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Abstract: Phytoremediation is an important solution to heavy metal pollution in soil. However, the
impact of plants on microbial communities in contaminated soil also requires attention. Community-
level physiological profiling (CLPP) based on the Biolog™ EcoPlate and high-throughput sequencing
were used to study the soil microbial community in this article. The rhizosphere and bulk soil
samples of six native species were collected from the iron mine tailings on Jiulong Mountain, Jiangxi
Province. According to the average well color development (AWCD), all plants improved the activity
and diversity of the contaminated soil microbial community to varying degrees. Cunninghamia
lanceolate is considered to have good effects and led to the appearance of Cunninghamia lanceolata >
Zelkova schneideriana > Toona ciliata > Alnus cremastogyne > Cyclobalanopsis myrsinifolia > Pinus elliottii.
The Shannon–Wiener diversity index and principal component analysis (PCA) show that the evenness
and dominance of soil microbial communities of several plants are structurally similar to those of
uncontaminated soil (UNS). The results of high-throughput sequencing indicated that the bacterial
community diversity of C. lanceolata, A. cremastogyne, and P. elliottii is similar to UNS, while fun-
gal community diversity is different from UNS. C. lanceolata has a better effect on soil nutrients,
C. myrsinifolia and P. elliottii may have a better effect on decreasing the Cu content. The objective of this
study was to assess the influence of native plants on microbial communities in soils and the soil reme-
diation capacity. Mortierellomycota was the key species for native plants to regulate Cu and microbial
community functions. Native plants have decisive influence on microbial community diversity.

Keywords: iron mine tailing; heavy metal; phytoremediation; Biolog™ EcoPlate; soil microbial
community

1. Introduction

As a large number of toxic and hazardous substances enter the natural environment,
serious environmental pollution is being produced in the process of excavation and mining
of metals, which will greatly increase human health and safety risks [1,2]. The method of
ecological restoration of contaminated soil by plants is friendly to the environment and
has good economic benefits, so it has attracted much attention. Studies have shown that
the long-term effects of certain plants can reduce the content of pollutants in water and
soil contaminated by metals and metalloids [3,4]. The effect is mainly due to a variety of
activities, including the removal, detoxification, and immobilization of various pollutants to
reduce toxic levels and toxicity by plants in the process of accumulating biomass, resulting
in the diversity and metabolic function of the microbial community in the rhizosphere soil.
Some researchers believe that the phytoremediation function is derived from the synthetic
protein products controlled by its specific genes, such as metallothionein and phytochelatin.
Some also believe that certain bacteria and fungi in the soil microbial community can
enhance the phytoremediation function by regulating the detoxification and metabolites of
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plants [5–8]. Researchers found that the rhizobacteria of colonizing plants in mine tailing
soil was a key point for plant growth and phytoremediation [9].

The significance of soil remediation lies in the return of soil to a condition of ecological
stability together with the establishment of plant communities it supports or supported
to conditions prior to disturbance. However, most of the plants that originally grew on
metal tailings have been removed during the mining process Therefore, this study focused
on changes in soil properties and microbial diversity compared with uncontaminated soil,
which is necessary to assess the remediation effect of different plants on tailings. The appli-
cation of soil microorganisms has been widely reported in the phytoremediation process,
such as the bacterial genera Acidovorax, Alcaligenes, Bacillus, Mycobacterium, Paenibacillus,
Pseudomonas, and Rhodococcus. It has also been found that Bacillus sp. has a biosorption
function for toxic metals by PS-6 [10].

It is certain that if there is plant growth on the abandoned metal tailings, it will indeed
have an impact on soil nutrient content and microbial community metabolic diversity.
Phytoremediation and phytostabilization lead to changes in the microbial composition
of contaminated soils, with pH and nutrient status improving to healthy soils [11,12]. At
present, more than 45 families are considered to have the potential to absorb heavy metals,
mainly herbaceous plants [13]. The bark and trunk parts of arbor species have poor ability
to adsorb heavy metals and have received less attention; however, they have great potential
for heavy metal phytoremediation due to the large biomass. Although there are plant
species such as Acacia saligna that have been shown to have heavy metal tolerance and phy-
toremediation capabilities [14], alien species have potential risks of biological invasion and
should be carefully considered [15]. Regrettably, there is no unified conclusion on whether
native arbor plants can perform phytoremediation by driving changes in the metabolic
diversity of microbial communities and how to select suitable species to solve the pollution
from tailings in Jiangxi. Indigenous plant species that can tolerate the low pH and heavy
metal soil conditions of tailings environments should be emphasized to fill gaps in research
and application foundations. In this study, the following six native tree species that have
certain tolerance and resistance and can grow well in weakly acidic soil conditions were
selected as the research objects. Cunninghamia lanceolata and Pinus elliottii are coniferous
evergreen species in southern China. Zelkova schneideriana and Cyclobalanopsis myrsinifolia
are common broad-leaved trees. Toona ciliate and Alnus cremastogyne are relatively pre-
cious plant species of great significance to ecological diversity [16–18]. They are widely
distributed native tree species that can achieve a fast-growing high yield and have high
economic value under artificially cultivated conditions. If these species can play a better
role in the remediation of heavy metal-contaminated soil, this can effectively promote
research on the increasingly serious issue of soil pollution.

