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Abstract: Linking functional trait space and environmental conditions can help to understand how
species fill the functional trait space when species increase along environmental gradients. Here, we
examined the variations in functional richness (FRic) and their correlations with key environmental
variables in forest communities along latitudinal, longitudinal, and elevational gradients, by mea-
suring seven functional traits of woody plants in 250 forest plots of 0.04 ha across five locations in
the subtropical evergreen broadleaved forests (SEBLF) of China. On this basis, we explored whether
environmental filtering constrained the functional volume by using a null model approach. Results
showed that FRic decreased with increasing elevation and latitude, while it increased with increasing
longitude, mirroring the geographical gradients in species richness. FRic was significantly related
to precipitation of driest quarter, soil pH, and total phosphorus. Negative SES.FRic was prevalent
(83.2% of the communities) in most SEBLF communities and was negatively related to mean diurnal
range. Our study suggested that the geographical variation in the functional space occupied by
SEBLF communities was affected mainly by climate and soil conditions. The results of the null model
revealed that niche packing was dominant in SEBLF communities, highlighting the importance of
environmental filtering in defining functional volume within SEBLF communities.

Keywords: biogeography; subtropical evergreen broadleaved forest; functional richness;
environmental variables; community assembly

1. Introduction

Exploring and understanding spatial patterns of biodiversity is central to understand-
ing mechanisms of species coexistence and community assembly processes in natural
ecosystems [1,2]. Geographical gradients in species diversity are of widespread concern,
and species richness in most plants and animals is generally explained by declining from
the tropics to the poles and from low to high elevations [3,4]. Despite the generality of
these patterns, it has been recognized that considering species diversity alone (e.g., species
richness or taxonomic diversity) is not sufficient to understand the underlying processes
that influence communities along geographical gradients [5–7]. Species richness does not
explain fully the community structure as the differences among species in their evolutionary
history and ecological roles are ignored [6,8]. Thus, recent research argued that the study
of biodiversity theories should move beyond species diversity, especially focusing more
explicitly on the functional aspects of diversity [5]. Functional diversity can not only mirror
species richness along geographical gradients [9] but also complement species richness in
explaining species coexistence and ecological processes [10].

Forests 2022, 13, 1206. https://doi.org/10.3390/f13081206 https://www.mdpi.com/journal/forests

https://doi.org/10.3390/f13081206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0001-5392-8193
https://doi.org/10.3390/f13081206
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f13081206?type=check_update&version=1


Forests 2022, 13, 1206 2 of 14

Functional trait values of species within communities are a reflection of the ability of
species to respond to their environment [11]. Therefore, the location occupied by a species
within a multidimensional trait space can also shift across geographical and environmental
gradients [12]. Climate is one of the most important drivers shaping the functional structure
of forest ecosystems [13]. Specifically, climate harshness and seasonality were proven to
be key factors controlling the variation in functional volume in subtropical forests [14].
Researchers predicted that environments that are more abiotically benign will allow the
invasion and success of peripheral phenotypes, resulting in a large morphological volume,
whereas harsher environments will limit the invasion and success of peripheral pheno-
types, resulting in a small morphological volume [15]. For instance, abundant and evenly
distributed precipitation and stable temperatures allow communities to contain a large
number of species, while species that occur in those regions of drought and temperature
instability are strongly limited [14,16]. Soil fertility is another important factor shaping
the functional diversity of plant ecosystems [17]. Changes in soil resource availability can
directly affect the size of the niche space occupied by species [18].

Studies argued that changes in the functional trait space along an environmental
gradient in terms of species richness could be associated with the patterns of functional
space occupancy [10]. As species richness increases, communities would change either
by tighter packing of species into the niche space (niche packing) or by occupying unex-
ploited portions of the niche space (niche expansion) to accommodate more species in a
given environmental condition [19,20]. Niche space characterizes the phenotypic space
occupied by a set of species, which can be quantified by assessing the multidimensional
trait space [21]. Comparing changes in the occupancy of the multidimensional trait space
across communities can allow inferences regarding the association of niche expansion
and packing with environments [12]. To test the two patterns of functional trait space,
it is necessary to use a functional diversity index that can directly measure the volume
and occupancy pattern of the niche space by species and quantify the diversity in trait
combinations in the research of biodiversity and community assembly [22]. Functional
richness (FRic) is measured as the volume of the minimum convex hull that includes all
the species of the community and represents the amount of functional space filled by the
community, which has been recognized as the best candidate for this research [23]. It has
been widely used in many recent papers to explore the patterns of niche space in different
biological groups [12,19,24]. In addition, previous studies also showed that FRic was useful
for tracking diversity variations along environmental gradients [25]. Therefore, FRic has
reasonable power to detect the changes in the occupancy of the multidimensional trait
space under different environmental conditions and reveal how species pack and fill the
trait space [5].

