Productivity of Short-Rotation Poplar Crops: A Case Study in the NE of Romania
Abstract
:1. Introduction
- What is the biomass production of the two analysed clones for the hybrid poplar crops with the most common planting density (1667 trees·ha−1) after five growing seasons?
- What are the differences in biomass accumulations of hybrid poplar crops at different planting densities?
2. Materials and Methods
2.1. Site Location
2.2. Data Collection
2.3. Data Analysis
3. Results
3.1. The Biomass Production of Hybrid Poplar Crops after Five Growing Seasons
3.2. The Biomass Accumulations of Hybrid Poplar Crops at Different Planting Densities
4. Discussion
4.1. Biomass Production Assessment after Five Growing Seasons for the Crops with the Most Common Planting Density
4.2. The Biomass Production of Hybrid Poplar Crops at Different Planting Densities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oberthür, S.; Ott, H.E. The Kyoto Protocol: International climate policy for the 21st century; Springer Science & Business Media: New York, NY, USA, 1999; ISBN 9783540664703. [Google Scholar]
- Graßl, H.; Kokott, J.; Kulessa, M.; Luther, J.; Nuscheler, F.; Sauerborn, R.; Schnellnhuber, H.J.; Schubert, R.; Schulze, E.-D. World in Transition–Towards Sustainable Energy Systems, German Advisory Council on Global Change (WBGU); Earthscan: London, UK, 2003; ISBN 1-85383-882-9. [Google Scholar]
- Hansen, E.A. Poplar woody biomass yields: A look to the future. Biomass Bioenergy 1991, 1, 1–7. [Google Scholar] [CrossRef]
- Pelkonen, P.; Mustonen, M.; Asikainen, A.; Egnell, G.; Kant, P.; Leduc, S.; Pettenella, D. Forest Bioenergy for Europe; European Forest Institute: Joensuu, Finland, 2014; ISBN 9525980111. [Google Scholar]
- European Commission. The European Green Deal; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Sikkema, R.; Proskurina, S.; Banja, M.; Vakkilainen, E. How can solid biomass contribute to the EU’s renewable energy targets in 2020, 2030 and what are the GHG drivers and safeguards in energy- and forestry sectors? Renew. Energy 2021, 165, 758–772. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, Y.; Ding, S.; Lv, Y.; Samjhana, W.; Fang, S. Growth, carbon storage, and optimal rotation in poplar plantations: A case study on clone and planting spacing effects. Forests 2020, 11, 842. [Google Scholar] [CrossRef]
- Matuštík, J.; Kočí, V. Does renewable mean good for climate? Biogenic carbon in climate impact assessments of biomass utilization. GCB Bioenergy 2022, 14, 438–446. [Google Scholar] [CrossRef]
- Oliveira, N.; Pérez-Cruzado, C.; Cañellas, I.; Rodríguez-Soalleiro, R.; Sixto, H. Poplar short rotation coppice plantations under Mediterranean conditions: The case of Spain. Forests 2020, 11, 1352. [Google Scholar] [CrossRef]
- Hansen, E.A.; Baker, J.B. Biomass and nutrient removal in short rotation intensively cultured plantations. Proc. Impact Intensive Harvest. For. Nutr. Cycl. 1979, 130–151. [Google Scholar]
- Guo, T.; Engel, B.A.; Shao, G.; Arnold, J.G.; Srinivasan, R.; Kiniry, J.R. Functional approach to simulating short-rotation woody crops in process-based models. BioEnergy Res. 2015, 8, 1598–1613. [Google Scholar] [CrossRef][Green Version]