Biolog™ EcoPlate is a convenient and efficient microbial community research method
that can obtain a large amount of data for analysis. It can effectively reflect the utilization
intensity of different carbon source substrates by the microbial community and reflect
the diversity of the metabolic function to a certain extent [19–21]. The community-level
physiological profiling (CLPP) method is based on the single carbon source utilization
mode of Biolog™ EcoPlate [22], which can compare different microbial communities and is
suitable for comparison between contaminated and uncontaminated soil microbial commu-
nities [23,24]. With the development of molecular biology, high-throughput sequencing
technology is widely regarded as an important means to evaluate the diversity and dy-
namics of soil microbial communities, and it has outstanding advantages over traditional
culture-based methods [25]. Considering that the high-throughput method still requires a
relatively high cost, its convenience and practicability in the possible large-scale tailings
soil survey in the future were lower than that of using Biolog™ EcoPlate. Our research
hopes to verify the applicability of the Biolog™ EcoPlate to the study of soil microbial
communities under the conditions of heavy metal pollution by metal tailings, explore the
remediation effects of six native plants on contaminated soil and on microbial communities,
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and further discuss the impact of phytoremediation capabilities and effects possible reasons
for differences.

2. Materials and Methods
2.1. Site Description

The experimental area is located on the Jiulong Forestry Farm, Jiulong Mountain,
Jiangxi Province, China, at 27◦36′31.71′′ N, 114◦52′53.67′′ E, and the altitude is 431 m. It
belongs to a humid mid-subtropical monsoon climate, with an average annual temperature
of 17.5 ◦C and precipitation of 1590.9 mm. The parent rock is mainly shale, and the soil
is a Jiangxi red loam. C. lanceolata, P. elliottii, Z. schneideriana, C. myrsinifolia, T. ciliate,
and A. cremastogyne were planted in adjacent areas at a density of 2 m × 2 m. Each
stand containing plants of a particular species was divided into three repetition blocks of
20 m × 20 m.

2.2. Soil Sampling

All soil samples were collected at a depth of 0–20 cm in April 2019. Each bulk soil
sample was a mixture of 5 soil cores (1 from each corner and 1 from the center of the block)
sampled from each block; similarly, each rhizosphere soil sample was the rhizosphere soil
of 5 plants randomly selected in the block—shake off the loose soil around the roots, and
then collect the remaining soil attached to the roots. Uncontaminated soil was sampled at a
distance of 2.5 km from iron tailings. There were a total of 39 soil samples in 3 replicates of
the rhizosphere soil, bulk soil, and uncontaminated soil. All samples were immediately
sieved (2 mm), stored at 4 ◦C, and transported to the laboratory. They were either stored
at −80 ◦C before microbial community analysis or air-dried and ground before chemical
property analyses.

2.3. Analyses of Soil Properties

Using soil water suspension with a ratio of 1:2.5 w/v to measure soil pH and electric
conductivity (Ec), soil organic carbon (SOC) was determined by the K2Cr2O7-H2SO4
oxidation method. Total nitrogen (TN) was measured using a 2300 Kjeltec Analyzer
Unit (FOSS, Höganäs, Sweden). The contents of total phosphorus (TP), total potassium
(TK), available nitrogen (AP), available potassium (AK), as well as heavy metal elements
were measured by inductively coupled plasma emission spectrometry (Spectro Analytical
Instruments, Spectro Arcos ICP, Kleve, Germany).

2.4. Experiments with Biolog™ EcoPlate and High-Throughput Sequencing

A Biolog™ EcoPlate (Biolog Inc, Hayward, CA, USA) containing 31 carbon source sub-
strates were used to analyze the metabolic characteristics of soil microbial communities. The
Eco plate inoculum was prepared according to the method described by Classen et al. [26].
We added fresh soil (equivalent to 30 g dry soil) into a sterilized 270 mL Erlenmeyer flask
containing 0.85% NaCl solution, shook at 180 rpm for 30 min, took 3 mL supernatant and
added to 27 mL concentration of 0.85% NaCl solution. After mixing, we took 3 mL of
supernatant and added it to 27 mL of 0.85% NaCl solution. We added 150 µL of the diluted
solution with a concentration of 10.3 g·mL−1 to each well of the ecological plate, and then
placed it in a constant temperature incubator at 28 ◦C. The above operations were all carried
out in a sterile environment. On the MicroLogTM microplate reader (version 4.20.05; Biolog
Inc, Hayward, CA, USA), read the 590 nm and the wavelength value of 750 nm (turbidity).