Niche packing and expansion are not mutually exclusive and may occur simultane-
ously [12]. However, the relative importance of the two patterns remains unknown [19].
Quantifying the volume, packing, and expansion of functional trait space and their rela-
tive importance enables us to understand the ecological processes structuring functional
diversity and ecological strategies [5,26]. In the absence of niche-based processes, the
trait composition of a local assemblage is predicted to be a random subset of a shared
regional species pool [5,12]. Therefore, comparing the observed value of FRic to a random
expectation—that is, computing a standardized effect size (SES.FRic) [15]—allows us to
understand whether niche-based processes occur in a given location [12]. Environmental
filtering theory predicts that although FRic can also increase with species richness in more
stressful environments, FRic will be smaller than the null expectation (negative SES.FRic),
revealed by niche packing [5,27]. Conversely, competitive exclusion theory predicts that
new species are most likely to fill an expanded variety of niche space; thus, FRic should
always be larger than a sampling expectation (positive SES.FRic), revealed by niche expan-
sion [5,28]. Determining which pattern of functional space occupancy is dominant in a
given location helps us to understand the relative importance of environmental filtering
and biotic competition. Substantial evidence showed that environmental filtering, driven
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by a set of environmental variables, is more important than biotic competition in shaping
plant diversity [29,30]. Therefore, we expected that the pattern of niche packing would be
dominant within the forest communities.

The subtropical evergreen broadleaved forest (SEBLF) is one of the main vegetation
types around the world and is widely distributed in China [31,32]. The subtropical region
in China hosts unique and rich biodiversity and encompasses different environmental
gradients in topography and climate, providing a natural setting for studying patterns of
biodiversity change along geographical gradients. While trait–environment relationships
have been already explored in some separate sites of subtropical forest ecosystems [33],
few studies have been carried out in detecting the patterns of functional trait space (niche
packing/expansion) along geographical and environmental gradients. Here, we used
a large trait and spatial distributional data set of SEBLF communities to describe the
geographical patterns of functional richness, species richness, and their correlations with
key environmental factors in the subtropical region of China. Specifically, to test whether
niche packing is dominant in the SEBLF of China, we used a null model to test whether
the environmental filtering constrained the functional trait space, thereby increasing the
packing of species within the SEBLF communities.

2. Materials and Methods
2.1. Study Area

This study was conducted in the 250 permanent forest plots with an area of 0.04 ha
(20 m × 20 m) (latitude: 27.58◦–30.18◦ N, longitude: 102.95◦–120.00◦ E; elevation: 200–1948 m)
across five locations (Figure S1) in the natural old-growth subtropical evergreen broadleaved
forests of China (SEBLF). Locations were selected at random within the study areas and
represented an unbiased, representative sample of natural old-growth vegetation. The
study areas have a subtropical monsoon climate, with a mean annual temperature of
15.0 ◦C and mean precipitation of 1391.1 mm. The plots have a rough terrain, with the
slope ranging from 4◦ to 42◦. The floristic composition of these plots is characteristic of
evergreen broadleaved forests, with Symplocos anomala (Symplocaceae), Camellia fraternal
(Theaceae), Loropetalum chinense (Hamamelidaceae), Eurya muricata (Theaceae), Symplocos
lucida (Symplocaceae), and Cyclobalanopsis glauca (Fagaceae) being the dominant canopy
species. All plots were established and investigated according to the standard of the Center
for Tropical Forest Science (CTFS) [34] during the summer of 2018 and 2019. For woody
plant species, all individuals with a diameter at breast height ≥1 cm were tagged, mapped,
and identified to species level with the help of local botanists. The abundances of species
were determined by calculating the number of individuals of a certain species in each
plot. In total, 292 woody plant species (48,680 individuals) belonging to 59 families and
134 genera were collected.

