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Abstract: Tree aboveground biomass (e.g., bole, branches, and foliage), M, plays key roles in forest
management as it is the basis for evaluating the sink and flux of, for example, carbon and nitrogen,
stand productivity, dendro-energy, litter & root biomass, hydrological parameters, among others.
With the aim of further simplifying and understanding M, the central objective of this research was to
review available techniques to develop, test, and validate two independent novel non-destructive,
semi-empirical models using four major M datasets: (i) the shape dimensional bio-physical, MSD; and
(ii) the restrictive mathematical, MNR, models. The proposed models advance and test how each of
both approaches: (i) constant or (ii) variable scalar coefficients perform when predicting M with major
assumptions bearing bio-physical principles. Results showed that M has to be predicted eventually
with variable scalar coefficients; both models predicted compatible M figures; the evaluations matched
the conventional equation well; and the independent data sets were well validated; the coefficients of
determination, r2, and the standard errors, Sx%, had values >96% and <20%, respectively, for most
tested conifer tree species. In spite of demonstrating empirically and physically the ontogenetic-
dependency of scalar coefficients, the MNR model, with constant β-scalar and variable a-intercept
coefficients, performed slightly better, and precision appeared to be a function of the tree species
growing in different forest ecosystems. Therefore, better parameterization advances for the testing
and validation of the MSD model that uses variable scalar coefficients, which are consistent with
ontogenetic principles, are preliminarily recommended for M assessments. The updated revision of
models, the independent development, the construction using different assumptions, the individual
mathematical and bio-physical parameterization, the consistency on M assessments, and the bearing
of physical and biological properties are key pieces of scientific information presented in this report are
required in modern forest management when predicting M and associated variables and attributes.

Keywords: biomass allometry; a and B scalar coefficients; independent physical and biological
parameterization; wood specific gravity; form factors; checking the consistency of biomass equations

1. Introduction

The central objective of this research was to review available predicting techniques
to simplify M assessments by developing, testing, and validating two independent non-
destructive, semi-empirical models using comprehensive data sets. Tree aboveground
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biomass is the living and dead matter in standing trees and includes foliage, branches,
stumps, and timber. Tree M assessments are currently the focus of intensive research due
to its linkages with: (i) total and component primary productivity; (ii) sink and flux of
several bio-geo-chemicals including carbon and nitrogen; (iii) hydro-climate regulation;
(iv) alternate energy sources; (v) primary variable in several ecological models; (vi) biomass
allocation factors; and (vii) other factors [1–6]. Tree M is an important parameter in forest
hydrology as well as it controls the major water storages and fluxes between forest compart-
ments, soils, aquifers, rivers, and atmosphere [7]. For example, tree M has been physically
linked with: (i) the major input of litter that accumulates on the forest soil; and (ii) the
allocation of resources to root systems that perforate the soil and add important biomass
resources inside the forest soil. Forest and litter interception and rainfall redistribution in
canopies, litter, and inside the soil are then in part a function of tree M [8].

The development and application of allometric equations is the standard methodology
for tree, stand, regional, and World M assessments [6,9–11]. Tree M equations are classified
according to: (i) the spatial scale of interest into local, regional, national or World equations
and (b) the parameter estimation method as empirical, semi-empirical and theoretical
models [6]. These two kinds of model classifications can be applied at the scale of single
species or complete forests. Many examples of allometric equations for single tree species
had been developed and reported in the scientific literature, e.g., [12–14]. Typical allometric
equations developed for complete forests had been also reported [1,11].

Compilations of M equations [3,14–16] report the most common empirical allometric
model is the logarithmic equation where M is estimated as a log linear function of diameter
at breast height, D, with the scaling coefficients a and B [17], called hereafter the MC
model. The compilation of approximately 500 M equations for Latin American forests
classified further these empirical equations according to the statistical technique employed
in parameter estimation methods into log-linear (82.6%), non-linear (12.0%), seemingly
un-related linear (3.9%), and non-linear seemingly un-related (0.6%) regression analysis [6]
Other non-destructive empirical methods of M evaluations had been reported in the
scientific literature [3,6].

A theoretical non-destructive technique using the fractals theory was derived [18],
named hereafter the MWBE model. The main assumption of this model is that D is related to
M by M ∞ D8/3, indicating that the scaling exponent BWBE equals 8/3 = 2.67 weighted by a
C proportionality constant and the wood specific gravity of the entire tree, ρ [19,20]. Details
on how to evaluate the C coefficient were proposed earlier [6]. Using taper approaches that
describe the shape of tree boles, Návar [6] noted the BWBE scaling exponent may oscillate
between 2.33 and 2.67 when timber tapering shifts from conical to cylindrical shapes,
stressing the BWBE fit well the upper limits of timber shapes and the fractal technique
needs further refinement. Tree boles are neither fully conical nor cylindrical in shape but a
mixture of different shapes and hence semi-empirical methods appear at this time to be
the route to better model M. However, semi-empirical models with worldwide application
are scarce in the scientific literature and hence the need for further model development,
testing, validation, and application.

Two issues arise when contrasting the MC and the MWBE models: (i) Is the B-scalar a
constant or variable coefficient? (ii) Is the a-intercept a constant or variable coefficient? Most
conventional equations report different a-intercept and β-scalar coefficients. In part this
variability has been attributed to sample size, the size distribution of trees in the sample,
among others. Zianis and Mencuccini [3], Návar [6] and Paz-Pellat et al. [21] modeled
and Genet et al. [22] found evidence in Fagus plantations the B-scalar coefficient varies
with age of trees. Návar [6] derived mathematically the a-intercept and found it varies as
a function of the shape of the tree and the wood specific gravity, ρ, value. Assuming ρ
remains constant from young to mature trees, the shape of tree boles appears to control
the C coefficient as well as the B-scalar coefficient. However, further research is required to
associate these coefficients to tree forms and, as a consequence, to improve understanding
on tree allometry. Paz-Pellat et al. [21] recently advanced how to mathematically derive the
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scalar coefficients using generalized tree allometric concepts that are in part consistent with
those derived earlier [2,4,6,22] but the biological dependency of these coefficients has been
quite elusive for some time.

The empirical destructive equation and the theoretical approaches have shed light
into tree biomass allometry. However, several issues remain poorly understood: (a) Are the
scalar coefficients a and B constant or variable figures? (b) Can semi-empirical methods
be proposed, developed, tested, and validated for the assessments of tree M? (c) Can the
evaluation of the B and a-scalar coefficients be simplified using bio-physically rather statis-
tical approaches? (d) Do the proposed semi-empirical non-destructive models reproduce
M assessments within the confidence bounds of the conventional equation? We addressed
these questions by analyzing four compiled comprehensive World data sets of M equations
by Ter Mikaelian and Korzukhin [15], Jenkins et al. [23] and Návar [12,16].

2. Materials and Methods
2.1. Tree Aboveground Biomass Allometric Models

Classic models that predict M reported in the scientific literature are: (i) the conven-
tional logarithm equation with the exogenous variable D [17,24–26], (ii) the linear equation
with the exogenous variable D2H [26], (iii) the power equation with D [26], (iv) multiple lin-
ear equation [26], (v) multiple non-linear equation [26], (vi) among others. The evaluation
of scalar coefficients can be carried out in conventional log-linear, linear, non-linear, multi-
ple linear and multiple non-linear regression techniques as well as on seemingly unrelated
linear regression and seemingly unrelated non-linear regression [27–30]. Attempts to find
or to construct more physically based models had been conducted and reported [2,3,6,18].

2.1.1. The Conventional Allometric Model

The conventional empirical statistically parameterized allometric equation reported in
most compilations and meta-analysis case studies [6] is presented in Equation (1):

Ln(MC) = Ln(a) + βLn(D)± ei; MC = aDβ ± ei (1)

where: a and B are the scalar intercept and exponent coefficients, respectively; ei = the error.

2.1.2. The Fractal Model

The theoretical non-destructive model proposed by West et al. [18] is described by
Equation (2):

MWBE = CρD
8
3 (2)

where: C = a proportionality constant, and ρ = the entire tree specific gravity value. The
scalar exponent, BWBE, is fixed to 8/3 = 2.67 and wood specific gravity is referred as the
total tree specific gravity value, a weighted average of wood, bark, branches and leaves.

Equations (1) and (2) bear the following common properties:

a = Cρ; BWBE 6= B; BWBE = 2.67.

The notion the B-scalar coefficient is a constant value has spurred recent research
to facilitate the development of semi-empirical allometric models. Ketterings et al. [2]
simplified the dimensionality of Equation (2) by proposing and assuming that D scales to
2.0H*; where H* is the slope value of the H = f(D) (≈Ln(H) = Ln(a) + βLn(D)) relationship,
e.g., D2.0H*. This approach may have a final constant approximate value of 2.5 as β ≈ 0.50,
which appears to be a constant figure for the (≈Ln(H) = Ln(a) + βLn(D)) function. However,
the D2.0 exponent assumes tree boles have cylindrical shapes.
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2.2. Bio-Physics of Volume and Mass of Tree Boles
2.2.1. Shapes of Tree Boles

Focusing exclusively on tree bole as it explains more than 80% of M, tree boles have in
general a quasi-conic or a quasi-cylindrical shape although parts are classified as cylindrical,
neiloids, frustrum, and conical; moving from the base to the tip of the tree. In general,
when trees are young the bole has a quasi-conical shape and adds mass as they increment
in diameter and height, as they reach the dominant position in the stand they slow growth
in height, add mass preferentially in diameter all along the bole shifting relentlessly from
conical to cylindrical shapes from D to the end of the clean stem just before branches
protrude the stem, changing the shape from quasi-conical to quasi-cylindrical as they grow
over time. Using taper functions, Návar et al. [13,31] presented several examples of these
forms for several Mexican coniferous tree species. Then, it appears both scalar coefficients
shift as trees grow over time because tree boles change in shape and the rate of biomass
increases preferentially in diameter above D over time as trees slow growth in H.

