophotos of
the study area and the co-seismic landslide area mapped by visual interpretation.

https://www.planet.com/explorer/
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3. Methodology
3.1. Research Design

The main design of the experimental study of this paper is shown in Figure 4. Firstly,
the data were preprocessed as shown in Section 2.2; thus, the preprocessed data were
obtained for landslide identification. With YOLOv3 algorithm as the core, a convolutional
neural network was constructed using TensorFlow framework to train and validate the
sample set. The convolutional neural network model with the characteristics of co-seismic
landslides was obtained by constantly adjusting the parameters. Satellite remote sensing
images of landslides were analyzed, tested and identified, and then the experimental results
were compared with the visual interpretation results of the experts.

3.2. Procedure and Recognition Principle of YOLOv3 Convolutional Neural Network

Recently, with the rapid development of artificial intelligence, great breakthroughs
have been made in target detection algorithms. According to detection ideas, common
target detection algorithms based on deep learning can be divided into two categories.
One is two-stage target detection algorithms based on candidate region and one-stage
target detection algorithms based on regression [30]. The typical two-stage target detection
algorithms include R-CNN [31] system algorithms based on region proposal, such as R-
CNN, Fast R-CNN, and Faster R-CNN. The other is one-stage algorithm, such as YOLO
and SSD, among which YOLO is based on an end-to-end idea. The principle of this
algorithm is to model detection as a regression problem, and directly obtain the boundary
box coordinates of the detection target, the confidence degree of the object contained in the
boundary box and the category probability of the object from all the pixels of the image.



Forests 2022, 13, 1213 6 of 15Forests 2022, 13, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 4. Design of experimental study. 

3.2. Procedure and Recognition Principle of YOLOv3 Convolutional Neural Network 
Recently, with the rapid development of artificial intelligence, great breakthroughs 

have been made in target detection algorithms. According to detection ideas, common 
target detection algorithms based on deep learning can be divided into two categories. 
One is two-stage target detection algorithms based on candidate region and one-stage tar-
get detection algorithms based on regression [30]. The typical two-stage target detection 
algorithms include R-CNN [31] system algorithms based on region proposal, such as R-
CNN, Fast R-CNN, and Faster R-CNN. The other is one-stage algorithm, such as YOLO 
and SSD, among which YOLO is based on an end-to-end idea. The principle of this algo-
rithm is to model detection as a regression problem, and directly obtain the boundary box 
coordinates of the detection target, the confidence degree of the object contained in the 
boundary box and the category probability of the object from all the pixels of the image. 

Compared with other deep learning target detection algorithms, YOLO is character-
ized by fast detection speed. It solves object detection as a regression problem, dividing 
an image into S×S grid cells. If the center of an object falls in the grid, the grid will be 
responsible for predicting the object, and each grid for predicting B bounding boxes and 
C categories. In addition to returning to its own position, each bounding box should also 
be accompanied with a confidence value of five values, so the output tensor is S×S× (5B+C); 
Figure 5 shows a bounding box with scale and position prediction. YOLO detection is very 
fast. The standard version of YOLO can reach 45 FPS on TrainX’s GPU. However, YOLO 
also has the disadvantages of low recall rate, low position accuracy, and poor detection 

Figure 4. Design of experimental study.

Compared with other deep learning target detection algorithms, YOLO is character-
ized by fast detection speed. It solves object detection as a regression problem, dividing
an image into S×S grid cells. If the center of an object falls in the grid, the grid will be
responsible for predicting the object, and each grid for predicting B bounding boxes and C
categories. In addition to returning to its own position, each bounding box should also be
accompanied with a confidence value of five values, so the output tensor is S×S× (5B+C);
Figure 5 shows a bounding box with scale and position prediction. YOLO detection is very
fast. The standard version of YOLO can reach 45 FPS on TrainX’s GPU. However, YOLO
also has the disadvantages of low recall rate, low position accuracy, and poor detection ef-
fect for small objects. To overcome the above disadvantages, researchers proposed YOLOv2
and YOLOv3 [32]. YOLOv3 improves both detection accuracy and speed, demonstrating a
new detection and classification network that is superior to other algorithms. According to
the literature, in particular reference [31], M40 or TrainX can be detected by the same GPU
(graphic processing unit), and the running speed of YOLOv3 is obviously faster than other
detection methods with similar performance [33].
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The total square error was still used for calculation in the network training process of
YOLOv3, and binary cross entropy was used for the loss function of parts other than w (the
width of the bounding box) and h (the height of the bounding box). If the ground truth
predicted by a coordinate is t̂∗, the gradient is the ground truth minus our prediction, i.e.,
t̂∗ − t∗. This ground truth value could be easily calculated by inverting the above equation.
The width and height of the bounding box were then predicted as offsets from the target
center coordinates, and the position of the center coordinates of the box relative to the filter
was predicted using the sigmoid function. Dimension clusters were used to fix the anchor
box frame in the convolutional neural network, and four coordinates of each boundary
frame were predicted, namely tx, ty, th, tw. If the predicted bounding box at the upper left
corner of the image is offset by (cx,cy), and the predicted width and height of the target box
are pw, ph, then the predicted value of the target is as follows:

bx = σ(tx) + cx (1)

by = σ
(
ty
)
+ cy (2)

bw = pwetw (3)

bh = pheth (4)

The YOLOv3 convolutional neural network uses the Darknet-53 network as the base
network for feature extraction throughout YOLOv3. The Darknet-53 network achieved the
highest measurement floating point operations per second, which allowed the network
structure to make better use of the GPU, thus making its evaluation more efficient and
faster. The base network has a total of 53 convolutional layers, with no fully connected
layers. The tensor size was achieved by the step size of the convolution kernel. The
whole network was a fully convolutional network, which made use of the residual module
hop layer connections to reduce the negative effects of pooling gradient by removing
pooling layer. In the network structure, a convolution of step size of 2 was used for down
sampling. The total square error was used for the loss function of w, h and binary cross
entropy for the loss function of the other parts. To enhance the detection accuracy of the
YOLOv3 algorithm, the algorithm uses a complementary and fusion approach similar to
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FPN, providing 3 scales of prediction frames that are divided into 3 prediction output
branches, i.e., 13, 26, and 52 scales, and the structure used in the three prediction output
branches is also fully convolutional, and the tensor obtained for each branch is as follows:

S× S× [3× (4 + 1 + N)] (5)

where S represents different grid scales, 3 represents three predicted target boxes in each
grid cell, 4 represents four coordinate values of each bounding box, 1 is the confidence
value of each box, and N is the number of categories predicted by training.

3.3. Construction of YOLOv3 Convolutional Neural Network Structure for Landslide Satellite
Remote Sensing Image Features

In this paper, a landslide was taken as the identification object, and the identification
target was single, so there was no need to consider the category problem, thus making
network construction less difficult. According to the characteristics of image data, the
network model adjusted the image format of all the images involved in the training to
416 × 416 × 3 by means of down sampling before entering the training. Meanwhile, we
adopted regularization to prevent overfitting by adjusting the parameters of momentum
coefficient and weight attenuation regularization. Due to the difficulty in obtaining land-
slide data and the lack of samples, the saturation and exposure of images were adjusted
to increase sample diversity. Figure 6 shows the structure of the YOLOv3 convolutional
neural network for landslide satellite remote sensing image features, i.e., the target category
is 1, and the number of convolutional kernels in the last convolutional layer is 18.

3× (4 + 1 + 1) = 18 (6)

Taking the scale of 52× 52 as an example, according to Formulas (5) and (6), the tensor
of landslide data set at this scale is 52 × 52 × 18.

3.4. Accuracy Evaluation Index

The evaluation metrics of the model are generally accuracy, recall, mean average
precision, IOU (intersection over union), F1 score, etc. The F1 score is a measure of the
accuracy of the binary classification model, which considers the accuracy and recall of the
classification model and can be regarded as a weighted average of the accuracy and recall
of the model. It can be expressed as follows:

Precision =
Tp

TP + FP
× 100% (7)

Recall =
TP

TP + FN
× 100% (8)

mAP =
1
C

N

∑
i=1

Precision(i)∆Recall(i) (9)

IOU =
Detection Result∩Ground Truth
Detection Result∪Ground Truth

(10)

F1 score =
2Precision·Recall

(Precision + Recall)
(11)

In the above formula,
Precision: Accuracy
Recall: Recall rate
mAP: Average precision mean
IOU: Intersection ratio union
F1 score: The F1 score is an indicator of the accuracy of the dichotomous model
TP: The number of samples that are correctly classified as targets
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FP: The number of samples wrongly classified as the target
FN : The number of samples incorrectly classified as non-target objects
C: Number of target categories. The category of this paper is only landslide, so C = 1
Detection result: The predicted bounding box
Ground truth: Real bounding box
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4. Experiments and Results
4.1. Network Model Training

The orthophotos after correction and stitching were segmented into 800 m × 800 m
image maps in ArcGIS, and 120 images with more landslide coverage were selected to
create the sample dataset for network training, and the samples were created using labeling,
a tool specialized in labeling, to convert the satellite remote sensing images into image
samples and label samples in XML format. The detailed experimental platform is shown in
Tables 1 and 2.

