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Abstract: Wildfires are a major natural hazard that lead to deforestation, carbon emissions, and loss
of human and animal lives every year. Effective predictions of wildfire occurrence and burned areas
are essential to forest management and firefighting. In this paper we apply various machine learning
(ML) methods on a 0.25◦ monthly resolution global dataset of wildfires. We test the prediction
accuracies of four different fire occurrence classifiers: random forest (RF), eXtreme Gradient Boosting
(XGBoost), multilayer perceptron (MLP) neural network, and a logistic regression. Our best ML
model predicts wildfire occurrence with over 90% accuracy, compared to approximately 70% using
a logistic regression. We then train ML regression models to predict the size of burned areas and
obtain an MAE score of 3.13 km2, compared to 7.48 km2 using a linear regression. To the best of our
knowledge, this is the first study to be conducted in such resolution on a global dataset. We use the
developed models to shed light on the influence of various factors on wildfire occurrence and burned
areas. We suggest building upon these results to create ML-based fire weather indices.
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1. Introduction

In August 2020 a series of lightning strikes ignited hundreds of wildfires across
California, which resulted in the largest wildfire in California’s documented history [1].
This catastrophe occurred less than a year after Australia’s “Black Summer”, during which
the largest bushfires in the continent’s history burned 11 million hectares [2]. It is believed
that climate change is a major cause of these extreme events, as fire weather is becoming
more frequent (e.g., [3,4]).

Wildfire danger estimation is an essential tool that stands at the base of forest man-
agement and firefighting strategies. However, predicting the occurrence and size of areas
burned by wildfires is extremely challenging as fire characteristics depend on numerous
factors: meteorological factors, such as temperature, relative humidity and wind speed;
fuel characteristics, such as vegetation type and cover; anthropogenic factors; and so forth
(e.g., [5–8]).

The challenge of predicting wildfire occurrence has been drawing the interest of both
scholars and forest managers for decades. Attempts to understand the conditions that lead
to the ignition and spread of wildfires can be dated at least 150 years back ([9] cited in [10]).

The common method of predicting wildfire occurrence is based on empirical and
statistical models. Statistical models are data-driven, and their accuracy relies on the
availability and quality of the studied data. Statistical models have been widely used in
wildfire science. Research interest in the field includes (but is not limited to) predicting
wildfire occurrence (reviewed in [11]), burned areas (e.g., [12]), lightning-related ignitions
(e.g., [13]), effects of climate change (e.g., [14]), and more.

Although statistical analyses have made an extraordinary contribution to wildfire
science and to forest management, the nature of wildfire danger estimation—which is
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influenced by nonlinear interactions between numerous factors—has limited the achieve-
ments of traditional statistical models [15]. In recent years, machine learning models have
become increasingly popular and have been applied in almost every scientific field. This
trend, combined with new datasets made available by satellite observations, has introduced
machine learning (ML) methods to wildfire science. The nonlinear nature of ML algorithms
has been recognized by scholars as potentially beneficial in the complex prediction of
wildfire occurrence [15].

Previous scholars built upon state-of-the-art ML models for the purpose of predicting
wildfire occurrence and burned areas. A recently published review of ML applications in
wildfire science [15] presents a comprehensive summary of the work in the field. These
include various advanced ML models such as random forest (RF), AdaBoost, artificial
neural networks (ANNs), support-vector machines (SVMs), k-nearest-neighbor (KNN),
and more. According to a review of almost 30 papers that compared ML model accuracies
to logistic regression, almost all papers found ML models to be preferable [15]. However,
most ML studies in the field have been conducted on specific regions and not on global
datasets. (These include [16] on Alberta, Canada; [17] on the Galicia region of Spain; [18]
on the Greek island of Lesvos; [19] on Lebanon; [20] on Turkey; [21,22] on Australia; [23]
on Slovenia; [24] on the central plateau of the Iberian Peninsula; [25] and [26] on the
Montesinho Natural Park in Portugal; [27] on Southern China; [28] on Cambodia; [29] on
Puerto Rico; [30] on the Canton Ticino in Switzerland; [31] on the Daxinganling Mountains
of Northeastern China; [32] on the Kroumirie Mountains in Northwestern Tunisia; [33] on
South Central US; and [34] on Chile).

Although these regional wildfire danger estimation models are of great value, they
are limited in several aspects. First, regional datasets have a relatively small number of
observations. The performance of ML models improves significantly when they are trained
on large datasets; thus, applying ML models on limited datasets might not realize the full
potential of these models. Second, regional models are, by definition, only appropriate
in specific locations. A model trained in one region does not necessarily perform well in
other regions. Finally, focusing on one specific region does not provide information on the
influence of region-dependent characteristics. For example, population density is known to
have a strong impact on wildfire occurrence and burned areas; a model which is focused
on a single region in which the population density is approximately constant would not
identify the significance of this important factor.