Average well color development (AWCD) was used to characterize the metabolic
activity of soil microbial communities [27]:

AWCD =
∑(C− R)

n
(1)

C represents the value at 590 nm minus the value at 750 nm of each carbon source hole;
R represents the optical density value of the control hole; n is 31 in this study.
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The following indexes were always used to assess the level of functional diversity of
microbial communities:

Shannon–Wiener diversity index (H′) [28]:

H′ = −∑ PilnPi (2)

Pielou evenness index (J) [29]:

J =
H′

InS
(3)

Simpson dominance index (D) [30]:

D = 1−∑ Pi2 (4)

McIntosh diversity index (U) [31]:

U =
√
(∑ ni2) (5)

McIntosh evenness index (E):

E =
N −U

N − N√
S

(6)

where Pi represents the ratio of the (C–R) value in the i-th non-control well to the sum
of all non-control wells (C–R) values, S represents the number of types of carbon source
substrates used by the microbial community, and ni represents the i-th value of the carbon
source hole (C–R). N represents the sum of the (C–R) values of 31 carbon sources

We used high-throughput sequencing technology (Illumina HiSeq 2500, BioMarker
Technologies Corporation, Beijing, China) [32] to compare the microbial communities of
soil samples of C. lanceolata, T. ciliata, A. cremastogyne and uncontaminated. Soil DNA
was extracted from the frozen soil samples by using the Power Soil DNA Isolation Kit
(MoBio Laboratories, Carlsbad, CA, USA), following the manufacturer’s instructions.
The ITS1 forward primer (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and the ITS2 reverse
primer (5′-GCTGCGTTCTTCATCGATGC-3′) were used for amplifying the fungal ITS1
barcode region, while the 338 forward primer (5′-ACTCCTACGGGAGGCAGCA-3′) and
the 806 reverse primer (5′-GGACTACHVGGGTWTCTAAT-3′) were used for amplifying
the bacterial V3–V4 barcode region. The polymerase chain reaction (PCR) parameters
were as follows: denaturation at 95 ◦C for 5 min; 25 cycles of 95 ◦C for 30 s, 50 ◦C for
30 s, and 72 ◦C for 40 s; and final extension at 72 ◦C for 7 min. Amplicons were purified
using a GeneJET Gel Extraction Kit (Thermo Scientific, Waltham, MA, USA) and quantified
using a Qubit dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA, USA). The raw
paired-end reads were joined with FLASH (v.1.2.11) (CCB, Auf, Trabizon, Turkey) [33] and
analyzed using QIIME (v.1.8.0) (Knight Lab, Boulder, CO, USA) [34]. To study the microbial
diversity information of the samples, clean tags were clustered at a 97% sequence similarity
level using USEARCH in QIIME [35]. Different operational taxonomic units (OTUs) were
obtained [36]; then, based on SILVA (bacteria) and UNITE (fungal) taxonomy databases,
the OTUs were classified and annotated and used to compute and plot rarefaction curves
with the help of R (R v.4.1.2) (Ihaka, R., etc., Auckland, New Zealand)

2.5. Statistical Analyses

An analysis of variance (ANOVA) was conducted using SPSS 26.0 (IBM Co., New York,
NY, USA) and was used to evaluate the differences in the soil properties and heavy metal
content between different samples. Once a significant effect was indicated (p < 0.05), a
pairwise comparison between all samples was performed using Tukey’s HSD test (α = 0.05).
Data from Biolog™ EcoPlate after 72 h incubation was used to calculate the diversity index,
perform the principal component analysis (PCA), and produce the figures by SPSS 26.0
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(Nie, N. H., etc., Palo Alto, CA, USA) and Origin 2018 (OriginLab, Northampton, MA, USA).
The cluster analysis of the microbial genus level was obtained by R (R v.4.1.3) using the
unweighted pair–group method with arithmetic means (UPGMA). Redundancy analysis
(RDA) or canonical correlation analysis (CCA) was performed while taking into account
the relationships of the microbial community, treatments, and environmental factors. The
RDA/CCA analysis mentioned above was performed using the “vegan” package in R
(R v.4.1.3). A Spearman correlation analysis was performed using the “corrplot” package
in R (R v.4.1.3).

3. Results
3.1. Chemical Characteristics of the Study Soils

The main sources of heavy metal pollution are exchangeable metal ions and some
metal complexes in soil. Soil with heavy metal content exceeding the risk screening value
may pose risks to vegetation growth and the soil ecological environment (GB 15618-2018).
According to related research, the soils of mine tailing were polluted with different loads of
Cu, Zn, and Pb. High heavy metal loads may lead to soil acidification [37,38]. The highest
values of these metals can exceed 1000 mg·kg−1, which is more than five times higher than
the national safety standard. In this study, soil pH ranged from 4.6 to 6.3. The pH of the
rhizosphere and bulk soil were significantly higher than those of the uncontaminated area
(Table 1). The values of Cu were below 2 times risk screening values, and the values of Zn
and Pb were below 1.5 times risk screening values.