Table 1. Hardware configuration for the experiment.

Type Parameter

CPU Intel (R) Core (TM) i9-10900K CPU @ 3.70 GHz
Memory 64 GB
GPU NVIDIA GeForce RTX 3090
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Table 2. Test all software environments.

Type Parameter

System Windows10 (Pro_×64. From the Redmond, WA, USA)
Operation platform CUDA9.0 + cuDNN7
Development of language Python3.7
Sample data enhancement Python3.7 + OpenCV4.5.5
Sample label making LablImg

Platforms and frameworks Platforms: ENVI 5.6, ArcGIS10.2
Deep learning framework: TensorFlow2.0

A landslide, characterized by large area and monotonous features, was used as the
research object in the experiment. Therefore, it was necessary to adjust the setting of some
parameters and find out the most reasonable parameter values to train the sample set by
comparing the training results for several times in the process of network training. In this
training, the training times were set as 6000 times, the learning rate as 0.001, the change
point of the learning rate as 500, and as 64 batches. After 64 samples were accumulated
each time, the forward propagation was carried out once, and the sub batch was set as
16, that is, a batch of images were divided into 16 sub batches to complete the forward
propagation of the network. The momentum coefficient was set to 0.9 and the weight decay
regularization term to 0.0005 regularization in case of the change in weight. The saturation
and exposure parameters were set to 1.5 and used to increase sample diversity and generate
more training samples. The change in the loss value of the model training is shown in
Figure 7, from which the loss value decreased sharply at the beginning of 500 training
sessions, slowed down from 500 to 2500 sessions, and stabilized after 3500 training sessions,
and finally decreased to 0.97 at 6000 sessions. As can be observed from the training log,
64 samples were processed in the first training, and 320,000 samples were processed in the
6000th training. This effect of reducing training loss was quite ideal, which was in line with
the purpose of the experiment.
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4.2. Accuracy Evaluation of the Network Model

According to the accuracy evaluation indexes in Section 3.3 above, in this paper, recall,
IOU and F1 are selected as the accuracy evaluation indexes of the model. Recall was used
as an indicator to evaluate the accuracy of the training model. The validation set data was
60 images, and the average IOU and recall of the samples were recorded when the training
model was used to verify 60 images. Each image measured was recorded once, as shown
in Figure 8.
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It can be observed from Figure 8 that as the number of tested samples increased, the
accuracy of recognition always fluctuated in a fixed area and was relatively stable. The IOU
and recall of the first two images in the test were relatively high because the cumulative
number of samples contained in the detected images was averaged and they were recorded
only by the number of images. With the increase in sample size, the average crossover ratio
and average recall rate tended to be stable. After testing 60 images, IOU was balanced at
80% and recall at 90%, which were ideal results.

4.3. Network Model Test

When the training part of the network was completed and the verification accuracy
met the requirements, we started to test the network model for proving the usefulness of
the network by randomly selecting several satellite remote sensing images in the study area
that were not involved in the training for landslide recognition. The recognition results are
shown in Figure 9, in which red boxes are the recognized landslides. It can be observed
from the figure that good recognition results were achieved.

4.4. Analysis of Experimental Results

The experimental results show that the YOLOv3 convolutional neural network built
in this paper performs well in detecting and identifying landslides. The comparison
results between the network proposed in this paper and visual interpretation are shown in
Figure 10.
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Figure 10. Comparison between landslide identification results of YOLOv3 network model and
visual interpretation results. (a,b) are landslide recognition results of YOLOv3 network model, and
(c,d) are the corresponding visual interpretation results. The red parts in (c,d) are the landslide areas
interpreted visually by experts from the State Key Laboratory of Geological Hazard Prevention and
Geological Environment Protection. The yellow parts in a and b are the unrecognized co-seismic
landslide area.
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As can be observed from the Figure 10, the overall effect of YOLOv3 recognition on
landslides was better than visual interpretation, with only 11 landslides with small areas
and light colors failing to be recognized, as shown in yellow in Figure 10. The average
recall was calculated as 0.88, and the average precision as 0.98 by Equations (7), (8) and (11),
as shown in Figure 10a,b. The YOLOv3 network model recognized F1 was 0.93, indicating
that the experiment met the research needs.