2.2. Trait Data

We selected seven functional traits that represent the variation in plant form and
function. These traits included specific leaf area (SLA, cm2 g−1), leaf nitrogen concentration
(LNC, g kg−1), leaf phosphorus concentration (LPC, g kg−1), wood density (WD, g cm−3),
leaf dry matter content (LDMC, g g−1), maximum plant height (Hmax, m), and seed mass
(SM, g). Selected traits correlate well with ecological characteristics and are good predictors
of resource utilization, tolerance to drought, and mechanical damage [29]. Except for SM,
all functional traits were measured according to standardized measurement protocols [35].
SM was compiled from multiple sources and databases, including FOC (http://www.
efloras.org/ (accessed on 20 June 2021)), Seeds of Woody Plants in China [36], the TRY
Plant Trait Database (https://www.try-db.org/de/ (accessed on 20 June 2021)) from the
KEW Seed Information Database [37] and PLANTS Database [38], and the BIEN trait
database (accessed using the BIEN package [39] in R). In each 20 m × 20 m plot, ten
individuals of every species were sampled. For those species with less than ten individuals,
we added additional individuals of the same species from surrounding areas. A detailed

http://www.efloras.org/
http://www.efloras.org/
https://www.try-db.org/de/


Forests 2022, 13, 1206 4 of 14

description of the measurement methods for these functional traits can be found in our
previous works [40]. The mean functional trait values for each species were applied to
all individuals.

2.3. Functional and Species Richness Calculation

Finding a suitable measure of functional space to appropriately quantify the diversity
in trait combinations is challenging [22]. Here, we considered functional richness (FRic) as
the best candidate measure for our research purposes [23]. FRic measures the extent of the
functional volume of an assemblage as the smallest possible multidimensional convex hull
volume that contains all species in an assemblage [22,41]. We quantified FRic using the
package ‘FD’ in the program R [42]. To compare the geographical variation between FRic
and species diversity and explore the patterns of FRic related to species richness, we also
quantified species richness (SR). Species richness in each plot was estimated as the number
of species.

There are numerical dependencies between functional and species richness. Functional
richness is expected to be positively correlated with species richness. We thus accounted
for such variations by computing a null model in which species identities (and therefore
trait values) were shuffled 999 times while maintaining species richness and occupancy
within each assemblage, and we recalculated the functional richness for each assemblage
for each iteration. This generated a null distribution of 999 values for functional richness
in each assemblage [15,24]. The observed values and this null distribution were used to
calculate a standardized effect size for functional richness (SES.FRic) = [Observed FRic–
mean expected FRic]/SD expected FRic. The SES.FRic shows how many SDs the observed
FRic is above or below the mean expected value from the null models [15,43]. The direc-
tion of SES.FRic (higher or lower than the expected null) was correlated with different
deterministic processes of community assembly. Negative SES.FRic indicates that the
observed functional volume is less than expected by chance, resulting from environmental
filtering. Conversely, positive SES.FRic indicates that the observed functional volume is
larger than expected given the species richness, resulting from biotic competition [15]. If
we predicted that the environmental filtering led to the dominance of niche packing in
SEBLF communities, this could be supported by the following two observations. First,
the proportions of communities with negative SES.FRic would be higher than those with
positive SES.FRic. Second, and more importantly, differences between the observed and
simulated FRic, measured as the mean of the associated SES.FRic across all communities,
would be significantly lower than the expectation of zero when using a two-tailed Student’s
t-test [44,45]. Additionally, the magnitude of SES.FRic was interpreted as the strength of
the signal of deterministic processes on the assemblages [15]. More negative SES values
indicate stronger environmental filtering [46,47].

2.4. Environmental Variables

To estimate the influences of environmental variables on community-level functional
richness, we collected 19 climatic and 7 edaphic variables to represent environmental
conditions. A detailed description of the data collection and measurement methods for
these environmental variables can be found in our previous works [40]. We performed
correlations to assess possible multicollinearity and variable redundancy among the envi-
ronmental variables. Pearson’s correlation values (R < 0.8) between explanatory variables
were used as a cutoff criterion to retain variables that were more relevant to the FRic
(Table 1). Final models were run with precipitation of driest quarter (PDQ), precipitation of
wettest quarter (PWQ), mean diurnal range (MDR), mean temperature of driest quarter
(TDQ), soil pH (SpH), and soil total phosphorus (STP).
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Table 1. Correlations between environmental variables. Significance levels: *, p < 0.05; **, p < 0.01;
***, p < 0.001.