The values of SOC and TN in rhizosphere and bulk soils were relatively low and ranged
from 2.41 g·kg−1 to 7.88 g·kg−1 and from 0.41 g·kg−1 to 0.83 g·kg−1, and were lower than
one-third and one-half of those of UNS. At this point, C. lanceolata had the relatively best soil
nutrient status, while P. elliottii was relatively poor. The values of TK, AK, TP, and AN in
rhizosphere and bulk soils were ranged from 18.46 g·kg−1 to 24.87 g·kg−1, 10.01 mg·kg−1

to 25.86 mg·kg−1, 0.31 g·kg−1 to 0.69 g·kg−1, and 56.00 mg·kg−1 to 383.25 mg·kg−1.

3.2. Average Well Color Development

With the increase of incubation time in 0–168 h, the slope of the rhizosphere soil
curve reached its maximum value at 72 h (Figure 1), when the rhizosphere soil microbial
community had the highest utilization rate of carbon source substrates. The AWCD values
of the rhizosphere soils were higher than those of the bulk soils. The values of amino acids
in CRS and ZRS were slightly higher than those in CBS and ZBS. It meant that native plants
have a certain positive effect on the metabolism of the microbial communities. P. elliottii
have a weak influence on the functional structure of microbial communities.

Soil microbial communities have differences in carbon source usage, which make
differences in the metabolic functions of the microbial communities (Figure 2). CRS, CMRS,
PRS, and ARS had significantly higher usage efficiency of carboxylic acids than those of
phenolic acids and amines. ZRS had a significantly higher usage of carboxylic acids and
amines than those of phenolic acids and polymers. The usage of amino acids and carboxylic
acids by ZBS, TRS and CMRS were significantly higher than that of carbohydrates, phenolic
acids, and amines. CBS had no significant differences in the usage of carbon sources. The
differences in the rhizosphere soils were more significant than those in the bulk soil. The
native plants improved metabolic diversity of microbial communities of tailing soils.
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Table 1. Chemical characteristics of soil samples (rhizosphere and bulk soil) from iron mine tailing in Jiangxi.

Scheme pH †

Mean ± SD
Ec µs/cm

Mean ± SD
SOC g/kg

Mean ± SD
TN g/kg

Mean ± SD
TP g/kg

Mean ± SD
TK g/kg

Mean ± SD
AN mg/kg

Mean ± SD
AK mg/kg

Mean ± SD
Cu mg/kg

Mean ± SD
Pb mg/kg

Mean ± SD
Zn mg/kg

Mean ± SD

CRS ‡ 5.58 ± 0.03c § 134.97 ± 0.15a 7.63 ± 0.25b 0.82 ± 0.01b 0.41 ± 0.01c 20.41 ± 0.95bc 327.2 ± 47.90b 19.55 ± 4.52b 82.47 ± 2.45bc 50.36 ± 3.69b 238.34 ± 4.38b
CBS 4.93 ± 0.02hi 87.43 ± 0.23c 3.47 ± 0.02d 0.42 ± 0.01h 0.37 ± 0.01c 22.98 ± 0.57ab 156.51 ± 3.71d 10.72 ± 0.66c 79.62 ± 1.74c 45.94 ± 1.71b 246.06 ± 2.38ab
ZRS 4.95 ± 0.03hi 66.93 ± 0.15g 3.38 ± 0.18d 0.48 ± 0.00fg 0.66 ± 0.01a 20.97 ± 0.45bc 72.04 ± 1.33f 14.46 ± 0.72c 94.87 ± 1.43a 73.30 ± 1.71a 269.54 ± 18.32ab
ZBS 5.20 ± 0.02f 70.57 ± 0.40f 4.93 ± 0.04cd 0.51 ± 0.02f 0.44 ± 0.02bc 20.04 ± 0.97bc 112.88 ± 6.13e 12.91 ± 0.82c 85.48 ± 2.51b 68.66 ± 15.74a 60.52 ± 3.43d
TRS 5.49 ± 0.01d 85.37 ± 0.35d 6.24 ± 0.26bc 0.81 ± 0.02b 0.48 ± 0.02bc 20.69 ± 0.39bc 382.08 ± 1.01a 14.54 ± 1.26c 73.04 ± 0.63d 61.20 ± 1.58ab 100.82 ± 5.25d
TBS 4.88 ± 0.03i 46.7 ± 0.35k 5.01 ± 0.18cd 0.63 ± 0.01d 0.54 ± 0.01b 23.61 ± 0.68a 67.96 ± 1.82f 13.71 ± 0.21c 60.44 ± 0.58e 73.42 ± 3.34a 290.16 ± 4.36ab