- Liang, W.; Hu, H.; Liu, F.; Zhang, D. Research advance of biomass and carbon storage of poplar in China. J. For. Res. 2006, 17, 75–79. [Google Scholar] [CrossRef]
- Kauter, D.; Lewandowski, I.; Claupein, W. Quantity and quality of harvestable biomass from Populus short rotation coppice for solid fuel use—a review of the physiological basis and management influences. Biomass Bioenergy 2003, 24, 411–427. [Google Scholar] [CrossRef]
- Radwan, M.A.; DeBell, D.S. Nutrient relations in coppiced black cottonwood and red alder. Plant Soil 1988, 106, 171–177. [Google Scholar] [CrossRef]
- DeBell, D.S.; Clendenen, G.W.; Zasadat, J.C. Growing Populus biomass: Comparison of woodgrass versus wider-spaced short-rotation systems. Biomass Bioenergy 1993, 4, 305–313. [Google Scholar] [CrossRef]
- Nassi o di Nasso, N.; Guidi, W.; Ragaglini, G.; Tozzini, C.; Bonari, E. Biomass production and energy balance of a 12-year-old short-rotation coppice poplar stand under different cutting cycles. GCB Bioenergy 2010, 2, 89–97. [Google Scholar] [CrossRef]
- Fischer, M.; Trnka, M.; Kučera, J.; Fajman, M.; Žalud, Z. Biomass productivity and water use relation in short rotation poplar coppice (Populus nigra x P. maximowiczii) in the conditions of Czech Moravian Highlands. Acta. Univ. Agric. Silvic. Mendel. Brun. 2011, 59, 141–152. [Google Scholar] [CrossRef][Green Version]
- Fischer, M.; Trnka, M.; Kučera, J.; Žalud, Z. Water consumption and biomass yields relation in short rotation poplar coppice. MendelNet 2010, 10, 25–33. [Google Scholar]
- Fernández, M.J.; Barro, R.; Pérez, J.; Losada, J.; Ciria, P. Influence of the agricultural management practices on the yield and quality of poplar biomass (a 9-year study). Biomass Bioenergy 2016, 93, 87–96. [Google Scholar] [CrossRef]
- Heilman, P.E. Planted forests: Poplars. New For. 1999, 17, 89–93. [Google Scholar] [CrossRef]
- Richardson, J.; Isebrands, J.G.; Ball, J.B. Ecology and Physiology of Poplars and Willows. In Poplars and willows: Trees for society and the environment; Isebrands, J.G., Richardson, J., Eds.; CABI: Wallingford, UK, 2014; pp. 92–123. ISBN 978-1-78064-108-9. [Google Scholar]
- Pliura, A.; Zhang, S.Y.; MacKay, J.; Bousquet, J. Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. For. Ecol. Manag. 2007, 238, 92–106. [Google Scholar] [CrossRef]
- Suryanto, P.; Putra, E.T.S. Traditional Enrichment Planting in Agroforestry Marginal Land Gunung Kidul, Java, Indonesia. J. Sustain. Develop. 2012, 5, 77. [Google Scholar] [CrossRef][Green Version]
- Strong, T.; Hansen, E. Hybrid poplar spacing / productivity relations in short rotation intensive culture plantations. Biomass Bioenergy 1993, 4, 255–261. [Google Scholar] [CrossRef]
- Harrison, R.B.; Reis, G.G.; Reis, M.D.G.F.; Bernardo, A.L.; Firme, D.J. Effect of spacing and age on nitrogen and phosphorus distribution in biomass of Eucalyptus camaldulensis, Eucalyptus pellita and Eucalyptus urophylla plantations in southeastern Brazil. For. Ecol. Manag. 2000. [Google Scholar] [CrossRef]
- Armstrong, A.; Johns, C.; Tubby, I. Effects of spacing and cutting cycle on the yield of poplar grown as an energy crop. Biomass Bioenergy 1999, 17, 305–314. [Google Scholar] [CrossRef]