Variables MDR TDQ PDQ PWQ STP

TDQ −0.42 ***
PDQ 0.22 *** 0.70 ***
PWQ 0.26 *** 0.25 *** 0.53 ***
STP 0.16 * −0.72 *** −0.70 *** −0.18 **
SpH 0.04 0.15 * 0.19 ** 0.57 *** 0.11

Abbreviations: mean temperature of driest quarter (TDQ), precipitation of driest quarter (PDQ), precipitation of
wettest quarter (PWQ), mean diurnal range (MDR), soil pH (SpH), soil total phosphorus (STP).

2.5. Data Analysis

To assess geographical variation in functional volume and species richness, linear
mixed models (LMMs) were used to test shifts in FRic, SES.FRic, and SR along latitude,
longitude, and elevation. We also used the LMMs to test the effects of climate and soil
on FRic, SES.FRic, and SR. LMMs were conducted using FRic, SES.FRic, and SR as the
response variables, and the three geographical variables and the six climatic and edaphic
variables as fixed predictors. The site was included as a random effect, given that we
could not exclude the potential role of unmeasured, spatially autocorrelated environmental
factors in our analysis. Linear mixed models were built using the “lme4” package [48]
as implemented in the R statistical software [42]. The proportion of variance explained
by the LMMs was assessed using the marginal R2m (variance explained by the fixed
predictors) and the conditional R2c (variance explained by both the fixed and random
effects) [49]. The direction and magnitude of selected predictors were assessed from the
sign and values of standardized coefficients. The parameter estimates, t-statistics, and p
values were obtained using Satterthwaite’s method for denominator degrees of freedom in
the “lmerTest” package [50]. The spatial autocorrelations in model residuals were tested
using Moran’s I, which was conducted using the “spdep” package [51,52].

Finally, we performed hierarchical partitioning (HP) to determine the relative im-
portance and independent contribution of each explanatory factor to FRic SES.FRic, and
SR [53], as the multicollinearity between the factors in linear mixed models could not be
completely excluded (VIFs of all variables < 10) despite it being controlled in the previous
analysis [54]. HP can solve the multicollinearity problems effectively by averaging the
contributions of an independent variable in models.

In order to fit assumptions about the uniformity of data and the homoscedasticity of
errors, all functional traits (and thus functional richness) and environmental variables, and
species richness, were log-transformed prior to analysis.

3. Results
3.1. Geographical Patterns of Functional and Species Richness in the Subtropical Evergreen
Broadleaved Forests

We observed significant geographical patterns in FRic and SR (Table 2, Figure 1)
along the gradients of latitude, longitude, and elevation. FRic was higher along increasing
longitude and lower along increasing latitude and elevation, mirroring the geographical
gradients in species richness (Figure 1A–C,G–I). Apparently, the patterns of SR along
latitude and elevation were not significant, although they had similar trends to the FRic
(Figure 1G,I). SESE.FRic was overall negative, with values of SES.FRic in most communities
below null expectations, although they did not shift significantly along geographical
gradients (Figure 1D,E).
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Table 2. Summary of the mixed linear models analyzing the effects of geographic gradients on
the functional richness (FRic), standardized effect of the functional richness (SES.FRic), and (log-
transformed) species richness [log(SR)]. The marginal (R2m) and conditional (R2c) coefficients of
determination are presented. Values in bold indicate p values < 0.05.

Model Factors Latitude Longitude Elevation AIC R2m R2c

FRic −2.47 0.070 −0.002 1358.14 0.37 0.41
SES.FRic −0.15 −0.004 −0.0002 247.10 0.09 0.58

SR −0.05 0.020 −0.0001 −15.45 0.10 0.48
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3.2. Correlations of Functional and Species Richness with Environmental Variables

Linear mixed effects models showed significant correlations of FRic, SESE.FRic, and
SR with environmental factors (Table 3). The total percentage of variance explained by
the LMM was higher (R2 conditional = 0.50, 0.50, 0.47, respectively), while the variance
explained by fixed predictors taken separately was relatively lower (R2 marginal = 0.27,
0.50, 0.12, respectively). This indicated an important contribution of the random factor
(i.e., the variability sources related to specific characteristics of sites) that was not reflected
by fixed predictors. Results showed that FRic was significantly and positively correlated
with precipitation of driest quarter (PDQ), soil pH (SpH), and soil total phosphorus (STP).
Similarly, SES.FRic showed significant and positive associations with PDQ and SpH, but a
negative association with mean diurnal range (MDR). SR was significantly and positively
related to PDQ and MDR.