2.2.2. Ontogenetic Principles

Using the tree bole geometric concepts described before; bearing in mind that boles are
not two dimensional surfaces neither three dimensional photosynthetic domains; simulat-
ing a tree bole with D = 20 cm, H = 20 m, and ρ = 0.50; as well as assuming tree is growing
in different environments and it does not change dimensions and replicating the following
shapes: (i) conical, (ii) first 5 m as cylinder and last 15 m as conical; (iii) half cylinder and
second half cone, (iv) the first 15 m as cylinder and the last 5 m as cone, and (v) full cylinder;
the following B-scalar coefficients assessed correctly M using the conventional Equation (1):
(i) 2.230, (ii) 2.410; (iii) 2.485, (iv) 2.546, and (v) 2.598, respectively. Note that stocking either
natural or using forest management practices, as well as tree diversity modify the shape of
tree boles described before. Because the assembled average Cρ = a = 0.13 scalar intercept
remains within the range of expected values in real tree boles, it is expected that the fractal
dimension could be tuned by:

D
7
3 ∝ M ∝ D

8
3 (3)

In the same way, modifying the a-scalar intercept to provide the coefficients 2.333
for conical as well as 2.667 for cylindrical shapes, the new a-intercept values would be:
(i) 0.096 for conical and (v) 0.107 for cylindrical shapes of tree boles, respectively. However,
for quasi-cylindrical shapes, when the a-intercept value remains constant, 0.107, the B-
scalar coefficient has to be modified into (ii) 2.477, (iii) 2.553, and (iv) 2.614, respectively.
These values exceed a bit the B-scalar coefficient average and standard deviation values
described later (2.3699 ± 0.278) for nearly 300 M World case studies [3]. When leaving
the a-scalar intercept value of the conical shape of tree boles as 0.096, the new B-scalar
coefficient values would be for: (ii) 2.515, (iii) 2.590, and (iv) 2.651, respectively. These
values exceed even further the B-scalar coefficient average and standard deviation values
described above. New a-intercept values that fit the World average value (2.3699) would be:
(i) 0.086, (ii) 0.147, (iii) 0.185, (iv) 0.221, and (v) 0.260, respectively. Then, it appears it is safe
to assume that any theoretical model including the fractal one would have the following
extreme a-scalar intercept values;

a = 0.08 ∝ M ∝ a = 0.26 (4)

And as a consequence, when ρ ≈ 0.50;

C = 0.16 ∝ M ∝ C = 0.52 (5)

2.2.3. Further Empirical Evidence of Ontogenetie of Scalar Coefficient Values

Using all 41 M equations reported for North American tree species [15] the following
simulations were conducted: (i) a variable a-scalar intercept value and a constant B-scalar
coefficient value of 2.38; (ii) a variable B-scalar coefficient value and a constant a-scalar inter-
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cept value of 0.11; (iii) a variable a-scalar intercept value and a constant B-scalar coefficient
value of 2.67 of the MWBE model; and (iv) a variable a-scalar intercept value and a variable
B-scalar coefficient value. Results of these simulations contrasted with the 41 equations for
North American tree species are reported in Figure 1, as Figure 1a–d, respectively.
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a-scalar intercept value and a constant B-scalar coefficient value of 2.38; (b) a constant a-scalar inter-
cept value and a changing B-scalar coefficient value; (c) a variable a-scalar intercept value and a 
constant B-scalar coefficient value of the MWBE model of 2.67; and (d) a variable a-scalar intercept 
value and a variable B-scalar coefficient value. Red lines depict models with specific assumptions 
and grey lines the aboveground biomass equations reported by Ter Mikaelian and Korzukhin [15] 
for North American forests. 

The red lines of Figure 1a match more consistently the empirical M dataset for all 41 
North American tree species. The last Figure 1d represent the same empirical equations 
with varying coefficients of a and B. Note how Figure 1b,c deviate more notoriously from 
empirical equations pointing to the likelihood that for temperate and boreal tree species 
models with only a-scalar intercept varying values would be sufficient to evaluate M with 
a constant B-scalar coefficient a bit smaller than that of the MWBE model. However, from 
the geometric principles of tree growth discussed above, as tree boles move from conical 
to cylindrical shapes both the a and B scalar coefficients should more likely be modified; 

Figure 1. Tree aboveground biomass equations for all 41 North American tree species reported by Ter
Mikaelian and Korzukhin [15] overlapped with allometric equations that assume: (a) a variable a-
scalar intercept value and a constant B-scalar coefficient value of 2.38; (b) a constant a-scalar intercept
value and a changing B-scalar coefficient value; (c) a variable a-scalar intercept value and a constant
B-scalar coefficient value of the MWBE model of 2.67; and (d) a variable a-scalar intercept value and
a variable B-scalar coefficient value. Red lines depict models with specific assumptions and grey
lines the aboveground biomass equations reported by Ter Mikaelian and Korzukhin [15] for North
American forests.

The red lines of Figure 1a match more consistently the empirical M dataset for all 41
North American tree species. The last Figure 1d represent the same empirical equations
with varying coefficients of a and B. Note how Figure 1b,c deviate more notoriously from
empirical equations pointing to the likelihood that for temperate and boreal tree species
models with only a-scalar intercept varying values would be sufficient to evaluate M with
a constant B-scalar coefficient a bit smaller than that of the MWBE model. However, from
the geometric principles of tree growth discussed above, as tree boles move from conical to
cylindrical shapes both the a and B scalar coefficients should more likely be modified; as
the former is a shape and the second is an acceleration constant value that increases with
tree growth and height slows; D is the only variable explaining the change of M with a
change of D.
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2.3. Proposed Semi-Empirical Non-Ddestructive Models of M Assessments

The descriptions of Figure 1a,d could be modeled using two semi-empirical ap-
proaches, one for each one, called hereafter: (i) the reduced model, MNR, and (ii) the
shape-dimensional model, MSD. The MNR model assumes the constant B-scalar coefficient
value can be found in World M case studies and the varying a-scalar intercept value can
be modeled as a function of the specific gravity value of wood as well using sample size
as a weighting factor. The MSD model assumes the varying B-scalar coefficient value can
be derived using bio-physical principles and can be used to derive the a-scalar intercept
value as a preliminary approach in the meantime better data to test proposed bio-physical
assessments of the a-intercept become available.

2.3.1. The Reduced MNR Model

A reduced MNR model can be proposed and constructed by assuming: (a) it has a
constant B-slope coefficient value that can be preliminarily approximated using meta-
analysis case studies of World M allometry; (b) the conventional bole wood specific gravity,
ρw, is a good estimator for the entire tree specific gravity value (ρw = ρ); and (c) ρw and
the a-scalar intercept data are functionally related with a slope coefficient describing the C
proportionality constant of Equation (2). These assumptions fully and consistently meet
the principles of the MWBE as well as the MC models. Then, the proposed reduced model
in this report that is similar to the MWBE model but that is parameterized in a different
manner than the conventional model is:

MNR = (arDBn); ar = f (ρw); C =
ar

ρw
; MNR = CρwDβn (6)

where ar is the re-escalated a-intercept; D is the diameter at breast height; ρw is the the bole
wood specific gravity; and Bn is the scaling power coefficient to be found in meta-analysis
M case studies.

Statistics of several compilations of meta-analysis M case studies used for finding
the approximate B-scalar coefficient value using a re-escalated a-scalar intercept figure are
reported in Table 1.

Table 1. The allometric model scalar coefficient figures with a re-escalated a-scalar intercept values
for six meta-analysis tree aboveground biomass case studies.

A a-Re-Escalated B

N x Σ CI x σ CI x σ CI

Jenkins et al. [23] 10
(2456) 0.11 0.03 0.02 0.12 0.03 0.02 2.40 0.07 0.05

Ter Mikaelian and
Korzukhin [15] 41 0.15 0.08 0.03 0.11 0.04 0.01 2.33 0.17 0.05

Fehrmann and Klein [32] 28 0.17 0.16 0.06 0.12 0.02 0.01 2.40 0.25 0.09

Návar [16] 78 0.16 0.15 0.03 0.14 0.09 0.02 2.38 0.23 0.05

Návar [12] 34 0.10 0.11 0.04 0.12 0.05 0.02 2.42 0.25 0.08

Zianis and Mencuccini [3] 277 0.15 0.13 0.01 0.12 0.04 0.01 2.37 0.28 0.03

Mean Values 0.14 0.11 0.03 0.12 0.05 0.01 2.38 0.21 0.06

N, number of biomass equations; x, average coefficient value; σ, standard deviation; CI, confidence interval
values (α = 0.05; D.F = n − 1); µ, population mean. Jenkins et al. [23] compiled 2456 clustered in 10 biomass
equations for temperate North American tree species. Ter Mikaelian and Korzukhin [15] reported equations for 67
North American tree species but only 41 equations were employed that reported for total aboveground biomass.
Návar [16] reported a meta-analysis for 229 allometric equations for Latin American tree species but only 78 fitted
the conventional model for aboveground biomass. Návar [6] reported B-scalar exponent values for 34 biomass
equations calculated from shape-dimensional analysis. Zianis and Mencuccini [3] reported equations for 279
worldwide species. It is recognized that this meta-analysis study overlaps several equations that were employed
by Jenkins et al. (2003); Zianis and Mencuccini [3] and by Ter Mikaelian and Korzukhin [15].
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A mean (confidence interval) Bn-scalar slope value of 2.38 (±0.06) is appropriate
for the MNR model (6), when D is measured at breast height for most trees growing in
temperate and boreal forests. It deviates from the D2.0H* [2] and D2.67 [18] and it describes
better M allometry for tree boles that fit better conical than cylindrical shapes. That is, most
sampled trees appear to be in young stages and conical shapes fit better the tapering of
tree boles.