- McKay, H. Short Rotation Forestry: Review of Growth and Environmental Impacts; Forest Research Alice Holt Lodge: Surrey, UK, 2011; Volume 2, ISBN 978-0-85538-827-0. [Google Scholar]
- Pannacci, E.; Bartolini, S.; Covarelli, G. Evaluation of four poplar clones in a short rotation forestry in central Italy. Ital. J. Agron. 2009, 4, 191–198. [Google Scholar] [CrossRef]
- Mușat, I. Tehnologii de Instalare, Întreținere, Conducere și Recoltare Mecanizată a Culturilor de Plop și Salcie Selecționată de Mare Valoare Energeticăși Industrială; Technical Report; ICAS: Tulcea, Romania, 1983. [Google Scholar]
- Morhart, C.; Sheppard, J.; Seidl, F.; Spiecker, H. Influence of different tillage systems and weed treatments in the establishment year on the final biomass production of short rotation coppice poplar. Forests 2013, 4, 849–867. [Google Scholar] [CrossRef]
- Schiberna, E.; Borovics, A.; Benke, A. Economic Modelling of Poplar Short Rotation Coppice Plantations in Hungary. Forests 2021, 12, 623. [Google Scholar] [CrossRef]
- Štochlová, P.; Novotná, K.; Costa, M.; Rodrigues, A. Biomass production of poplar short rotation coppice over five and six rotations and its aptitude as a fuel. Biomass Bioenergy 2019, 122, 183–192. [Google Scholar] [CrossRef]
- Mușat, I.; Tudosoiu, P.; Nicolae, C. Tehnologies of Installemnt, Upkeep, Guidance and Mecanized Harvest of Poplar and Willow Crops of Higt Energetical Value; ICAS: Tulcea, Romania, 1987; Volume II. [Google Scholar]
- Bungart, R.; Hüttl, R.F. Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Eur. J. For. Res. 2004, 123, 105–115. [Google Scholar] [CrossRef]
- Njakou Djomo, S.; Ac, A.; Zenone, T.; De Groote, T.; Bergante, S.; Facciotto, G.; Sixto, H.; Ciria Ciria, P.; Weger, J.; Ceulemans, R. Energy performances of intensive and extensive short rotation cropping systems for woody biomass production in the EU. Renew. Sustain. Energy Rev. 2015, 41, 845–854. [Google Scholar] [CrossRef][Green Version]
- Sasse, J.; Sands, R. Comparative responses of cuttings and seedlings of Eucalyptus globulus to water stress. Tree Physiol. 1996, 16, 287–294. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zalesny, J.A.; Zalesny, R.S., Jr.; Coyle, D.R.; Hall, R.B. Growth and biomass of Populus irrigated with landfill leachate. For. Ecol. Manag. 2007, 248, 143–152. [Google Scholar] [CrossRef]
- Ball, J.; Carle, J.; Del Lungo, A. Contribution of poplars and willows to sustainable forestry and rural development. Unasylva-FAO 2005, 56, 3. [Google Scholar]
- International Poplar Commission. The Contribution of Poplars and Willows to Sustainable Forestry and Rural Development; Abstracts of Submitted Papers; FAO: Rome, Italy, 2004. [Google Scholar]
- FAO. Improving Lives with Poplars and Willows. Synthesis of Country Progress Reports. In Proceedings of the 24th Session of the International Poplar Commission, Dehradun, India, 30 October–2 November 2012; Working PaperIPC/12 Forest Assessment, Management and Conservation Division. FAO: Rome, Italy, 2012. [Google Scholar]
- EUROSTAT European Commission. 2015. Available online: https://epp.eurostat.ec.europa.eu (accessed on 19 March 2022).