CMRS 5.36 ± 0.03e 90.97 ± 0.15b 4.68 ± 0.20cd 0.62 ± 0.01d 0.32 ± 0.01c 18.43 ± 0.19c 372.26 ± 6.57a 23.45 ± 2.46ab 23.25 ± 0.32h 61.09 ± 0.96ab 268.76 ± 12.25ab
CMBS 5.31 ± 0.02e 75.3 ± 0.00e 3.55 ± 0.15d 0.58 ± 0.01e 0.33 ± 0.01c 19.05 ± 0.51c 232.85 ± 0.00c 22.11 ± 0.70ab 28.45 ± 1.18g 64.10 ± 1.63a 297.14 ± 32.62a
PRS 5.00 ± 0.03h 39.1 ± 0.44l 2.75 ± 0.39d 0.47 ± 0.02g 0.43 ± 0.00bc 24.33 ± 0.59a 56.00 ± 0.00f 13.04 ± 0.79c 25.82 ± 0.13gh 63.15 ± 2.88ab 282.68 ± 6.01ab
PBS 5.08 ± 0.02g 63.37 ± 0.71h 4.61 ± 0.04cd 0.63 ± 0.03d 0.51 ± 0.16bc 21.3 ± 1.55b 162.75 ± 7.63d 13.42 ± 0.22c 26.12 ± 0.98gh 60.00 ± 1.60ab 270.24 ± 8.68ab
ARS 6.26 ± 0.06a 62.73 ± 0.35hi 5.99 ± 0.29c 0.70 ± 0.03c 0.60 ± 0.01ab 22.92 ± 1.22ab 78.46 ± 3.54f 17.66 ± 0.57bc 60.00 ± 2.04e 65.53 ± 3.35a 170.83 ± 41.78c
ABS 5.95 ± 0.07b 52.13 ± 0.31j 4.25 ± 0.08cd 0.69 ± 0.01c 0.60 ± 0.01ab 23.49 ± 0.20a 119.00 ± 4.63e 16.43 ± 0.21bc 63.44 ± 0.96e 71.84 ± 2.74a 164.96 ± 36.37c
UNS 4.63 ± 0.02j 62.3 ± 0.40i 25.49 ± 2.22a 1.65 ± 0.01a 0.44 ± 0.01bc 14.81 ± 0.71d 168.47 ± 6.78d 23.95 ± 1.18a 34.92 ± 0.49f 65.50 ± 2.65a 148.24 ± 12.42c

Risk screening value of heavy metal (GB15618-2018)
pH ≤ 5.5

50
70

200
5.5 < pH ≤ 6.5 90

† Ec = electric conductivity; SOC = soil organic carbon; TN = total nitrogen; TP = total phosphorus; TK = total potassium; AN = available nitrogen; AK = available potas-
sium; ‡ CRS/CBS = rhizosphere soil/bulk soil of C. lanceolata; ZRS/ZBS = rhizosphere soil/bulk soil of Z. schneideriana; TRS/TBS = rhizosphere soil/bulk soil of T. ciliate;
CMRS/CMBS = rhizosphere soil/bulk soil of C. myrsinifolia; PRS/PBS = rhizosphere soil/bulk soil of P. elliottii; ARS/ABS = rhizosphere soil/bulk soil of A. cremastogyne;
UNS = uncontaminated soil. § Values with the same lower case letters in a row are not significantly different at p < 0.05.
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Figure 2. The AWCD values of soil microbial communities were calculated according to the type
of carbon sources for comparison of differences in tailing soils under the influence of six native
plants and uncontaminated soil. The bars represent the means and SD of 3 replicates. Means not
sharing any letter are significantly different at the 5 % level of significance. (A–F): C. lanceolata; Z.
schneideriana; T. ciliata; C. myrsinifolia; P. elliottii; A. cremastogyne; RS = rhizosphere soil; BS = bulk soil;
UNS = uncontaminated soil.
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3.3. Soil Microbial Functional Diversity

The diversity index is used to reflect the richness and uniformity of a soil microbial
community (Table 2). The Simpson dominance index had no significant difference between
soil samples. The Pielou evenness index and the McIntosh evenness index of C. lanceolata
soil were significantly higher than those of UNS, and the diversity indexes between the
other samples and UNS had no significant difference. The overall trend was C. lanceolata
> Z. schneideriana > T. ciliata > A. cremastogyne > C. myrsinifolia > P. elliottii. In all samples,
the Pielou evenness index was between 0.85 and 0.95, the Simpson dominance index was
between 0.89 and 0.95, and the McIntosh evenness index was between 0.88 and 0.96, which
indicated the scope of changes was small in the uniformity and dominance of the microbial
community among different soil samples, and the differences were mainly derived from
the diversity of microbial communities.