In order to reduce biased M evaluations, the a-scalar intercept has to be re-escalated,
ar, since the average Bn-scalar slope approximates better to a population mean coefficient
while most allometric equations are derived from sample data. For available allometric
equations with conventional and Bn -scalar slope values, Equation (7) takes care of this step:

ar =
aDB

m

D2.38
m

; ar = aDB−2.38 (7)

where: ar is the re-scalated a-scalar intercept; and Dm is the maximum diameter at breast
height recorded in the allometric case study or the forest inventory.

Allometric Data for Testing the MNR Model

The proposed MNR model was constructed with 41 tree M equations reported ear-
lier [15] for North American temperate and boreal tree species. The procedure was the
following; first, the re-escalated ar-scalar intercept was estimated with Equation (7) and
second the tree MNR was evaluated with Equation (6). The plotted red lines to see the
feasibility of the re-escalated ar and proposed constant B = 2.38 scalar coefficient values are
depicted in Figure 1a.

Next ar was plotted as a function of ρw and a linear equation fitted to this rela-
tionship (Figure 2). The equation was forced to start from the origin in such a way
that ar = Cρw with the slope describing the C proportionality constant, to be consistent
with both Equations (1) and (2). The bole wood specific gravity data was collected from
internet sources.
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Figure 2. Relation of ar-intercept and wood specific gravity coefficient values derived for 39 reported
biomass equations for North American tree species. The regression line, equations, and goodness of
fit parameters are also depicted.

Bole wood specific gravity data predicts well the derived ar-re-escalated intercept
coefficient value for all aboveground allometric equations, with the exception of two
data points that were deleted from the regression analysis. Wood specific gravity values
explained 65% (±2.3%) of the ar-re-escalated intercept variance. Hence, the full semi-
empirical preliminary MNR model for North American temperate and boreal tree species
that can be applied for World temperate and boreal forests is described by model (8):
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MNR =
(

0.2457(±0.015)ρwD2.38
)

(8)

The lower and upper confidence intervals (Sx = 0.095) of the slope coefficient for North
American tree species are 0.2304 and 0.2609, respectively. Then, this reduced allometric
equation entails only the ρw parameter that is species specific to predict the ar-scalar
intercept and with a constant Bn = 2.38 scalar value, tree M of any temperate tree species
can be easily derived.

Testing the MNR Model

The MNR model was tested with the 10 general equations developed and reported for
USA [23]. In addition, 32 other equations collected from Mexico were used to validate and
to contrast the restrictive as well as a second semi-empirical model named hereafter the
shape-dimensional, MSD, model.

2.3.2. The Shape-Dimensional Model

A shape-dimensional model, MSD, can be physically developed following the classic
mass equation applied to tree boles in forestry. Tree M is linearly and positively related to
stem volume, V, and to wood specific gravity of the entire tree, ρ.

M = Vρ (9)

A simple dimensional analysis of a perfect cylinder shows that the tree bole volume is

V = avD2H (10)

where av is 0.7854.
However, for real tree boles, the av coefficient has been found to have an average

value of 0.55 (for n = 50 case studies of conifer trees of northern Mexico) indicating that
the stem cross-section at any height, or pieces of stems, has non-standard shapes that are
only approximated by ideal objects. Fractal geometric analysis was developed to quantify
the dimension of trees that cannot be described by Euclidean geometry [33]. It is generally
acknowledged that a positive number between two and three is a better estimator of the
tree’s crown dimension, and it is assumed that the overall shape of a tree (stem and crown)
may possess similar fractal dimensions. Then, in mathematical terms, the Schumacher and
Hall [34] equation fits well bole volume:

V = avDd Hh (11)

where: av 6= 0.7854, d and h are positive numbers with 2 < d + h < 3.
A statistical relationship between H = f(D) (≈ Ln(H) = Ln(a) + βLn(D)) that convey

biomechanical principles has been developed for forestry and botany studies [35–38]
when stress-similarity for self-loading dictates the mechanical design of a tree, the power
coefficient of this relationship, β = H*, scale to ≈ 1⁄2 power of D and a final constant
H* is reached in old trees that reflects an evolutionary balance between the costs and
benefits of stature [37]. In fact, Niklas [38] using meta-analysis case studies reported that
H* approximates to 0.535 for a wide range of plant sizes. However, when using tree
samples in a forest, this relationship is a function of sample size, tree species, stocking, site
productivity, among other factors that may deviate the scaling factor from 1⁄2. Therefore, by
assuming that;

H = Ln(a) + βLn(D); β = H∗; H = ahDH∗ (12)

where ah is the intercept and β = H* is the slope of Equation (9), with 0 < H* ≤ 1; H* ≈ 1⁄2.
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Then the Schumacher and Hall [34] Equation (11) can be simplified by using predicted
H by Equation (12). Hence Equation (11) becomes:

V = f
(

avDdahDhH∗
)
= (avah)Dd+hH∗ (13)

where: av and ah = intercept coefficients that describe average taper and slenderness form
factors of tree boles, respectively; d and h = power coefficients of the Schumacher and Hall
Equation (11) [34]; H* = power slope coefficient of the logarithmic H vs. D relationship.

Since tree biomass is assumed to be proportional to V (with the tree wood specific
gravity value as a weighting factor of the shape coefficient), then M = f(Dd+HB*) and in
conjunction with Equation (13):

Btheoric = d + hH∗ (14)

And,
atheoric = (avah)ρ; atheoric = Cρ; C = (avah) (15)

Equation (14) was proposed earlier [2,3] as an aid to test the hypothesis that the
scaling coefficient between M and D depends on the scaling coefficient between H and
D. Once these authors somehow proved correct this hypothesis, the H* coefficient of
the H-D relationship was further used in empirically calculating the B-scalar exponent
of Equation (1). Using this data set, the equation: B = 1.9262 + 0.6972H*; r2 = 0.42 was
developed. Please note that when H* ≈ 0.535; B ≈ 2.30, whose value approaches the lower
limit of the conical shape of tree boles (2.33) stressing this approach eventually bias M as
trees grows over time and timber shape deviates further from conical forms.

Finally, the fully theoretical MSD model that requires the following relationships
V = f(D, H) and H = f (D), in addition to ρ is;

MSD = ρ(avah)Dd+hH∗ (16)

Model (16) can be simplified by further assuming ρ = ρw. Burkhardt and Tomé [36]
and Genet et al. [22] proposed the taper form factor can be simplified as it is equivalent to
the av coefficient of the Schumacher and Hall equation, as follows:

F =
v

D2H
∼= av (17)

Návar [6] proposed the coventional slenderness factor can be preliminarily approxi-
mated with the use of Equation (18) and is equivalent to the ah coefficient of the Schumacher
and Hall equation, as folows,

N =
H
D
∼= ah (18)

where v is the bole volume (m3); D is the diameter at breast height in m; and H is the top
height (m).

Meta-analysis of M case studies noted that the scalar coefficients a and B are related
to one another in a negatively power function because (i) they seem to compensate the
general principles of M and (ii) the remaining variation must be partially explained by
high values of both a and B-scalar factors that would often result in large values of M
for large diameters that possibly approach the safety limits imposed by mechanical self
loading [3,5,14,16]. All of the power equations reported by these authors project compatible
a-scalar intercept values when B ≥ 2.33. Using these statements, the MSD model (16) can be
transformed into an hybrid physical-statistical model in the absence of ρ or ρw data and
precise taper, av, and slenderness, ah, coefficient values, the a-intercept coefficient can be
preliminary statistically derived as a function of Btheoric, as follows;

atheoric = (avah)ρ = f (Btheoric = d + hH∗) (19)
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With these statements, the second version of the MSD semi-empirical model that is
physical-statistically parameterized is;

MSD = atheoric = (avah)ρ = f (Btheoric = d + hH∗) (20)

The ah and av coefficients are hard to be precisely defined when most inventoried trees
meet the D ≥ 7 cm dimensions providing intercept values with large variances, then the
theoretical semi-empirical MSD model (16) and the physical-statistical MSD model (19) be-
come in part semi-empirical models. Using Zianis and Mencuccini [3] World M data set, the
fully statistically parameterized equation is: MSD = [(7.0281 ∗ B−4.7558) ∗ D(1.9262 + 0.6972H*)];
where the equation within the first bracket calculates the varying a-scalar intercept and the
equation within the second bracket estimates the varying B-scalar exponent of the conven-
tional MC equation. This empirical model assumes B = Btheoric for any tree species. The MSD
model in two forms Equations (16) and (19) advance the statistical model proposed earlier
as they develop further into the calculation of varying a and B-scalar coefficients instead of
exploring simple empirical equations that calculates and associates the B-scalar coefficient
as a function of only the H-D relationship.

The MSD model when transformed into a physical-statistical technique has several
major disadvantages: (a) the inherent co-linearity problems of estimating a with Btheoric,
(b) the log-relationships between V = f(D, H) and D = f(H) are required in order to estimate
a and Btheoric figures, (c) measurements or data of ρ is required, and (d) an empirical
equation that relates a to Btheoric has to be developed on site or alternatively use preliminary
equations previously reported [3,5,14] or the one developed for this report. However, all of
these equations would consistently evaluate compatible average a-intercept values with an
estimated Btheoric-slope coefficient.