In recent years, data from satellites combined with advanced image processing techniques
have made global datasets with millions of wildfire observations available [35–37]. Such
large datasets provide an opportunity to improve the predictions of current ML models
and to accurately identify the most hazardous fires. Analyzing a global dataset also enables
a location-dependent prediction that can improve current fire weather alerts. Recent global
analyses include [38], which performed a statistical analysis on a global dataset with an
annual resolution; [39], which applied ML regression models on a monthly 1.89◦ × 0.25◦

resolution global dataset to predict the size of regional burned areas; and [40], which
applied neural network classification models on a monthly 0.25◦ × 0.25◦ resolution global
dataset to create wildfire susceptibility maps.

In this paper, we apply various ML models to predict both fire occurrence and burned
areas based on meteorological data, fuel characteristics, topography, anthropogenic factors,
and regional fire history. In addition to the raw meteorological data, we use the com-
monly applied fire weather indices as predictors. The dataset we use includes a million
spatiotemporal observations of monthly 0.25◦ × 0.25◦ regions [37].

The objectives of the study are as follows: (a) to develop and evaluate the prediction ac-
curacies of ML models and linear/logistic regression (LR) models in the prediction of wild-
fire occurrence and burned areas; (b) to develop models which are not region-dependent
and are valid in different climate zones; (c) to analyze the effect of various variables on
wildfire occurrence and burned areas; (d) to compare and evaluate the performance of
the developed models in different regions around the globe; and (e) to demonstrate the
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potential of ML models in wildfire danger estimation as a step towards ML-based fire
weather indices.

Although [40] is similar to the current study in some respects, our study differs from
it in several aspects: first, [40] focused on classification models, whereas in the current
study we also develop regression models to estimate the size of burned areas; second, in
the current study we include several additional factors which we believe are important to
wildfire danger estimation (these include the traditional fire weather indices, topographic
slope, population density, and long-term values of meteorological factors such as yearly
precipitation); and finally, in the current study we include RF and XGBoost models in
addition to neural networks, as these models have been shown to be advantageous for
tabular data analysis (e.g., [41,42]).

The paper is organized as follows. We begin by providing a detailed summary of
our data, followed by a description of the ML methods we apply in the paper. The next
two sections present the models’ principal results, divided into prediction of wildfire
occurrence and prediction of burned area size. In the two final sections, we discuss the
contribution, implications, and limitations of the study, and propose several directions for
future research.

2. Materials and Methods
2.1. Data

We used the Terra MODIS satellite data (FireCCI51) to create the dependent variable
in the study. The data were obtained from the ECMWF website [37,43]. The dataset is
comprised of monthly burned areas in 0.25◦ × 0.25◦ regions across the entire globe for the
year 2015. The original MODIS product was at a 250 m resolution and was aggregated
to a 0.25◦ grid by ECMWF by summing the burned areas in each pixel. We eliminated
regions where no fires occurred in the decade before 2015, including oceans and seas.
Including regions in which wildfires seldom occur would lead to a higher predictive
performance, but would not provide a clear representation of the model’s performance
in the regions in which wildfire danger estimation is of interest. The remaining data
were composed of approximately a million (986, 606) spatiotemporal observations in
121,476 regions throughout the globe, including 128,618 observations with non-zero burned
areas. Figures 1 and 2 presents descriptive statistics of the data.
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Figure 1. Histograms of burned areas. A histogram of monthly burned areas throughout the data’s
time span. The left subplot excludes non-burned observations. The middle subplot presents the
logarithm of the same data. The right subplot presents the logarithm (1 + x) of the entire data
(including non-burned observations).

The features (independent variables) include meteorological factors, fuel character-
istics, topography, anthropogenic factors, and regional fire history. Most meteorological
data were taken from the ERA5 monthly averaged reanalysis dataset [44]. We used 2 m
temperature, precipitation, and relative humidity and 10 m wind velocity and direction.
For precipitation and relative humidity, we included both present and past value variables:
mean value in the month of the observation, mean value in the previous month, and mean
value in the previous year. We also included a variable for incoming short-wave solar
radiation, obtained as a monthly mean in a 0.25◦ × 0.25◦ resolution [45].
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Figure 2. Descriptive statistics of burned areas—logarithmic scale. The figure presents descriptive
statistics of the total burned areas in each season. We added the value 1 to each pixel before applying
a logarithmic transformation.