Table 3. Summary of the mixed linear models analyzing the effects of environmental variables on
the functional richness (FRic), standardized effect of the functional richness (SES.FRic), and (log-
transformed) species richness [log(SR)]. Estimate values are the standardized regression coefficients
of predictors. The marginal (R2m) and conditional (R2c) coefficients of determination are presented.
Values in bold indicate p values < 0.05.

PDQ PWQ TDQ MDR SpH STP AIC R2m R2c Moran’s I

FRic 3.40 −0.97 0.10 −0.98 0.81 0.86 242.94 0.27 0.5 0.19
SES.Fric 0.17 −0.01 0.06 −0.28 0.15 0.06 1352.73 0.50 0.5 0.04

SR 2.48 −0.33 −1.08 1.78 0.01 −0.19 1537.93 0.12 0.47 0.18

Abbreviations: precipitation of driest quarter (PDQ), precipitation of wettest quarter (PWQ), mean temperature of
driest quarter (TDQ), mean diurnal range (MDR), soil pH (SpH), soil total phosphorus (STP), variance explained
by the fixed effects (R2m), variance explained by both fixed and random effects (R2c), Akaike Information Criterion
(AIC), and Moran’s I of linear mixed effects models (Moran’s I).

The analysis of hierarchical variation partitioning showed that PDQ and MDR ex-
plained most of the variance in the Fric, SES.Fric, and SR (Figure 2). Results indicated the
most important effects of PDQ and MDR on the variation in functional trait space and
species richness in subtropical forest communities.

3.3. The Assembly Mechanisms of Forest Communities along Geographical Gradients

FRic was positively related to species richness and the relationship was always stronger
with increasing species richness (Figure 3A; p < 0.01). However, the FRic was significantly
different from the null random expectation after controlling species richness within each
plot, indicating that the SEBLF community assembly was primarily governed by determin-
istic processes based on the FRic. Specifically, observed FRic in 83.2% of communities was
lower than expected given species richness (i.e., negative SES.FRic, Figure 3B). Consistent
with the prevalence of lower than expected FRic in each forest community, when FRic was
evaluated as the mean of SES.FRic across all communities, we also found a significant and
negative SES.FRic (Figure 3C). The result indicated that the average FRic was also lower
than expected by chance across the study sites.
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4. Discussion

We showed significant and similar geographical patterns of functional space and
species richness from lower to higher latitudes, longitudes, and elevations, with FRic de-
creasing with increasing latitude and elevation and increasing with increasing longitude
(Table 2, Figure 1). This was consistent with previous studies in which the geographical
gradients in niche breadth mirrored the species richness [55]. In general, geographical
gradients (latitude, longitude, and elevation) can affect functional space only indirectly
through species richness; thus, a geographical pattern of functional space would be ob-
served only when there is a geographical pattern of species richness and an effect of species
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richness on functional space [55]. However, it was notable that the functional volume (FRic)
and species richness did not shift consistently and significantly along these geographical
gradients. For instance, functional richness did not shift significantly as the species richness
increased with increasing longitude. This means that the geographical variation in niche
space might not mirror the geographical gradients in plant species richness completely. The
results also indicated that there may be some limiting factors that restricted the expansion
of niche space when the number of species increased. Therefore, the direct influences of
environmental factors on functional volume should be considered in accounting for the
geographical variation in functional trait space, given that the geographical gradients were
closely related to environmental factors and strongly reflected resource use by plant species
in our study areas [56,57].