Allometric Data for Testing the MSD Model

Two independent M datasets tested and validated set hypotheses of the MSD model. A
list of biomass, bole volume, and H-D allometric equations including statistical parameters
was compiled. The first data set included 21 M case studies that fitted the MNR as well
as the MSD models to estimate the Btheoric and aempiric values and to develop an empirical
equation to estimate a (named atheoric because it results from Btheoric values). This data set
was statistically analyzed to provide site-specific-species M equations, using most of the
biomass data already published by Návar [14]. This data source was previously used to
develop biomass equations for each individual tree species at the regional scale, within a
linear radius of 500 km in the Sierra Madre Occidental Mountain Range of Durango and
Chihuahua, Mexico. The second independent data source makes up 11 M case studies that
were collected to have an independent data set and to validate the proposed MSD as well
as the MNR models.

The rationale behind was that different on and offsite allometric models predict
different M values, and therefore they exhibit large variation for similar forest ecosystems,
as was seen in studies for tropical trees [39–43]; tropical dry trees ([14]; as well as for the
IAN 710 hybrid of Hevea brasiliensis trees ([44–46]. Therefore, any semi-empirical model
must also evaluate tree M that fall within the variation of all of these biomass equations or
within the variation of a single allometric equation.

Allometric Data for Validating the MSD Model

A total of 32 M case studies were collected; 21 for testing and 11 for validating the
MSD model. The following information was recorded: the tree species and the region for
which the equation was developed, the a and B values, the coefficient of determination R2,
the mean square error, the MSE, the standard error for B (SB), and the D range of harvested
trees (Table 2). For all 32 data sets, 11 broadleaved species belonging to five genera were
studied, while eight coniferous tree species from Pinus spp. were recorded. The species
growing in tropical dry regions are generally referred to as tropical dry trees, and a single
allometric equation is reported for five of these species. In all of the 32 case studies, the D
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interval of sampled trees was in the range of 1.4 to 62.5 cm, with a mean of 20.0 cm. The
collected information is assumed to represent a sample of the M–D-H relationships for
tree species growing in the northern forests of Mexico, but also including one species from
southeastern Mexico.

Table 2. Parameters of the conventional model (1) employed in the development and testing perfor-
mance of the semi-empirical non-destructive models for forest ecosystems of northern Mexico.

Coefficient Values of Equation (1) Diameter Statistics (cm)

Location Species (n) a B SB r2 MSE Min Max Mean

DATA FOR MODEL DEVELOPMENT (n = 21)

1. S. Chihuahua P. arizonica (n = 30) −1.482 2.129 0.1697 0.84 0.026 16.20 32.90 25.70

2. S. Chihuahua P. durangensis (n = 30) −3.532 2.731 0.1478 0.92 0.054 12.10 46.00 27.40

3. S. Chihuahua Qurcus spp. (n = 45) −2.144 2.403 0.1275 0.89 0.060 15.40 48.70 29.10

4. El Salto, Dgo P. cooperi (n = 20) −1.922 2.321 0.1596 0.93 0.068 12.50 57.40 31.70

5. El Salto, Dgo Q. sideroxylla (n = 30) −2.592 2.585 0.1093 0.95 0.061 9.80 62.50 27.80

6. Tepehuanes, Dgo P. arizonica (n = 36) −3.573 2.746 0.0897 0.96 0.038 10.00 45.00 22.60

7. Tepehuanes, Dgo P. durangensis (n = 15) −3.416 2.715 0.1405 0.96 0.039 11.80 57.20 24.30

8. Tepehuanes, Dgo P. leiophylla (n = 12) −3.039 2.523 0.2237 0.92 0.058 13.90 34.80 21.30

9. Altares, Dgo P. arizonica (n = 60) −0.877 1.980 0.0560 0.81 0.094 9.90 45.00 25.70

10. San Dimas, Dgo P. ayacahuite (45) −3.066 2.646 0.0690 0.97 0.044 5.70 30.30 15.40

11. San Dimas, Dgo P. cooperi (n = 12) −3.264 2.707 0.1100 0.90 0.274 8.20 38.10 18.40

12. San Dimas, Dgo P. durangensis (n = 71) −2.084 2.323 0.0680 0.94 0.074 6.20 48.50 18.70

13. San Dimas, Dgo P. leiophylla (n = 15) −3.549 2.787 0.1020 0.94 0.065 9.60 29.00 20.20

14. Mezquital, Dgo P. oocarpa (31) −3.065 2.625 0.1030 0.93 0.061 12.20 44.80 25.20

15. Mezquital, Dgo P. pseudostrobus (n = 24) −2.611 2.531 0.2700 0.88 0.047 12.00 32.00 19.60

16. Mezquital, Dgo P. teocote (n = 49) −3.182 2.702 0.0690 0.96 0.050 7.30 43.30 21.90

17. Mezquital, Dgo Quercus spp. (n = 17) −2.754 2.574 0.0700 0.94 0.089 7.30 41.20 21.10

18. Topia, Dgo P. durangensis (n = 60) −2.108 2.373 0.0606 0.96 0.019 11.80 48.40 26.00

19. E. Sinaloa Tropical Dry trees (n = 40) −2.523 2.437 0.1993 0.80 0.443 5.20 32.60 14.80

20. Dgo.-S.Chih. Pinus spp. (n = 520) −2.818 2.574 0.0260 0.94 0.076 5.70 57.40 23.50

21. Dgo.-S.Chih. Quercus spp. (n = 106) −2.874 2.631 0.0807 0.93 0.078 7.30 62.50 26.80

Average −2.69 2.53 0.12 0.92 0.09 10.00 44.65 23.20

C.I. 0.30 0.09 0.03 0.02 0.04 1.38 4.50 1.89

DATA FOR MODEL MODEL VALIDATION (n = 11)

22. Iturbide, N.L. P. pseudostrobus (n = 8) −3.164 2.599 0.0807 0.98 NA 5.00 42.40 2.32

23. Iturbide, N.L. Q. cambyi (n = 8) −2.311 2.449 0.0807 0.97 NA 5.00 39.50 23.10

24. Iturbide, N.L. Q. laceyi (n = 7) −2.434 2.507 0.0807 0.98 NA 6.00 35.20 20.20

25. Iturbide, N.L. Q. risophylla (n = 8) −2.209 2.374 0.0807 0.97 NA 7.40 40.60 23.90

26. El Salto, Dgo Y. Pine trees N.L. (n = 17) −0.610 1.713 0.1073 0.94 0.068 1.80 14.60 7.70

27. El Salto, Dgo Y. P. durangensis (n = 25) −3.642 2.746 0.2370 0.85 0.168 4.00 15.00 10.00

28. El Salto, Dgo Y. P. cooperi (n = 19) −3.119 2.588 0.1515 0.94 0.047 5.00 14.40 9.20

29. El Salto, Dgo Y. Pinus spp. (n = 12) −2.397 2.364 0.4276 0.73 0.281 3.80 13.60 9.70

30. NE Mexico Acacia spp. (n = 190) −1.414 2.114 0.0360 0.95 0.144 1.40 57.30 8.30

31. NE Mexico Prosopis spp. (n = 62) −1.871 2.320 0.0880 0.92 0.213 2.70 21.80 9.10
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Table 2. Cont.

Coefficient Values of Equation (1) Diameter Statistics (cm)

Location Species (n) a B SB r2 MSE Min Max Mean

32. Ver., Mexico Hevea brasiliensis (n = 20) −2.199 2.404 0.3246 0.74 0.152 20.00 50.00 31.10

Average −2.31 2.38 0.15 0.91 0.15 5.65 31.31 14.06

C.I. 0.50 0.16 0.07 0.05 0.05 3.00 9.44 5.29

Dgo., Durango; Chih., Chihuahua; Y, young; NA, not available; SB, standard error for B; r2, coefficient of
determination; MSE, mean square error; Min, minimum; Max, maximum. Bold numbers means that data was
derived from other regional studies.

For M case studies with different allometric equations, first, the scalar coefficients a
and B were calculated by least square techniques in linear regression using the natural
log transformation of M and D. Second, for all biomass databases, the H-D and V-H,D
data were extracted from the same biomass studies mentioned previously. When this
information was not available it was collected from several reports for the same species
(Table 3). The statistical logarithmic relations fitted for calibrating the non-destructive
model are described further below. The H-D and V-H,D relationships evaluated the Btheoric
coefficient by fitting Equation (14). The atheoric was calculated as a function of the Btheoric
coefficient by regressing these variables using the 21 tree M case studies.

Table 3. Diameter—height and volume—diameter— height relationships for model development
and testing of the non destructive method of total aboveground biomass estimation.

D-H Relationship; Ln(H) = a + BLn(D); H = BoDB* V-D,H Relation; Ln(V) = a + BLn(D) + B1Ln(H); V = BoDB1HB2

(Equation No)
ah(Bo) B = H* r2 MSE Ln (av(Bo)) d(B1) h(B2) r2 MSE

EQUATIONS FOR MODEL DEVELOPMENT (n = 21)

(1) 1.6270 0.3040 0.22 0.0090 −8.8600 1.8300 0.7700 0.92 0.0115

(2) 0.7560 0.5440 0.43 0.0310 −9.6600 2.0100 0.8600 0.98 0.0120

(3) 0.5070 0.5630 0.34 0.0490 −9.4300 1.9800 0.7200 0.98 0.0108

(4) 1.0490 0.5620 0.73 0.0160 −9.3200 1.8700 0.9360 0.96 0.0320

(5) 0.7520 0.5650 0.62 0.0330 −9.6700 1.7900 1.0270 0.98 0.0180

(6) 0.4540 0.6780 0.47 0.0680 −9.5600 1.8560 0.9990 0.99 0.0077

(7) −0.0020 0.8420 0.75 0.0330 −9.7600 2.0470 0.8570 0.99 0.0057

(8) 0.7530 0.5690 0.69 0.0150 −10.0900 2.2300 0.7530 0.99 0.0085

(9) 1.7280 0.3230 0.33 0.0205 −9.5370 1.9678 0.8590 0.99 0.0047

(10) −0.0470 0.9070 0.87 0.0250 −9.6370 1.6870 1.1710 0.99 0.0087

(11) 0.6630 0.6260 0.89 0.0160 −9.8870 2.0960 0.8770 0.99 0.0057

(12) 1.3090 0.4730 0.62 0.0330 −9.6960 1.9280 0.9560 0.99 0.0160

(13) 0.7780 0.5980 0.75 0.0150 −9.7920 2.1790 0.6940 0.99 0.0061

(14) 0.7740 0.5750 0.47 0.0400 −9.8440 1.9890 0.9350 0.99 0.0047

(15) 0.9600 0.5950 0.75 0.0070 −9.9590 1.6930 1.2910 0.99 0.0028
(16) 0.9630 0.5360 0.66 0.0240 −9.6320 2.0510 0.7890 0.99 0.0103

(17) 1.2430 0.4410 0.53 0.0390 −9.5500 1.8230 0.9760 0.98 0.0209

(18) 1.2150 0.4660 0.46 0.0240 −9.2170 1.9200 0.8040 0.99 0.0067
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Table 3. Cont.