Table 2. Soil microbial functional diversity index.

Samples Shannon–Wiener
Diversity Index

Pielou
Evenness Index

Simpson
Dominance Index

McIntosh
Diversity Index

McIntosh
Evenness Index

CRS † 3.19 ± 0.02a ‡ 0.93 ± 0.01a 0.95 ± 0ab 3.64 ± 0.17b 0.96 ± 0a
CBS 3.20 ± 0.02a 0.94 ± 0a 0.95 ± 0a 4.17 ± 0.24a 0.96 ± 0a
ZRS 3.06 ± 0.09ab 0.91 ± 0.01b 0.95 ± 0ab 2.58 ± 0.31cd 0.95 ± 0ab
ZBS 2.88 ± 0.04bc 0.85 ± 0.01d 0.93 ± 0b 2.61 ± 0.1c 0.91 ± 0bc
TRS 2.96 ± 0.08b 0.88 ± 0.02cd 0.94 ± 0.01ab 2.41 ± 0.1cd 0.93 ± 0.02bc
TBS 2.84 ± 0.05bc 0.88 ± 0.01cd 0.93 ± 0b 2.08 ± 0.24d 0.93 ± 0.01b

CMRS 2.88 ± 0.07bc 0.86 ± 0.01cd 0.93 ± 0b 1.57 ± 0.08e 0.92 ± 0.01bc
CMBS 2.97 ± 0.05b 0.88 ± 0.01cd 0.94 ± 0ab 1.78 ± 0.2de 0.92 ± 0.01bc
PRS 2.76 ± 0.05bc 0.84 ± 0.01d 0.93 ± 0b 1.42 ± 0.02e 0.90 ± 0.01c
PBS 2.73 ± 0.21c 0.90 ± 0.03bc 0.92 ± 0.03b 1.40 ± 0.27e 0.92 ± 0.04bc
ARS 3.00 ± 0.04ab 0.88 ± 0.01c 0.94 ± 0ab 2.12 ± 0.3d 0.93 ± 0.01bc
ABS 2.77 ± 0.39bc 0.88 ± 0.01c 0.92 ± 0.03b 1.72 ± 0.79de 0.92 ± 0.02bc
UNS 2.89 ± 0.03bc 0.86 ± 0.01cd 0.93 ± 0b 2.00 ± 0.08de 0.91 ± 0.01bc

† CRS/CBS = rhizosphere soil/bulk soil of C. lanceolata; ZRS/ZBS = rhizosphere soil/bulk soil of Z. schneideriana;
TRS/TBS = rhizosphere soil/bulk soil of T. ciliate; CMRS/CMBS = rhizosphere soil/bulk soil of C. myrsinifolia;
PRS/PBS = rhizosphere soil/bulk soil of P. elliottii; ARS/ABS = rhizosphere soil/bulk soil of A. cremastogyne;
UNS = uncontaminated soil. ‡ The data are shown as the means ± SD (n = 3). Values with the same lower-case
letters in a row are not significantly different at p < 0.05.

PCA is a technique for analyzing and simplifying data sets. By decomposing the vari-
ance, the differences of multiple data sets are reflected in the two-dimensional coordinate
graph, which can reflect the difference and distance of the samples; the coordinate axis
can reflect the maximum variance eigenvalues (Figure 3). The closer the distance between
the two samples is, the more similar the composition of the two samples will be [39]. The
main difference is between different samples and the UNS. The closest to the UNS were
A. cremastogyne and C. myrsinifolia, and the farthest was C. lanceolata. This indicates that the
metabolic function structure of the rhizosphere soil and bulk soil of the same plant has a
high similarity, and the most different from the UNS microbial metabolic diversity was
C. lanceolata, followed by P. elliottii. A. cremastogyne and C. myrsinifolia had a high similarity
with the functional structure of microbial metabolism in uncontaminated soil. Generally,
the differences in the metabolic function diversity of different soil microbial communities
are similar to the six types of carbon sources.