- Rutz, D.; Mergner, R.; Janssen, R. Sustainable Heat Use of Biogas Plants: A Handbook; WIP Renewable Energies: Munich, Germany, 2015; Volume 90, ISBN 978-3-936338-35-5. [Google Scholar]
- Sperandio, G.; Acampora, A.; Del Giudice, A.; Civitarese, V. Models for the Evaluation of Productivity and Costs of Mechanized Felling on Poplar Short Rotation Coppice in Italy. Forests 2021, 12, 954. [Google Scholar] [CrossRef]
- El Kasmioui, O.; Ceulemans, R. Financial analysis of the cultivation of poplar and willow for bioenergy. Biomass Bioenergy 2012, 43, 52–64. [Google Scholar] [CrossRef]
- Klasnja, B.; Kopitovic, S.; Orlovic, S. Wood and bark of some poplar and willow clones as fuelwood. Biomass Bioenergy 2002, 23, 427–432. [Google Scholar] [CrossRef]
- Hernea, C.; Hollerbach, W.; Trava, D.; Corneanu, M. The Behaviour for SRC Willow Inger in Experimental Trial Ghilad, Romania. Bull. UASVM Hortic. 2015, 72, 376–380. [Google Scholar] [CrossRef][Green Version]
- Werner, C.; Haas, E.; Grote, R.; Gauder, M.; Graeff-Hönninger, S.; Claupein, W.; Butterbach-Bahl, K. Biomass production potential from Populus short rotation systems in Romania. GCB Bioenergy 2012, 4, 642–653. [Google Scholar] [CrossRef]
- Dănilă, I.-C. Cercetări Biometrice Privind Productivitatea Clonelor de Plop Hibrid în Culturi cu Ciclu Scurt de Producție din Nord-Estul României; Editura Universității ”Ștefan cel Mare”: Suceava, Romania, 2019; ISBN 978-973-666-561-5. [Google Scholar]
- Dănilă, I.C.; Avăcăriţei, D.; Alexei, S.; Roibu, C.C.; Bouriaud, O.; Duduman, M.L.; Bouriaud, L. Dinamica şi caracteristicile creşterii a şase clone de plop hibrid pe parcursul unui ciclu de producţie într-o plantație comparativă din Depresiunea Rădăuţi. Bucov. For. 2015, 15, 1–12. [Google Scholar] [CrossRef]
- Duduman, M.-L.; Vasian, I. Effects of volatile emissions of Picea abies fresh debris on Ips duplicatus response to characteristic synthetic pheromone. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 308–313. [Google Scholar] [CrossRef][Green Version]
- Duduman, M.-L.; Olenici, N. Non-target bark beetles in Ips duplicatus (Sahlberg) pheromone traps baited with host volatiles. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 576–581. [Google Scholar] [CrossRef][Green Version]
- Galazka, A.; Szadkowski, J. Enzymatic hydrolysis of fast-growing poplar wood after pretreatment by steam explosion. Cellul. Chem. Technol. 2021, 55, 637–647. [Google Scholar] [CrossRef]
- Dănilă, I.-C.; Duduman, M.-L.; Palaghianu, C.; Bouriaud, L.; Bouriaud, O.; Coșofreț, V.C.; Savin, A.; Scriban, R.-E. PN III Tehno-Crops—Optimizarea Tehnologiei de Cultivare în Cicluri Scurte a Plopilor Hibrizi în Scopul Obținerii unei Producții Superioare de Biomasă; Technical Report; Facultatea de Silvicultură: Suceava, Romania, 2017. [Google Scholar]
- Dănilă, I.; Avăcăriței, D.; Nuțu, A.; Savin, A.; Duduman, M.; Bouriaud, O.; Bouriaud, L. Productivitatea clonelor de plop hibrid instalate în culturi intensive în nord-estul României. Bucov. For. 2016, 16, 73–85. [Google Scholar] [CrossRef][Green Version]