D-H Relationship; Ln(H) = a + BLn(D); H = BoDB* V-D,H Relation; Ln(V) = a + BLn(D) + B1Ln(H); V = BoDB1HB2

(Equation No)
ah(Bo) B = H* r2 MSE Ln (av(Bo)) d(B1) h(B2) r2 MSE

(19) 0.5717 0.3750 0.14 0.2130 −9.7344 2.0163 0.8150 0.98 0.1726

(20) 1.3392 0.4430 0.25 0.1010 −10.0750 1.7284 1.3466 0.98 0.0230

(21) 1.1537 0.4119 0.29 0.0610 −9.3906 1.8961 0.8129 0.98 0.0160

Average 0.54 0.54 0.04 −9.63 1.93 0.92 0.98 0.02

C.I. 0.06 0.09 0.02 0.12 0.06 0.07 0.01 0.02

EQUATIONS FOR MODEL VALIDATION (n = 11)

(22) 0.9890 0.5540 0.60 0.0350 −9.7105 2.0068 0.8562 0.99 0.0160

(23) 1.1187 0.4209 0.79 0.0480 −10.1246 1.6824 1.2601 0.91 NA

(24) 1.2810 0.3330 0.78 0.0320 −9.5341 1.5731 1.0773 0.86 NA

(25) 0.9560 0.5090 0.89 0.0320 −10.7150 1.7917 1.4429 0.95 NA

(26) 1.9633 0.3842 0.91 0.0200 −7.8209 2.5891 −0.9378 0.96 0.0500

(27) 1.2347 0.4750 0.50 0.0400 −9.6237 2.0354 0.7972 0.99 0.0150

(28) 0.6372 0.6680 0.80 0.0230 −9.6414 1.8232 1.0820 0.99 0.0190

(29) 0.9770 0.5530 0.57 0.0380 −9.7418 2.0047 0.8757 0.99 0.0149

(30) −0.4290 0.6180 0.45 0.0820 −9.4756 1.9902 1.1737 0.99 0.0066

(31) −0.4732 0.6272 0.57 0.0715 −9.4756 1.9902 1.1737 0.98 0.0115

(32) 0.5430 0.7450 0.63 0.0255 −9.8310 1.8370 1.0010 0.93 0.0430

Average 0.54 0.68 0.04 −9.61 1.94 0.89 0.96 0.020

C.I. 0.07 0.09 0.01 0.41 0.16 0.38 0.03 0.010

In order of causing no further confusion, M was estimated with the following two
options: (a) the conventional model (1), MC, with statistically evaluated Bempiric-aempiric and
(b) the shape dimensional model, MSD, that evaluated Btheoric-atheoric. The MC Equation (1)
confidence bands given by the standard error of Bempiric (SB), were calculated to find out
whether M assessments from the MSD as well as from the MNR model would fall within this
interval for a single equation and to note whether these models provide unbiased estimates
that oscillates up and down the average line depicted by Equation (1).

2.3.3. Model Fitting Statistics

Measured tree M data is the raw biomass (MR), tree M estimated by the conventional
equation is MC, and tree M evaluated by the shape dimensional, MSD, and restrictive
models is MNR for the 21 biomass data sets for fitting the parameters collected for the non-
destructive model and for the 11 biomass data sets used for testing the field applicability of
the proposed model for biomass estimates. The coefficient of determination, r2, and the
standard error as a percentage, Sx%, were evaluated by contrasting only MC vs. MSD and
MC vs. MNR; as well as MSD vs. MNR models.

3. Results
3.1. The MNR Model

The proposed MNR model consistently matches reported allometric equations for
all three case studies. In addition, the mean (confidence interval) ar values (0.12 ± 0.01)
are statistically similar to the reported conventional mean a-scalar (0.14 ± 0.03) intercept
coefficient figures (Table 1). It reproduces compatible M assessments as the standard error
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was <20% for 81%, 60% and 51% of the allometric equations reported earlier [12,14,15,23]
(Figure 3).
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That is, only in 4 out of 21 (19%); in 4 out of 10 (40%); and in 19 out of 39 (49%);
the standard error is larger than 20% for the compiled M case studies, respectively. For
all Návar’s [12,14] 21 allometric equations, the standard deviation values > 40% could
be observed for only the species Pinus arizonica and Acacia spp. but most of the error
was found in trees with D > 30 cm. An example of the application of the MNR model
is depicted in Figure 4 in conjunction with the Jenkin’s et al. [23] M equations for ten
clusters of North American tree species. For all ten Jenkins’ et al. [23] equations standard
deviation figures > 37% were observed in cedar/larch; true fir/hemlock; and woodland
(juniper/oak/mesquite) species. The first two clusters of species recorded most deviations
in trees with D > 60 cm. The MNR model bias projected M data for the woodland tree
species. For the Ter-Mikaelian and Korzukhin’s [15] 39 biomass equations, the proposed
model deviates (e.g., Sx(%) < 30%) in 29 tree species.

Deviations of M assessments present one of the smallest errors (15%) ever recorded in
M allometry since mean (confidence interval) standard errors values are: 23.9 (5.7); 20.4
(11.6) and 12.3 (6.6) for biomass equations had been previously reported [12–15,23]. For
the studied tree species, the model reproduces unbiased M estimates warranted by the
regression line between the ar-intercept and the ρw data source as well as by the random
oscillation of the proposed MNR model for the M case studies tested and validated.



Forests 2022, 13, 999 15 of 29Forests 2022, 13, 999 14 of 28 
 

 

 
Figure 4. The proposed semi-empirical non-destructive restrictive model for tree aboveground 
biomass estimation contrasting the Jenkins et al. [6,23] equations for 10 clusters of North American 
tree species. 

Deviations of M assessments present one of the smallest errors (15%) ever recorded 
in M allometry since mean (confidence interval) standard errors values are: 23.9 (5.7); 20.4 
(11.6) and 12.3 (6.6) for biomass equations had been previously reported [12–15,23]. . For 
the studied tree species, the model reproduces unbiased M estimates warranted by the 
regression line between the ar-intercept and the ρw data source as well as by the random 
oscillation of the proposed MNR model for the M case studies tested and validated. 

Figure 4. The proposed semi-empirical non-destructive restrictive model for tree aboveground
biomass estimation contrasting the Jenkins et al. [6,23] equations for 10 clusters of North American
tree species.

3.2. The MSD Model
3.2.1. Preliminary Parameter Assessments and Relationships

The mean (confidence interval) a (0.068± 0.03 and 0.99± 0.03) and B-scalar (2.53 ± 0.09
and 2.38 ± 0.16) coefficient values for both datasets are reported in Table 2. The mean
(confidence bounds) of the H* scalar coefficient derived from the relationship H = aDB* was
0.54 (0.067) for all 21 as well as for all 11 allometric data sets used for fitting and validation
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of the MSD model coefficients and parameters (Table 3). The results are significantly similar
and within the value range proposed by Niklas [38], who reported a grand average value
of 0.535 for a wide range of plant sizes. The mean (confidence interval) values for the d and
h coefficients derived from the Schumacher and Hall [34] bole volume equation (Ln(V) =
Ln(a) + dD + hH; V = avDdHh), were d = 1.933 (0.066) and h = 0.917 (0.079), respectively. As
expected, these parameters fall within the range of 2 < d + h < 3 = 2 < 2.85 < 3; with lower
and upper confidence values of 2.70 and 2.99, respectively. As expected, they approximate
better to the 3rd than to the 2nd dimensional domain.

Data on the Bempiric and the H* coefficients for all of the 21 case studies (Tables 2 and 3)
were plotted and a statistical relationship was fitted. As expected, the Bempiric values
fitted well a linear function with the H* slope of the logarithmic H-D relation. However,
an exponential rise to a maximum function described the Bempiric data better. If a linear
equation had been fitted, the equation would have turned out in the following statistics:
Bempiric = 2.0099 + 0.9334H*; r2 = 0.42; Sx = 0.16; F = 13.85; and p = 0.0014. The F test for
selecting the best regression equation did not have significant differences between equations
(p = 0.68). Integrating the mathematical function solves for the mean and confidence
interval parameters of the Bempiric values (2.44± 0.08). Zianis and Mencuccini [3] developed
a similar linear relationship between these parameters, with the following equation: Bempiric

= 1.9262 + 0.6972H*; r2 = 0.42. The linear or the non-linear equation is of little predictive
value for the B–scalar coefficient because of the low coefficient of determination and
consequently the large unexplained variance. However, the regression is statistically
significant pointing to the physical association of the tree M-D and the H-D relationships.
For example, trees trying hard to reach dominant position in an overstocked forest would
have large H and small D values with H* figures > 0.50 and B-scaling exponents ≈ 2.33 of
the M vs. D relationship. On the other side, wolf trees growing free of competition would
be shorter and fat and would have H* < 0.50 and B-scaling exponents ≈ 2.67.