3.4. High-Throughput Sequencing Analysis

The high-throughput sequencing results indicated that the microbial communities of
soil samples have high similarity in bacteria and obvious differences in fungi (Figure 4). It
suggested that native plants affect the bacterial composition of soils, which is an important
driver of the improvement of soil nutrients and microbial community metabolic diversity.
The relative abundance of Ascomycota in the soil samples of C. lanceolata and A. cremastogyne
was significantly lower than that of the UNS, and Basidiomycota was significantly higher
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than that of the UNS. Ascomycota and Basidiomycota in the rhizosphere soil was significantly
higher than that of bulk soil for C. lanceolata and A. cremastogyne (ARS > ABS, CRS > CBS),
while P. elliottii had the opposite trend (PBS > PRS). The similarity of the microbial commu-
nity diversity structure of CRS, ARS, PRS, and UNS decreased in turn. In the structural
composition of fungi, CRS and UNS have smaller differences, which may also explain
that C. lanceolata has higher carbon source usage and functional diversity in soil microbial
communities than other plants.
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Redundancy analysis (RDA) and canonical correspondence analysis (CCA) [40] is the
sorting method based on the development of correspondence analysis. The most influential
environmental factors in RDA are AK, TN, and Ec (Figure 5). Ec has a strong influence on
the changes in UNS, PBS, and CRS bacterial communities. AK, TN, AN, and SOC have a
negative correlation with the changes of ABS and ARS bacterial communities. Similarly,
the most influential environmental factor in CCA is pH. Ec has a strong influence on the
diversity of the ABS and ARS fungal communities. Ec, TN, and SOC have a strong influence
on the PRS and CBS fungal communities.

3.5. Correlation Analysis

The life activities of soil microorganisms are inseparable from the soil environment,
and environmental factors have an important impact on the metabolism and community
composition of soil microorganisms. Spearman correlation analysis was used to determine
key factors, carbon sources, and microbial populations that play an important role in
phytoremediation and soil stabilization. It is worth noting that most microorganisms
showed no significant weak or no correlation with the six types of carbon sources available
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(Figure 6), and there was no significant correlation between carbon sources and pH, SOC,
TN, etc. Similarly, Pb was significantly positively correlated with Chloroflexi, GAL15. We
noted a very significant positive correlation between Chloroflexi and GAL15 and a strong
correlation with carboxylic acid, phenolic acid, and amines. Moreover, pH was significantly
positively correlated with Basidiomycota and Olpidiomycota; Mucoromycota, Chytridiomycota,
and Ascomycota were extremely significantly positively correlated with SOC, TN, and AK,
and significantly negatively correlated with TK. This indicates that the utilization of carbon
sources by soil microorganisms is mainly affected by specific microbial populations, rather
than directly controlled by environmental factors such as pH, and these specific microbial
populations may also be the key populations affecting soil heavy metals.
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Figure 5. Regression analysis of correlation between bacterial (A) and fungal (B) composition of
soil samples and environmental factors. The scale on the horizontal and vertical coordinates is the
value generated by each sample during regression analysis and calculation with environmental
factors; dots represent soil samples; arrows represent different environmental factors. The relation-
ship between element points is represented by distance. CRS/CBS = rhizosphere soil/bulk soil of
C. lanceolata; PRS/PBS = rhizosphere soil/bulk soil of P. elliottii; ARS/ABS = rhizosphere soil/bulk
soil of A. cremastogyne; UNS = uncontaminated soil.
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tivity; SOC = soil organic carbon; TN = total nitrogen; TP = total phosphorus; TK = total potassium;
AN = available nitrogen; AK = available potassium; AWCD = the average well color development.
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4. Discussion
4.1. Effects of Native Plants on Soil Chemical Characteristics

The most important point of soil remediation was the soil toxicity of heavy metals,
which depends largely on the concentration of heavy metals. In this study, the values of
Cu, Pb, and Zn in the rhizosphere soils and bulk soils were low. It suggested that native
plants have soil remediation potential [41–44]. Moreover, pH and SOC are highly correlated
with soil heavy metals and related microorganisms in the community. They may change
the concentration of heavy metals and the structure of the microbial community in the
soil [45–48]. Our results indicated that pH and SOC were highly correlated with fungi and
not correlated with heavy metal content. Low SOC in the rhizosphere soil led to its limited
effect on heavy metals. Improvements in soil nutrients and microbial diversity caused by
native plants were considered as part of phytoremediation, and from this point of view,
C. lanceolata was the more valuable native species. SOC, TP, and TN were affected by both
heavy metal metals and plants. While plants improved soil nutrients, they were hindered
by heavy metals and the consumption of organic matter and nitrogen [49]. Nevertheless,
soil properties are indicators of the soil remediation capabilities of these plants, and the
effect of plants on soil properties cannot be ignored [50,51].

Regarding changes in the content of heavy metals, it was highly accepted that plants,
the environment, microbial communities, and so on may affect the ability of phytoremedia-
tion of soil heavy metal pollution [52–54]. For polluted soil, the change of pollutant content
is the most intuitive indicator to measure the remediation effect. From this point of view,
C. myrsinifolia and P. elliottii may have a better effect on decreasing the Cu content, but, it
may be hard to solve the serious nutrient deficiencies faced by soil in tailing. Generally,
our results confirm phytoremediation of native plants to heavy metal pollution but also
indicate that native plants may affect soil microorganisms and soil nutrients. It is necessary
to select the appropriate species according to the focus of soil remediation.