- Avăcăriței, D.; Savin, A.; Palaghianu, C.; Dănilă, I.C. Efectul aplicării lucrărilor de întreținere a terenului asupra acumulărilor de biomasă din culturile de plop hibrid. Bucov. For. 2016, 16, 175–185. [Google Scholar] [CrossRef][Green Version]
- Dickmann, D.I.; Isebrands, J.G.; Eckenwalder, J.E.; Richardson, J. Poplar Culture in North America; NRC Research Press: Ottawa, ON, Canada, 2002; ISBN 978-0-660-18145-5. [Google Scholar]
- Sandu, I.; Pescaru, V.I.; Poiana, I. Clima Romaniei; Editura Academiei Române: București, Romania, 2008. [Google Scholar]
- Tănasă, I. Clima Podisului Sucevei-fenomene de risc, implicatii asupra dezvoltarii durabile. Ph.D. Thesis, Universitatea ”Stefan cel Mare”, Suceava, Romania, 2011. [Google Scholar]
- Pătru, I.G.; Zaharia, L.; Oprea, R. Geografia Fizică a României: Climă, Ape, Vegetaţie, Soluri; Editura Universitară: București, Romania, 2006; ISBN 9737490657. [Google Scholar]
- Savin, A.; Avăcăriţei, D.; Dănilă, I.C.; Duduman, M.L.; Rotaru-Buzdugan, C. Studiu privind impactul culturilor de plopi hibrizi asupra proprietăților solului. Bucov. For. 2019, 19, 19–29. [Google Scholar] [CrossRef]
- Savin, A.; Trifan, O.; Covatariu, S.; Ciurlă, C.; Bouriaud, L. Influenţa profunzimii solurilor aluviale asupra biodiversităţii subterane şi a unor caracteristici biometrice în culturi de clone de plopi hibrizi: Rezultate preliminare. Bucov. For. 2014, 14, 60–67. [Google Scholar]
- Picard, N.; Saint-André, L.; Henry, M. Manual for Building Tree Volume and Biomass Allometric Equations: From Field Measurement to Prediction; FAO-Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; ISBN 9251073473. [Google Scholar]
- Bouriaud, L.; Duduman, M.L.; Dănilă, I.-C.; Olenici, N.; Biriș, I.-A.; Ciornei, I.; Barnoaiea, I.; Măciucă, A.; Savin, A.; Grosu, L.; et al. How to Evaluate the Sustainability of Short-Term Cultures for Biomass Production? An Application from NE Romania. Agric. For. 2015, 61, 7–22. [Google Scholar] [CrossRef]
- Duduman, M.L.; Dănilă, I.C. Cercetări Privind Creșterea Productivității de Biomasă a Culturilor de Plop cu Ciclu Scurt; Technical Report; Facultatea de Silvicultură: Suceava, Romania, 2016. [Google Scholar]
- Cybis Elektronik & Data AB, CDendro & CooRecorder program package, Version 9.8, Copyright © 2007. Available online: http://www.cybis.se (accessed on 19 March 2022).
- Felix, E.; Tilley, D.R.; Felton, G.; Flamino, E. Biomass production of hybrid poplar (Populus sp.) grown on deep-trenched municipal biosolids. Ecol. Eng. 2008, 33, 8–14. [Google Scholar] [CrossRef]
- Tripathi, A.M.; Trnka, M.; Fischer, M.; Orság, M.; Fajman, M.; Marek, M.V.; Žalud, Z. Estimation of above ground woody biomass of SRC hybrid poplar clone J-105 in different fertilizer treatments in Czech-Moravian highland. MendelNet 2012, 12, 534–541. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Practice Hall: Hoboken, NJ, USA, 2010; ISBN 978-1606476468. [Google Scholar]
- DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.; Zasada, J.C. Tree growth and stand development of four Populus clones in large monoclonal plots. New For. 1997, 14, 1–18. [Google Scholar] [CrossRef]