Testing the Association of Equation Parameters

The statistical parameters for the scalar a and B coefficients of Equation (1) for the
21 equations for fitting parameters and the 11 equations for testing the model’s performance
are reported in Table 3. The Bempiric (2.44 ± 0.08) and Btheoric (2.53 ± 0.09) parameters
reported in Tables 2 and 3 are statistically similar (p = 0.36) and linearly and positively
related by: Bempiric = 1.0276+0.6676Btheoric; r2 = 0.42; Sx = 0.16; and p = 0.0015. This equation
has a large unexplained variation as well given by the small r2 and the large Sx parameters.
However, the statistical significant association of the MSD model proposal shows how
several physical and biological features converge into the evaluation of tree M.

The a-Scalar Intercept

The a-scalar intercept recorded average values of 0.068 and 0.099 for fitting and testing
case study datasets, respectively. As expected, statistical significant associations were found
between the a-scalar intercept and ah (a = 2.035 + 0.43ah; r2 = 0.45, p = 0.0001); between the
a-scalar intercept and av (a = −9.05 + 0216av; r2 = 0.30, p = 0.0001); as well as between the
a-scalar intercept and ahav(a = −18.84 − 3.86 ahav; r2 = 0.42, p = 0.0001) testing correct the
physics of the MSD model describe well the biological traits of M.

A significant negative power relationship between aempiric and Btheoric as well as
between aempiric and Bempiric fitted quite well the data set for all 21 tree M case studies
(Figure 5). For the fitting parameter dataset, both equations used to estimate the intercept
values for aempiric and the atheoric values converge for the B values larger than 2.2, and this
finding encourages the use of empirical equations to estimate atheoric with the following
equation; atheoric = 159.85Btheoric

−8.3852. This equation explains 95% of the atheoric variation
and has a small standard error of 0.022, with a coefficient of variation of 20%. Other previ-
ously reported equations relating a to B are: a = 38.78B−6.84; a = 61.62B−7.32; a = 7.03B−4.63;
a = 5.14B−4.49; a = exp(6.98−3.71B); a = exp(3.42−2.27B) [3,5,14]. These equations show a great
deal of variation in estimating a when B < 2.2 but the Eq. of Zianis and Mencuccini [3] and
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Pilli et al. [5] converge quite consistently for the full data range measured in this study.
By eliminating one of the Eq. reported by Pilli et al. [5] and using the rest of equations,
the a-scalar coefficient has a mean value of 0.11 with a quite small confidence interval of
0.008 when B = 2.40. This figure is quite consistent with the a-scalar intercept values of the
meta-analysis conducted in Table 1.
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developed equations [3,5,14,16].

The consistency of the empirical data, fitted equation, and other equations previously
developed point to the similitude of the relationships for most M case studies. This finding
may shed further light into the common development of M for different tree species, better
modeling approaches, as well as on the ontogeny of M allometry. As trees grow the B-scalar
exponent of the tree M vs. D relationship increases non-linearly and the a-scalar intercept
decreases non-linearly approaching the limits of safe loading mass as the trees grows
in height.

3.2.2. Performance of Fitting and Validation of the MSD Model

The tested MSD model was: MSD = (atheoric = DBtheoric) = ((159.85Btheoric
−8.3852)Dd+h*H*).

For the 21 M case studies, the mean standard error (confidence interval) had a value of 39.8
(17.9) Kg, and it slightly increased to a mean of 47.2 (27.0) kg stressing the consistency of the
proposed non-destructive technique in M assessments. For six out of the 21 case studies, the
standard error calculated by the MC model was larger than the standard error calculated
by the MSD model. The inverse was correct for 15 out of 21 studies. This randomness
in M estimates from the MSD model, in contrast to the MC conventional one, makes this
methodology unbiased for these M case studies (Figure 6). Equation (1) provides excellent
M assessments for data samples as well as for large datasets but most data samples does
not usually meet the sampling requirements.

The MSD model predicts consistent M assessments when contrasted with the MC
model, with average r2 and Sx% values of 0.96 and 15%, respectively for fitting parameters
and 0.96 and 14% for validation of the model (Figures 6 and 7). The MSD model represented
by the dark green line oscillates up and down and close to the average dotted line depicted
by the MC model for both datasets pointing to the unbiasedness of M assessments by this
novel technique.
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the empirical B-scalar value are also depicted.

Figure 7 shows the independent data set of conventional allometric equations that
validated the MSD model performance. In general, the MSD model validated M data as
well. For nine out of 11 data sets, the model predicted tree M within the confidence bounds
given by the standard error of B. The model did not perform well for Acacia spp. neither for
Prosopis spp. trees with D > 30 and D > 20 cm, respectively. The bole volume equation used
in this research includes branches because the correct definition of the bole component
for woodland broadleaf and semi-arid trees is not well specified, and this is one likely
explanation for the lack of fit of the MSD model for this type of M case datasets.
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3.3. Contrasting the Performance of MSD and MNR Models

The MNR model slightly improved M assessments in contrast to the MSD model as the
average values of 0.99 and 12% as well as 0.97 and 9% were calculated when contrasting it
with the MC equation for the r2 and the Sx% values for both datasets fitting and validation
of the models, respectively. Better approximations between the MNR and the MC in contrast
to between the MSD and the MC models appear to be related to better quantifications and
parameterization of the a-and B-scalar coefficient of the MNR model.

Contrasts between the MNR vs. the MSD model predictions showed M assessments
slightly deviated a bit more than when contrasting them individually with the MC equation;
as average values of 0.97 and 20% as well as 0.65 and 60% were calculated as r2 and Sx%
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values for fitting and validation of the proposed models, respectively. Largest deviations
occurred in woodland Oak and Acacia tree species. Both proposed non-destructive models
performed as good as the MC model for pine tree species stressing the better parameter-
ization of proposed semi-empirical models in conifers than in woodland broadleaf and
semi-arid tree species.

The absolute difference between aempiric and atheoric explained most variation of the
absolute difference between MNR and MSD with the following equation; |MNR-MSD| =
481.2 + 102.9*Ln(aNR-aSD); r2 = 0.74; p = 0.0001. A preliminary analysis failed to identify
any relation between the magnitude of |MNR-MSD| and other specific features for each
case study (number of sampled trees, D range, and the mean square error for the D-H or
the V-D, H relations). The number of trees in each biomass study was statistically related
to parameters aempiric, atheoric, Bempiric, Btheoric, Sx1 and Sx2, but the variation explained for
by this parameter hardly exceeds 20% of the total variance. Unfortunately, the 21 datasets
reviewed do not provide the information that is essential to develop testable hypotheses
for disentangling the observed variance of any variability criterion and further analysis did
not take place.

4. Discussion
4.1. The Performance of Semi-Empirical Models

The proposed non-destructive semi-empirical MNR and MSD models perform as good
as the conventional empirical, MC, equation when predicting tree M since forecasts lie
close and remain within the confidence bounds of the MC equation. Unexplained variation
is smaller than the standard error of most empirical allometric equations reported in
the scientific literature (e.g., Sx < 20%). Mean intrinsic deviation is > 15 % of the mean
M [6,11,16].

The MNR model has at this time the major advantage that the relationship between
ar and ρw provide a wide range of M-D relationships that appear they are the case for
temperate and boreal tree species. However, the model violates the major assumption
tested correct in this study that both a and β-scalar coefficients varies among tree species
and covary together as the tree grows over time. Hence, it hints at a more variable a and
less variable β-scalar coefficient values, at least for temperate and boreal forests. Figure 1a
supports this statement as well as the average (and small confidence bounds) of the β-
scalar coefficient of 2.38 (±0.06) of meta-analysis case studies (Table 1). Although this
comprehensive dataset shows also an average (with small confidence bounds) of the a-
intercept value of 0.14 (±0.03); the ratio of CBβ/β = 0.021 and CBa/a = 0.21 emphasizing
the larger variance of the a-intercept value.

The MSD model provide consistent M assessments in contrast to the MNR and MC
models as the statistics showed similar M values for all tested case studies. However, the
relationship between ar vs. B provides limited application in tree species with quite small
or quite large wood basic density values where both the ar vs. B-scalar coefficients are in the
lower or upper range of Figure 5 and predicted scalar coefficients with the negative power
equation would deviate M assessments. Hence, at this time the model predict well M but
for tree species within the central range of values of β = 2.40 and a = 0.10 in tree species with
ρ values in the range of 0.35 to 0.70. Using Paz-Pellat et al. [21] scalar coefficients calculated
with mathematical equations predict also consistent M assessments but exclusively in the
central range of the 39 equations of Ter Mikaelian and Korzukhin [15] and tend to deviate
more notoriously than the MSD model outside the likely standard deviation values of
these coefficients. Therefore, the mathematical as the MSD and Paz-Pellat et al. [21] models
require of better parameterization and the improvement of the required relationships, in
specific the V vs. H, D and the H vs. D functions That is, these models have to become
more physically-based with biological interpretations as an aid to improve mathematical
models or the hybrid, physic-statistical version one tested in this research. Examples of how
the MSD and Paz-Pellat models perform when predicting biomass for 39 North American
temperate and boreal tree species are reported in Figure 8.
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aboveground biomass equations reported by Ter Mikaelian and Korzukhin [15].