5. Discussion

The method adopted in this paper was to transform the landslide identification prob-
lem into an image processing problem. Thus, the method proposed can effectively reduce
the difficulty of co-seismic landslide research, making it easier for related researchers to
understand the disaster caused by co-seismic landslides. This method belongs to the cat-
egory of artificial intelligence. The purpose is to solve the tedious manual interpretation
problem. Therefore, it has more outstanding superiority in large-scale seismic landslide
research. Furthermore, the YOLOv3 algorithm proved to have outstanding advantages in
image recognition. Ref. [34] applied a neural network built by the YOLOv3 algorithm to
recognize surface objects using remote sensing images and verified the efficiency of the
algorithm in remote sensing image identification. In this study, the YOLOv3 algorithm was
applied to satellite image recognition, and successfully identified the co-seismic landslide.
The Planet image adopted in this paper is a remote sensing image with a resolution of 3 m.
In addition, this method is more inclusive to different image categories, even in satellite
images with different resolutions. Although the texture, color and other characteristics
of the co-seismic landslide area are different, we need to build on the network model by
transfer learning. By adding images of different seismic landslide features as new samples,
we can identify co-seismic landslides from different satellite images.

The identification results have met the experimental requirements, and this network
can quickly and accurately identify seismic landslides. There are still some small landslides
that cannot be identified. The failure to identify those small landslides may be caused by the
insufficient number of samples, because more images with obvious landslide characteristics
in the large area were selected when making sample labels. While some parts of the
YOLOv3 network were unrecognizable, YOLOv3 could identify images within seconds,
while visual interpretation required professionals to manually label images based on their
experience and expertise, which is a more time-consuming and costly process. Therefore,
the research in this paper helps to achieve the rapid identification of landslides in the
internal industry and improve the identification efficiency, which provides reference for
disaster emergency rescue and investigation of co-seismic landslides. In the meanwhile, it
is of great significance to the emergency rescue of landslide disasters after earthquakes.

This research realizes fast and accurate automatic recognition of co-seismic landslides.
Due to the complexity of landslide remote sensing identification, there are still many
problems that need to be further studied. The following are some thoughts on the research
of deep learning identification of co-seismic landslides.

(1) Production of sample data sets. Training neural networks with large amounts of data
can ensure that the reliability and stability of recognition results are guaranteed.

(2) Optimization of convolutional neural networks. A co-seismic landslide recognition
model with less dependence on samples, higher intelligence, higher accuracy in the
future and faster speed will be constructed. Although The OLOv3 algorithm has a fast
speed and strong credibility of automatic recognition, the characteristics of co-seismic
landslides are complex and diverse. So, it would be better to combine more network
models to realize the identification of co-seismic landslides.

6. Conclusions

In this paper, the YOLOv3 algorithm was used to build a neural network model
oriented to landslide identification from remote sensing satellite image features, train
samples and automatically identify co-seismic landslides. In the model test, the IOU was
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balanced at 80% and the recall at 90%, which showed that the model had good stability. In
the meantime, for the co-seismic landslide identification experiment in Hokkaido, Japan,
the experimental results showed that the average recall was calculated as 0.88, and the
average precision as 0.98 and the F1 as 0.93. The results also showed that the YOLOv3
network model was relatively simple to build and easy to adjust and optimize parameters
with high precision and fast speed, it had excellent identification effect and could play
an important role in landslide identification. Compared with expert visual interpretation
results, the model adopted in this paper has a very fast speed in co-seismic landslide
identification. The research in this paper effectively overcame the deficiencies of visual
interpretation, such as more required time, high cost and low efficiency. In this paper, a
landslide sample dataset with 4000 tags was produced. It provides data support for deep
learning to identify seismic landslides.

In the future, other landslide databases caused by geological disasters can be used
to train the network model to improve its accuracy. We can also extend the constructed
network model for the identification of geological disasters, such as loess and rain-fall
induced landslides.
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