- Benomar, L.; DesRochers, A.; Larocque, G. The effects of spacing on growth, morphology and biomass production and allocation in two hybrid poplar clones growing in the boreal region of Canada. Trees 2012, 26, 939–949. [Google Scholar] [CrossRef]
- Fiala, M.; Bacenetti, J.; Scaravonati, A.; Bergonzi, A. Short rotation coppice in northern Italy: Comprehensive sustainability. In Proceedings of the 18th European Biomass Conference, Lyon, France, 3–7 May 2010. [Google Scholar]
- Niemczyk, M.; Wojda, T.; Kaliszewski, A. Biomass productivity of selected poplar (Populus spp.) cultivars in short rotations in northern Poland. N. Z. J. For. Sci. 2016, 46, 22. [Google Scholar] [CrossRef][Green Version]
- Niemczyk, M.; Kaliszewski, A.; Jewiarz, M.; Wróbel, M.; Mudryk, K. Productivity and biomass characteristics of selected poplar (Populus spp.) cultivars under the climatic conditions of northern Poland. Biomass Bioenergy 2018, 111, 46–51. [Google Scholar] [CrossRef]
- Lazdiņa, D.; Bārdulis, A.; Bārdule, A.; Lazdiņš, A.; Zeps, M.; Jansons, Ā. The first three-year development of ALASIA poplar clones AF2, AF6, AF7, AF8 in biomass short rotation coppice experimental cultures in Latvia. Agron. Res. 2014, 12, 543–552. [Google Scholar]
- Duduman, M.L.; Lupaștean, D.; Pînzanu, Ș.I.; Ilașcă, A.; Dănilă, I.-C. Eficacitatea Combaterii Larvelor de Clostera Anastomosis L. la ieșirea din hibernare. Bucov. For. 2015, 15, 167–176. [Google Scholar]
- Sochacki, S.J.; Harper, R.J.; Smettem, K.R.J. Estimation of woody biomass production from a short-rotation bio-energy system in semi-arid Australia. Biomass Bioenergy 2007, 31, 608–616. [Google Scholar] [CrossRef]
- Stelian, R. Cercetări Privind Culturile de Plopi și Salcie din Zona Dig-Mal; Centrul de Documentare Tehnică pentru Economia Forestieră: București, Romania, 1968. [Google Scholar]
- Halbritter, A.; Deegen, P. A combined economic analysis of optimal planting density, thinning and rotation for an even-aged forest stand. For. Policy Econ. 2015, 51, 38–46. [Google Scholar] [CrossRef]
- FAO. Poplars and Willows in Wood Production and Land Use; FAO: Rome, Italy, 1980. [Google Scholar]
- Aylott, M.J.; Casella, E.; Tubby, I.; Street, N.R.; Smith, P.; Taylor, G. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol. 2008, 178, 358–370. [Google Scholar] [CrossRef]
- Pötzelsberger, E.; Gossner, M.M.; Beenken, L.; Gazda, A.; Petr, M.; Ylioja, T.; La Porta, N.; Avtzis, D.N.; Bay, E.; De Groot, M. Biotic threats for 23 major non-native tree species in Europe. Sci. Data 2021, 8, 210. [Google Scholar] [CrossRef]
- Duduman, M.L.; Lupastean, D.; Netoiu, C.; Tomescu, R. Research carried out in Romania on ecology and management of the poplar defoliator Clostera (Pygaera) anastomosis L. (Lepidoptera: Notodontidae). For. Sustain. Dev. 2019, 8, 13–24. [Google Scholar]
- Sheppard, J.; Spiecker, H.M.C. Influence of spacing on biomass and bark proportion for three hybrid poplar clones at an age of four years. In Proceedings of the Agroforestry Systems—A Modern Response to Global Challenges of Climate Change, Food Production, Bioenergy Needs, and Environmental Restoration, Porano, Italy, 16–17 October 2014; Porano, Italy; Agroforest: Porano, Italy, 2014. [Google Scholar]