4.2. Major Assumptions of Semi-Empirical Models

The MNR and MSD models are independent of each other and parameterized in a
different manner as well. In addition, they contrast each other in major assumptions
of evaluating the scalar coefficients. The MNR model assumes a single constant B-scalar
exponent value and a C proportionality constant. The MSD model entails variable a and
B-scalar values. The question whether tree M allometry needs a constant versus a variable
B-scalar exponent appears to be answered by both models of this report. This research
showed that bio-physics point towards a varying a and B-scalar coefficients but with a
small variance as it was demonstrated in the physical model development as well as in the
variation of the statistics reported in the meta-analysis of world case studies.
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4.2.1. A Constant B-Scalar Exponent

The proposed constant B-scalar exponent violates the major ontogenetic principles
developed in here and supported by Genet et al. [22] findings, However, the constant
value assumed in this study and found in this meta-analysis case studies of M allometry
(2.38 ± 0.06) is an average with a small variance that is consistent with independent esti-
mates using the bio-physical approach. Most meta-analysis M case studies should have
B-scalar values close to 2.40; e.g., Návar [6] for 34 Mexican tree species found a mean value
of 2.42 (±0.08) as it was found in the MSD model as well. However, further bio-physical
research is required on this approach as well as on any other independent methods such
as those conducted earlier [2,11] to be contrasted with the constant value proposed in this
research as well as by the MWBE model. The value of B = 2.38 (± 0.06) lies in the lower
range of ideal geometric objects of tree boles, approaching conical shapes. The BWBE-scaling
exponent of the MWBE model appears to require refinement, since empirical and physical
coefficient values range from 2.32 to 2.44 for 68% and from 2.26 to 2.50 for 95% of the
comprehensive allometric equations reported in here, assuming it is normally distributed.
Enquist et al. [19] and West et al. [20] noted that the fractal approach was derived assuming
the relationship between D and H scales with an assumed exponent of 2/3. This value is a
bit larger than those reported [38] as well as the one measured in this research. Therefore, it
is more likely that D and H scale with an exponent close to 1⁄2 instead of 2/3 as it had been
more physically explained [35,37], which could help to tune the BWBE-scalar coefficient a bit
further. The constant B-scalar coefficient works fine for World conifer tree M equations as
long as forests are maintained with the similar dimensions within rotations but they must
be on site calibrated whenever it is possible following the bio-physical recommendations
proposed in this research.

4.2.2. The Variable B-Scalar Exponent

Ontogenetic principles developed in this report support the notion the β-scalar coeffi-
cient varies with age and consequently with the shape of tree boles. In fact, the B-scalar
exponent value varies for collected World tree species. The MSD model describes well how
both the a- and B-scalar coefficients covary together in most meta-analysis case studies
conducted and described well in Figure 5. In addition, a meta-analysis study composed
of 279 M equations for World tree species, the B-scalar coefficient has a mean, a variance
and a standard deviation value of 2.3699, 0.077, and 0.278, respectively. The normal and
Weibull probability density functions fitted to this data set are displayed in Figure 9.
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4.3. Ontogeneity

The variable B-scalar exponent figure would violate the main assumption of the MWBE
and MNR model proposed in here although a variable B-scalar exponent value appears,
however, to be the right bio-physical solution because it is consistent with the ontogeny-
dependency of M proposed earlier [22] and bio-physically described by the MSD model.
The ontogeny concept can be further statistically described below as follows. Using the
M case studies reported [3], the calculated C coefficient value is partially dependent upon
the B-scalar slope parameter as both coefficients fit well with a positive power relationship
(e.g., C = 0.0619*B1.6435; r2 = 0.39; n = 177; p = 0.001). It is also a function of the maximum
recorded diameter, Dm, since they also fit well with a positive power relationship (e.g., C
= 0.0828Dm

0.3162; r2 = 0.24; n = 177; p = 0.001). Ontogeny is then demonstrated because D
or Dm as a function of tree age fit well with one of the classical sigmoid equations [47], as
described using the Richards-Chapman model as in Equations (21)–(23), as follows;

Dm = K
(

1± exp−bA
)d

(21)

C = 0.0828D0.3162
m (22)

C = 0.0828 (K(1± exp−bA)
d
)

0.3162
(23)

where K, b, d is the Chapman-Richards sigmoidal equation parameters for the diameter
growth equation; A is the tree age; Dm is the maximum diameter; C is the proportionality
constant; and 0.0828, 0.3162 are the statistical coefficients.

Recalling from Equation (6);

ar = f
(

aDB
m

D2.38
m

)
; ar = f

(
aDB−2.38

)
; a = f

( ar

DB−2.38

)
(24)

As well as from Equation (20):

atheoric = f ((avah)ρ); atheoric = f (Cρ); C = f (avah) (25)

And finally from the following relationship from Figure 5;

a = f (B); a = f
(

apeB−Bpe
)

(26)

All equations from (21) to (25) support further the assumption the B-scalar slope
varies as a function of the main tree bole traits pointing to the need of tuning the fractal
Equation (2) as well as the MNR models. Tree bole geometry from D to H or from Db to
H shift from quasi-conical to quasi-cylindrical shapes, as a function of several factors, as
a consequence either V or M shift scalar coefficients as in Equation (26) for conical and
Equation (27) for cylindrical shapes:

V =
1
3

0.7854(D2H); M = ρ
1
3

0.7854(D2H) (27)

V = 0.7854(D2H); M = ρ0.7854(D2H) (28)

4.4. Improving Scalar Parameter Assessments
4.4.1. Scalar Coefficients

The extreme values of the scalar coefficients; 2.33 ≤ B ≤ 2.67; 0.08 ≤ a ≤ 0.26; 0.16
≤ C ≤ 0.52 of Equations (3)–(5); in addition to the uncertainty assumed by ρw = ρ as
well as the covarying relationship a = apeB-Bpe point to the need of improving parameter
assessments using bio-physical principles as the most accurate solution to evaluate M
more precisely for any forest as at this time the large variance hinders the development
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of semi-empirical and theoretical models. The a-scalar intercept and the C proportionality
constant fall within the averages and confidence bounds of these extreme values for several
temperate tree species [6]. The assumption of a fixed B-scalar coefficients and a variable
a-scalar intercept provides excellent preliminary results as demonstrated by the MNR model
but needs further bio-physical interpretation and describe better its potential variability
to be consistent with the MSD model. In doing so, several preliminary approaches can
be exhausted: (i) parameterize more precisely the C proportionality constant value using
the mathematical solution of Equation (15), the multiplication of Equation (17) times
Equation (18), develop better relationships between a and ρ, among others; (ii) using
statistics parameterize more precisely the a-scalar intercept value with the use of: more
extensive data sets, re-escalate with Equation (7) as Figure 1 provides evidence how the
variable a-scalar intercept solves the M variability, using the MSD model, develop more
precise relationships between V = f(D,H) e.g., fitting the Schumacher and Hall [34] equation
as well as the H = f(D) to evaluate more precisely av and ah, develop together geometric
and mathematic principles for tree boles, among others; (iii) test the assumption ρw = ρ or
weight accordingly by measuring these components separately; (iv) extract the variance
of each parameter to establish proper confidence bounds. Several conclusions can be
preliminary drawn: (i) the a-scalar intercept is a complex coefficient that is a function of
bole shape and wood basic density; (ii) the statistical relationships fitted in this report
between a vs. av, a vs. ah, a vs. av·av as well as the bio-physical principles of the MSD model
reinforce the notion of the dependency of a upon the shape of tree boles as almost half of the
variation is explained by the shape coefficients and as described by Figure 2 the other half is
explained by the wood basic density parameter. The multiplication of Equation (17) times
Equation (18) for 80 pine trees of Central Durango Mexico result in an average (standard
deviation) C value of 0.1932 with 95% confidence bunds of 0.179 and 0.207 pointing that
the C coefficient value differs from the 0.2457 value with 95% confidence bounds of 0.23
and 0.26 for North American temperate and boreal conifers of Figure 2. Note that both
techniques of evaluating the C proportionality constant are different as well as that they
are used for two different tree communities. Both techniques of evaluating C should be
applied to both tree communities to draw better conclusions on better and simple ways
of assessing the a-scalar intercept value. The B-scalar coefficient can be mathematically
defined as the M growth rate per unit change in D and the power coefficient describes well
the acceleration rate.

However, Figure 1 shows that variable B-scalar coefficient would deviate more from
measurements or conventional empirical relationships than with changes in the a-scalar
intercept value pointing to changes in the shape of tree boles have a better control than the
growth rate of the relationship M vs. D. In this regard it is important to carry a sensitivity
analysis the scalar coefficients have on M for real tree populations or communities with
scalar coefficients evaluated with different techniques.

It is clear then that any other tree variable (height, volume and mass) that is associated
with D has to be also linked to tree age; e.g., trees with the same D most likely have different
H, V, M values that depends on C: the slenderness, ah, and form, av, factors. Therefore,
age-related as well as forest management variables controlling the C shape parameter could
be stand stocking or density, tree diversity, ecological relationships between neighboring
trees, stand productivity, among others. Consistent with the MNR model assumptions, as
well as with the bio-physical principles of the MSD model, Genet et al. [22] demonstrated
the β-scalar coefficients of allometric equations fitted to M vary as a function of age for
Fagus plantations of Northern Europe.

The fact MNR and MSD models fail to portray precise M assessments for the Jenkins et al. [23]
cluster of woodland tree species junipers, mesquite and dry-oak species as well as for cedar/larch
and true fir/hemlock trees with D > 60 cm provides insights into the potential variation of the C
parameter. Its mean value found in this meta-analysis case study was 0.2457 (0.0152) and should
be replaced by 0.025, 0.098, and 0.18 for the groups of species reported above, respectively. With
these new coefficient values the proposed MNR model would match the empirical equation M
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assessments with Sx < 5.0%. The small C-coefficient value (0.025) appears to be unlikely found
in future formulations and it is likely that a modification of both the B-scalar slope and the C
coefficient must improve M evaluations in woodland tree species. This observation points out
to the need for finding the right C values for the tree species of interest. Pilli et al. [5] showed,
consistent with this research, the relationship a = f(ρw) must be worked out separately for different
forest maturity stages since they fitted two exponential equations (Ln(a) =−3.12 + 1.11ρw; and
Ln(a) =−3.51 + 1.27ρw); the first one for mature and the second one for adult tree species. Further
exploration of these mathematical functions suggests they do not significantly deviate from a
linear relationship (p = 0.37) with a common, joint equation of: a = 0.1264 (±0.0089)ρw for a ρw
range of 0.20 to 0.90. Návar [6] noted the C coefficient value varies from 0.17 to 0.31 for the
clusters of species reported by Jenkins et al. [23]. Therefore, the C proportionality coefficient must
be better understood for dryland forests and calculated for at least each individual dominant
tree species.