4.2. The Relationship between Microbial Metabolic Diversity and Soil Remediation

The impact of plants on soil is inseparable from the role of microorganisms. Un-
derstanding the metabolic changes of microorganisms is necessary for understanding
phytoremediation. In this study, plants with high AWCD values in rhizosphere soil also
have high AWCD values in bulk soil (Figure 1), which is clearly different from the per-
formance in chemical properties (Table 1). This was also supported by the utilization of
six basic carbon sources and the results of correlation analysis. It can be seen that the
improvement of microbial metabolic diversity cannot be simply explained by the effects of
environmental factors. It may be due to the influence of native plants.

The presence of plants can enhance the stability of the soil structure, accumulate and
absorb heavy metal ions in soil, and synthesize phytochelatins [55,56]. These may alleviate
the toxicity or reduce the pollution of heavy metals [57,58]. The reduction of Cu, Pb, and
Zn can be used to explain the changes in the diversity of microbial communities, but the
function of soil remediation does not depend on the role of the plant itself. Soil microorgan-
isms directly or indirectly participate in this process, strengthening the plant’s tolerance to
heavy metal toxicity [59] and making it easier for plants to adapt to the contaminated soil
and reduce heavy metal content more efficiently, which has an important assisting role in
phytoremediation [60,61]. As our results show, the rhizosphere soil microbes of different
plants have significant differences in their ability to metabolize carbon sources, mainly due
to changes in microbial diversity. There was little difference in the preference for the certain
type of carbon source metabolism. With the assistance of soil microorganisms, plants play
a remediation function on heavy metal-contaminated soil. The functional diversity of soil
microbial communities is an important reason for the differences in phytoremediation
functions. The strength of soil microorganisms’ assisting function in phytoremediation
is related to certain specific microbial populations in the community [62,63], and related
populations in these microbial communities are sensitive to plants [64]. Studies employed
Biolog™ EcoPlate were not enough to detect small changes in the functional structure
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of soil microbial communities [65,66]. In contrast, our results showed that the functional
diversity of soil microbial communities and Mortierellomycota was positively correlated
with the values of Cu, which indicated that Mortierellomycota was the key phylum for plants
to regulate Cu and microbial community functions. There was not any correlation between
Zn and impact factors. It suggested that differences in Zn content were more caused by the
different absorption capacity of native plants. As the SOC and TN are important factors of
microbial communities, they have no correlation with microbial populations. The rate of
organic carbon accumulation in the rhizosphere varied due to differences in species and
microbial community composition. It was indicated that the influence of native plants on
the microbial community was the more decisive factor.

4.3. The Relationship between Microbial Diversity and Soil Remediation

Studies have shown that the proportion of certain bacteria and fungi is significantly
different between contaminated soil and healthy soil [67,68], and changes in their relative
abundance can be used as a reference to measure soil restoration. Proteobacteria often
dominate in soil microbial communities that have been contaminated with heavy metals
for a long time, the Ascomycota:Basidiomycota and Saprotrophic:Ectomycorrhizal ratios
for fungi, Cyanobacteria:Chloroflexi ratios for bacteria also largely reflect the differences
between contaminated and healthy soils [69,70]. In this study, similar changes can be
observed. In addition, Ascomycota has the most obvious change among different soil
samples and was highly correlated with TN, TK, SOC, and AK. This was related to its
dominant position in the microbial community and partly explains the improvement
effect of C. lanceolata on soil nutrients. Chloroflexi and GAL15 also play important roles in
phytoremediation due to their association with Pb and Cr. It means that the results obtained
by high-throughput sequencing and CLPP in the analysis of microbial community diversity
are consistent to some extent. The positive correlation between pH and the microbial
population suggested that native plants may have improved microbial community diversity
and community structure by reducing soil acidity.

5. Conclusions

Selected native plants play a role in the mitigation of heavy metal and the improvement
of soil nutrients and microbial diversity, and it is reasonable to be considered as a solution
to the heavy metal problem in tailings soil in Jiangxi. C. lanceolata is a good choice for
phytoremediation. The disadvantage of native plants was that the improvement of SOC
would take longer.

Native plants have differences in improving soil nutrient status, affecting the rhizo-
sphere microbial community, and reducing heavy metal content. The differences in the
effect of native plants on Cu were mainly related to rhizosphere microorganisms, especially
Mortierellomycota. The differences in the effect of native plants on Pb were mainly related
to the difference in the effect of microorganisms and phosphorus. The differences in the
effect of native plants on Zn, may be related to the uptake capacity of plant roots. They may
achieve better results in the soil remediation of tailings under the action of a longer period
of time. High-throughput sequencing and CLPP have good consistency in the analysis
results of the microbial community diversity. The former is superior to the latter in studying
subtle differences in soil microbial populations.
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differently polluted with heavy metals. Appl. Soil Ecol. 2013, 64, 7–14. [CrossRef]
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