- Oliveira, N.; De la Iglesia, J.P.; Viscasillas, E.; Bachiller, A.; Parras, A.; González, I.; Grau, J.M.; Otero, J.M.; Cañellas, I.; Sixto, H. Adecuación de genotipos para la producción de biomasa en la meseta septentrional. In Proceedings of the II Simposio del Chopo, Valladolid, Spain, 19 October 2018; pp. 17–19. [Google Scholar]
- Zalesny, R.S.; Hall, R.B.; Zalesny, J.A.; McMahon, B.G.; Berguson, W.E.; Stanosz, G.R. Biomass and Genotype× Environment Interactions of Populus Energy Crops in the Midwestern United States. BioEnergy Res. 2009, 2, 106–122. [Google Scholar] [CrossRef]
- Paris, P.; Mareschi, L.; Sabatti, M.; Pisanelli, A.; Ecosse, A.; Nardin, F.; Scarascia-Mugnozza, G. Comparing Hybrid Populus Clones for SRF across Northern Italy after Two Biennial Rotations: Survival, Growth and Yield. Biomass Bioenergy 2011, 35, 1524–1532. [Google Scholar] [CrossRef]
- Di Matteo, G.; Sperandio, G.; Verani, S. Field Performance of Poplar for Bioenergy in Southern Europe after Two Coppicing Rotations: Effects of Clone and Planting Density. iForest Biogeosci. For. 2012, 5, 224. [Google Scholar] [CrossRef][Green Version]
- Sabatti, M.; Fabbrini, F.; Harfouche, A.; Beritognolo, I.; Mareschi, L.; Carlini, M.; Paris, P.; Scarascia-Mugnozza, G. Evaluation of Biomass Production Potential and Heating Value of Hybrid Poplar Genotypes in a Short-Rotation Culture in Italy. Ind. Crops Prod. 2014, 61, 62–73. [Google Scholar] [CrossRef]
- Facciotto, G.; Bergante, S.; Mughini, G.; De Los Angeles, G.; M–Nervo, G. Biomass Production with Fast Growing Woody Plants for Energy Purposes in Italy. In Proceedings of the Forestry in Achieving Millennium Goals, Novi Sad, Serbia, 13–15 November 2009; pp. 105–110. [Google Scholar]
- Fang, S.; Xu, X.; Lu, S.; Tang, L. Growth Dynamics and Biomass Production in Short-Rotation Poplar Plantations: 6-Year Results for Three Clones at Four Spacings. Biomass Bioenergy 1999, 17, 415–425. [Google Scholar] [CrossRef]
- DeBell, D.S.; Clendenen, G.W.; Harrington, C.A.; Zasada, J.C. Tree Growth and Stand Development in Short-Rotation Populus Plantings: 7-Year Results for Two Clones at Three Spacings. Biomass Bioenergy 1996, 11, 253–269. [Google Scholar] [CrossRef]
- Morhart, C.; Sheppard, J.; Spiecker, H. Above Ground Leafless Woody Biomass and Nutrient Content within Different Compartments of a P. Maximowicii× P. Trichocarpa Poplar Clone. Forests 2013, 4, 471–487. [Google Scholar] [CrossRef][Green Version]
- Trnka, M.; Trnka, M.; Fialová, J.; Koutecky, V.; Fajman, M.; Zalud, Z.; Hejduk, S. Biomass Production and Survival Rates of Selected Poplar Clones Grown under a Short-Rotation System on Arable Land. Plant Soil Environ 2008, 54, 78–88. [Google Scholar] [CrossRef][Green Version]