4.4.2. The Wood Specific Gravity Value

An understanding and better descriptions of the ar = f(ρw) relationship leads to the
conclusion that there is some room for improving this relationship and consequently to
better assess tree M but first other sources of ρw error must be understood and evaluated.
Wood specific gravity varies within the same tree [48] and between trees growing in similar
or different environmental conditions [4,11,48]. Within an individual tree, ρw changes
from the tree bottom to the top and from the pith to the bark [48] as well as among M
components (bark, hardwood, softwood, foliage, branches) [6]. Therefore, conventional
standardized methods of measuring ρw must be re-evaluated by considering these vari-
ations. For example, [49] come up with guidelines to collect wood cores at 0.22H when
they are conventionally taken at fixed D; H = 1.30 m. Further research is also required
on the mathematical function that describes the relationship between ρw-D to complete
this mathematical task and finally matching ρw and ρ. Note that three functions must
be weighted: (i) bark, (ii) softwood, and (iii) hardwood that compose D at any tree bole
H. This complicates any mathematical development of the ρw-D relationship. Miles and
Smith [50] reported valuable information on bark and wood specific gravity values for
North American tree species that can aid in the development of the ρw-D relationship but
information on how ρw changes in the softwood and hardwood bole components should be
at least evaluated in order to use weighting factors. In addition, ρw varies greatly as a func-
tion of altitude and geographic regions stressing the need for measuring this parameter in
conventional allometric biomass studies [4]. Simple, easy, flexible, and portable techniques
are required to measure this variable in the field and to be modeled in the laboratory. In the
meantime, several lists of ρw for the most important commercial North American [23,50]
and for several tropical [1,4] tree species are now available.

4.4.3. Proper a- and B-Scalar Coefficient Values

Should tree bole volume, V, be characterized by exponent values (2.0 < V < 3.0), M
must also be featured by exponent values 2.0 < M < 3.0. The volume for tree boles with
conical, V = 0.2618(D2.0H1.0), or cylindrical, V = 0.7854(D2.0H1.0) shapes must be escalated
to tree M = ρ(0.2618(D2.0H1.0)) for conical or M = ρ(0.7854(D2.0H1.0)) for cylindrical shapes.
Tree boles have a wood specific gravity value of less than 1.0 g cm−3 for most tree species
and conifer trees have an average value of ρ ≈ 0.50 g cm−3; then M ≈ (0.1309(D2.0H1.0)) for
conical or M ≈ (0.3927(D2.0H1.0)) for cylindrical shapes. Most average coefficients of the
Schumacher and Hall’s bole volume equation; Dd and Hh are smaller than d = 2.0 and h = 1.0.
In fact, average (confidence interval) values found in this study were: d = (1.93 ± 0.06) and
h = (0.92 ± 0.07) and so are the av = 0.1309 and av = 0.3927 values of tree boles with conical
and cylindrical shapes for conifer trees. The addition of branches and foliage into the
aboveground biomass component of forest ecosystems would slightly lower even further
these coefficient values. Moreover, the simplification of the explanatory variable; e.g., M
= f(D), implies M = ρw(avahDd+hH*); as ah and H* ≈ 1⁄2; then: 0.01 < (av + ah) = Cρw < 0.20;
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and B ≈ 2.0 + 1.0(0.50). For conifer trees, any M equation exceeding these coefficient values
would violate the bio-physical principles of tree allometry that would probably reflect most
likely problems with understanding and applying sampling theory. Simulations conducted
on the scaling coefficients that randomly vary from the population means when taking
biomass datasets with different sample sizes tested how sample size plays key roles in
defining the population coefficient value [6].

4.5. Remarks

A final note on the MNR and MSD models proposed in here is that they can also be
employed to double check the consistency of reported conventional allometric equations.
That is, whether equations that crosses the ar-intercept lines would bias M assessments.
The limits of most empirical allometric equations can be easily determined using this
non-destructive approach. In other words, the biomass equation limits of application can
be found just before they cross the ar lines. Hence, this technique is handy for finding the
right equations and their limits of application in the field, and as a consequence MNR or
MSD can be used to improve M estimates for any tree species of any forest that lack tree
allometry as well.

4.6. Summary of Allometric Models to Evaluate Tree Aboveground Biomass

Several semi-empirical models had been developed using different approaches from
statistics (MC, MCH), fractals (MWBE), geometric (MGE), and bio-physics (MSD) as well as
hybrid (MNR & MSD) approaches. A summary of these models is reported in Table 4.

Table 4. Description of common equations and models reported in the scientific literature for tree
aboveground biomass assessments contrasted with the two semi-empirical non-destructive models
tested in this report.

Name Equation or Model Parameters Calculation Method Spatial Range Author

Conventional Ln(M) = Ln(a) + BLn(D)
M = aDB a,B Statistics Species, Local Baskerville [17]

Fractals
(MWBE) M = CρD2.67 C, B = 2.67 Statistics, Mathematics Forests, Worldwide West et al. [18]

Restrictive
(MNR)

M = CρD2.38

ar = Cρw; ar 6= a C, B = 2.38 Statistics, Mathematics Forests, Worldwide This Report

Shape-Dimensional
(MSD)

M = CρDd+hH*

V = avDdHh; H = ahDdH*

C = avah

d,h,H*,av,ah
2.33 ≤ B ≤ 2.5

H* ≈ 0.54

Statistics, Mathematics,
Physics Forests, Worldwide This Report

Genet
(MGE) M = a + ρF(D2H)γ a,F,γ

γ ≤ 0.95 Statistics, Mathematics Groups of Species Genet et al. [22]

Ketterings
(MKE) M = CρD2+H*

C,H*
H* ≈ 0.53
B ≈ 2.53

Statistics, Mathematics Tropical Forests Ketterings et al. [2]

Chave
(MCH) M = C(pwD2H)γ C,γ

γ ≤ 0.95 Statistics, Tropical Forests Chavé et al. [10]

B and a-scalar coefficients are conventionally estimated by least square techniques in regression analysis usually
using the logarithmic transformation of M and D data and frequently counting for weighted regression, according
to model (1); Note that MSD can also be simplified as: Btheoric = d + hH*; aempiric1= M/DBempiric; atheoric = f (Btheoric);
Note that aempiric1 is also a mean value derived from each individual M-D pair data for each biomass data set. Also
note that the Spurr & Barnes [51] volume equation (V = a(D2H)B) is used in MGE and MCH and the Schumacher &
Hall [34] volume equation in MSD. Former volume equation uses the notion of a tree bole cylinder shape that is
weigthed by simple (C,a,γ) while the later uses more complex tree bole form factors (av,d,h,H*). The evaluation of
the C proportionality constant value has been discussed in Navar [6] for North American tree species with an
average of 0.2457, 0.19 for pine trees of Central Durango, Mexico, and 0.11 for tropical trees of SE Asia. However,
note, as expected B-scalar coefficient values for NA tree species has an average value of 2.38 and for tropical
tree species of SE Asia 2.53. Had the MKE model used a B = 2.38, the a-scalar intercept would have been = 0.11
instead of 0.066 and the C value would have almost doubled from 0.11 to 0.18 making both the MNR and the MKE
compatible models of tree M assessments.

This summary contrasts and points similitudes and divergences in simplifying M
allometry and the specific conclusion that can be drawn is that understanding tree allometry
continues to be a major challenge as the form of tree boles and the constant or varying
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B-scalar coefficient value continues to be a major scientific dispute. Better approximations
of M had been achieved with the inclusion of tree height, H, and wood specific gravity,
ρw, values that make equations and models more generalist by incorporating one trait of
tree diversity of most natural forests. More complex form factors are proposed in the MSD
model but they will eventually require further simplification to be conventionally used,
for example, in experimental or commercial forest inventories. At this time, it appears the
Schumacher and Hall [34] bole volume equation approximates better the complex form of
tree boles than the typical Spurr and Barnes [51] equation.

5. Conclusions

The main objective of this research was to simplify tree M assessments by developing,
testing, and validating two independent semi-empirical models that are consistent with the
empirical as well the theoretical models using comprehensive data sets. These techniques
are named the restrictive, MNR, and the shape-dimensional, MSD, models. Both models
provide: (i) consistent tree M assessments when contrasted with empirical data or with the
conventional allometric equation; (ii) important additional information on tree allometry
(e.g., how to bio-physically evaluate scalar (a, B, C) coefficients of tree M equations and
models; the likely linkages and covarying functions between scalar coefficients; most likely
values for several tree species and groups of species; limits of application of developed
equations; among others); (iii) key understanding scientific issues of tree M allometry, e.g.,
further supporting the notion of ontogenetic-dependency of coefficients; (iv) linkages be-
tween biological and physical model assumptions and parameters; and (v) other important
data. These two novel approaches can be further improved, in particular the MSD, as it is
consistent with ontogenetic principles and provides good assessments but only for tree
species that have average β-scalar coefficients found in most meta-analysis studies. Finding
the right local or regional parameters for the tree species or groups of species of interest
would improve M evaluations. These methodologies can also check on the consistency of
most reported or newly-developed allometric biomass equations.
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