Results showed that the geographical patterns of FRic were significantly and positively
linked to precipitation of the driest quarter (PDQ), soil pH (SpH), and soil total phosphorus
(STP). These results were consistent with previous studies wherein areas where functional
volume was greater (i.e., lower elevations and latitudes) were significantly characterized by
high amounts of rainfall during the driest quarter and higher soil nutrient content [58–60].
This suggested that precipitation and soil resources were closely related to the expansion
of the niche space of subtropical forests. Greater availability of water and soil nutrients
might create a wider niche space, allowing plant individuals with a larger range of viable
functional strategies to coexist [58]. Significantly, PDQ outperformed other environmental
variables that were not excessively co-linear with it, in accounting for the geographical
variation in functional volume. The result was in line with a previous study conducted
on BCI in Central Panama, which was dominated by evergreen tropical forests [61]. The
significant effects of soil pH and phosphorus on the niche space occupied by plant species
could be a result of the poor and acidic soil in subtropical regions of China [60,62,63].

Importantly, consistent with our expectation, the observed FRic was generally smaller
than expected after controlling species richness, as indicated by the negative standardized
effect sizes [24]. The results indicated that niche packing appeared to be prevalent and
dominant in most forest assemblages across the entire study site. This implied that as
species richness increased, new species were not preferentially added in unfilled portions
of the trait space to expand the functional volume [5,19]. Instead, species tended to
enter into the interior of the existing functional space, causing tighter packing of species
(niche packing), since the increase in functional trait space was constrained within the
SEBLF communities [19,20,64]. For instance, species richness increased significantly with
increasing mean diurnal range (MDR), while FRic decreased (although not significant). The
results suggested that the species with convergent trait combinations would increase with
the increases in MDR, therefore increasing the overlap of niche space (niche packing) [12].
Presumably, the patterns of this species coexistence in our study were determined primarily
by environmental filtering [65].

Similarly, we also found significant patterns of negative SES.FRic (niche packing) along
environmental gradients, as indicated by significant associations between SES.FRic and
environmental variables. The positive correlation of SES.FRic with PDQ and SpH provided
evidence that the niche volume appeared to increase (i.e., niche packing decreased) [5] with
increasing rainfall and soil pH. In contrast, a negative relationship between SES.FRic and
mean diurnal range (MDR) was found, which indicated that temperature variability was
the key factor in the prevalent pattern of niche packing. The result was in line with many
previous studies. For instance, Thakur et al. reported that “temperature filtering” can result
in a narrow niche [66]. Specifically, SES.FRic generally changed more quickly with the
mean diurnal range (MDR) compared to other environmental variables. This result implied
that the relative role of environmental filtering changed faster across MDR gradients in the
subtropics, with stronger relevance in the assembly of communities with larger temperature
fluctuations [40,67,68]. Less change for niche packing along gradients of precipitation and
soil suggested that environmental filters are relatively homogeneous across water and
soil conditions in subtropical forests, regardless of their importance [69]. Therefore, our
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results suggested that even if both niche patterns might accompany the increase in species
richness, the niche expansion was insufficient to become the dominant pattern at the upper
end of the precipitation and soil pH gradients. Instead, the temperature variability might
play a stronger role in niche pattering than the actual increase in resources of water and soil
nutrients, leading to more frequent niche packing in SEBLF communities [12]. Together,
our study results suggested that climate and soil significantly affected the variation in
functional volume along geographical gradients. The increase in functional trait space was
constrained within the SEBLF communities. Environmental filtering, especially associated
with temperature variability, probably defined the functional volume and caused the tighter
packing of species into the niche space (niche packing).

A previous conceptual framework proposed that species first pass through an en-
vironmental filter at a regional scale, which constrains their functional trait space and
thereby increases the packing of species. Next, the species pass through a biotic filter
within a limited functional volume, which maximizes the possible functional diversity
by competition or facilitation [24]. However, the importance of biotic interactions was
not tested in our study. Many studies revealed that biotic interactions triggering niche
partitioning in resource use [70,71] could explain the niche packing within a functional
volume. Additionally, although the approach of the null model comparing the expected
and observed patterns of functional diversity was widely used in many studies, it has fallen
short in delivering generalizable conclusions [72]. For instance, clustering of species in
functional traits could also emerge from hierarchical competition [73], in addition to envi-
ronmental filtering. Therefore, it is necessary to build more mechanistic, dynamic models
of community assembly to contrast the different ecological theories and processes [72,74,75]
in future research.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/f13081206/s1, Figure S1: Geographical distribution of the 250 plots.
Plots were taken from five forest sites in subtropical China. At each site, 50 plots with an area of
20 m × 20 m were randomly established.
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