- Labrecque, M.; Teodorescu, T.I. Field Performance and Biomass Production of 12 Willow and Poplar Clones in Short-Rotation Coppice in Southern Quebec (Canada). Biomass Bioenergy 2005, 29, 1–9. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, X. Performance of 14 Hybrid Poplar Clones Grown in Beijing, China. Biomass Bioenergy 2010, 34, 906–911. [Google Scholar] [CrossRef]
No. | Clone | Year of Establishment | Location | Age (Years) | Size (Ha) | Density (Trees·ha−1) | Number of Trees | Coordinates | |
---|---|---|---|---|---|---|---|---|---|
1 | AF8 | 2013 | Fântâna Mare | 3 | 4.22 | 1667 | 10 | 47°53′47.34″ N | 26° 0′46.05″ E |
2 | AF8 | 2013 | Fântâna Mare | (2) 3 | 0.33 | 2222 | (10) 10 | 47°53′38.86″ N | 26° 0′30.48″ E |
3 | AF2 | 2013 | Fântâna Mare | (2) 3 | 0.33 | 2222 | (10) 10 | 47°53′38.86″ N | 26° 0′30.48″ E |
4 | AF8 | 2011 | Fântâna Mare | 5 | 13.81 | 1667 | 30 | 47°53′56.15″ N | 26° 0′35.11″ E |
5 | AF2 | 2011 | Fântâna Mare | 5 | 4.14 | 1667 | 30 | 47°53′41.40″ N | 26° 0′42.67″ E |
6 | AF2 | 2011 | Vicșani | 5 | 7.14 | 1667 | 10 | 47°55′35.27″ N | 25°59′10.48″ E |
7 | AF8 | 2010 | Dornești | 6 | 0.58 | 1667 | 10 | 47°51′11.63″ N | 25°58′53.49″ E |
8 | AF2 | 2009 | Dornești | (4) 5 | 0.11 | 2667 | (20) 20 | 47°50′53.78″ N | 25°57′59.09″ E |
9 | AF2 | 2009 | Dornești | 5 | 0.11 | 1333 | 10 | 47°50′51.89″ N | 25°58′0.44″ E |
10 | AF8 | 2009 | Dornești | 5 | 0.11 | 1333 | 10 | 47°50′51.32″ N | 25°58′2.78″ E |
Year | AF2–Vicșani | AF2–Fântâna Mare | AF8–Fântâna Mare | Kruskal–Wallis | |
---|---|---|---|---|---|
K | p | ||||
2011 | 0.74 ± 0.3 a | 0.74 ± 0.22 a | 0.64 ± 0.37 a | 1.8981 | 0.3871 |
2012 | 5.23 ± 1.4 a | 4.53 ± 1.69 a | 3.78 ± 1.63 a | 2.2282 | 0.282 |
2013 | 19.42 ± 3.16 a | 16.66 ± 4.02 a | 14.19 ± 5.26 a | 3.6262 | 0.1631 |
2014 | 34.53 ± 3.82 a | 30.17 ± 6.16 a | 26.19 ± 4.82 b. | 5.9915 | 0.0002 |
2015 | 45.86 ± 3.88 a | 38.27 ± 8.05 b | 31.53 ± 5.96 c | 5.9915 | <0.0001 |
Tree Parts | AF2–Vicșani | AF2–Fântâna Mare | AF8–Fântâna Mare | Kruskal–Wallis | |
---|---|---|---|---|---|
K | p | ||||
stem | 37.01 ± 3.46 a | 28.22 ± 5.59 b | 25.28 ± 5.29 b | 24.7105 | <0.0001 |
branches | 8.99 ± 1.05 a | 10.28 ± 3.38 a | 6.48 ± 1.43 b | 27.7793 | <0.0001 |
total | 45.86 ± 3.88 a | 38.27 ± 8.05 b | 31.53 ± 5.96 c | 24.5634 | <0.0001 |
Spacing (m × m) | Density (Trees·ha−1) | Yield (Mg∙ha−1∙Year−1) | Total Biomass in 5 Years (Mg·ha−1) |
---|---|---|---|
3 × 1.25 | 2667 | 5.32 | 26.59 |
3 × 1.5 | 2222 | 8.02 | 40.11 |
3 × 2 | 1667 | 10.26 | 51.31 |
3 × 2.5 | 1333 | 10.85 | 54.23 |
3 × 4 | 833 | 10.25 | 51.24 |
4 × 4 | 625 | 9.28 | 46.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dănilă, I.-C.; Mititelu, C.; Palaghianu, C. Productivity of Short-Rotation Poplar Crops: A Case Study in the NE of Romania. Forests 2022, 13, 1089. https://doi.org/10.3390/f13071089
Dănilă I-C, Mititelu C, Palaghianu C. Productivity of Short-Rotation Poplar Crops: A Case Study in the NE of Romania. Forests. 2022; 13(7):1089. https://doi.org/10.3390/f13071089
Chicago/Turabian StyleDănilă, Iulian-Constantin, Cristian Mititelu, and Ciprian Palaghianu. 2022. "Productivity of Short-Rotation Poplar Crops: A Case Study in the NE of Romania" Forests 13, no. 7: 1089. https://doi.org/10.3390/f13071089