For each month we include the mean monthly value and the mean of the highest seven
values of various fire weather indices. These indices include three groups: (1) Canadian
Forest Service’s Fire Weather Index Rating System; (2) the Australian McArthur Mark 5
Rating System; (3) U.S. Forest Service’s National Fire Danger Rating System. The variables
in each group include: (1a) fire weather index; (1b) build-up index; (1c) danger index;
(1d) drought code; (1e) duff moisture code; (1f) initial fire spread index; (1g) fine fuel
moisture code; (1h) fire daily severity rating; (2a) Keetch–Byram drought index; (2b) fire
danger index; (3a) spread component; (3b) energy release component; (3c) burning index;
(3d) ignition component. All data are available in 0.25◦ resolution and were obtained from
the Copernicus Climate Change Service [46].

Previous studies have shown that population density has a substantial effect on the
area burned by wildfires (e.g., [39]). We included population density based on the dataset of
the Center for International Earth Science Information Network [47]. Although the original
dataset is provided with a resolution of ~1 km, we calculated the mean population density
in a 0.25◦ resolution region.

Leaf area index (LAI) is a variable that describes the leaf material in a given location.
LAI is a dimensionless variable that varies between 0 and approximately 10. LAI data at a
1/112◦ (~1 km) resolution were taken from [48] and aggregated to the relevant resolution.
In addition, we used the normalized difference vegetation index (NDVI), a dimensionless
parameter which is commonly used to estimate the density of live green vegetation. NDVI
is calculated as the difference between near-infrared (NIR) and red reflectance, divided by
their sum [49]: NDVI = (NIR − Red)/(NIR + Red). We include the NDVI value of the 0.25◦

region of the wildfire, obtained from the NASA Earth Observations website [49]. Finally,
we also included the percent of burnable area in each pixel taken from [37].

We included a variable of soil moisture from the Copernicus Climate Change Service [50].
The variable indicates the content of liquid water in a surface soil layer at a depth of
2 to 5 cm, expressed as the percentage of total saturation derived from satellite-based
observations [50]. The data were obtained in a 0.25◦ spatial resolution and monthly mean
temporal resolution.

Topography is known to affect the growth rate of a wildfire, and consequently, the
area burned by the fire (e.g., [51]). We included the mean slope in each region, based on the
dataset in [52].

Regional fire history was obtained from the ECMWF dataset that was also used for
the burned area target variable [37,43]. For each region we created features of the mean
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and median monthly burned area from 2003 up to the month prior of that observation.
These variables did not include the month of the observation to prevent data leakage. As
the wildfire history variables are not always used in wildfire danger estimation models,
we presented both the models which include them as independent variables and models
which do not. Examining the models which do not use the wildfire history as predictors
could also shed light on the effect that different features have on the models—the wildfire
history variables could potentially conceal the effect of certain regional characteristics.

As a categorical variable, month of the year was transformed by 1-of-C dummy
encoding [53]. Table 1 presents a summary of the variables used in the study.

Table 1. Summary of data sources.

Variable Abbreviation Source

monthly burned area (target variable) BA [37]

2 m temperature temp

[44]

relative humidity RH

10 m wind velocity wind_speed

precipitation prec

mean relative humidity in previous month RH_1_month

mean precipitation in previous month prec_1_month

mean relative humidity in previous year RH_12_months

mean precipitation in previous year prec_12_months

percentage of burnable area burnable
[37]median burned area median_burned

mean burned area mean_burned

latitude lat -

longitude lon -

month (categorical) month_1, month_2, etc. -

leaf area index—low vegetation LAI_low
[48]leaf area index—high vegetation LAI_high

total leaf area index LAI_tot

normalized difference vegetation index NDVI [49]

incoming short-wave solar radiation radiation [45]

soil moisture soil [50]

mean slope slope [52]

population density population [47]

fire weather index—mean FWI_mean

[46]

fire weather index—highest 7 in month FWI_7

build up index—mean BUI_mean

build up index—highest 7 in month BUI_7

danger index—mean danger_mean

danger index—highest 7 in month danger_7

drought code—mean drought_mean

drought code—highest 7 in month drought_7

duff moisture code—mean DM_mean
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Table 1. Cont.

Variable Abbreviation Source

duff moisture code—highest 7 in month DM_7

[46]

initial fire spread index—mean ISI_mean

initial fire spread index—highest 7 in month ISI_7

fine fuel moisture code—mean FFMC_mean

fine fuel moisture code—highest 7 in month FFMC_7

fire daily severity rating—mean severity_mean

fire daily severity rating—highest 7 in month severity_7

Keetch–Byram drought index—mean KBDI_mean

Keetch–Byram drought index—highest 7 in month KBDI_7

fire danger index—mean FFDI_mean

fire danger index—highest 7 in month FFDI_7

spread component—mean SC_mean

spread component—highest 7 in month SC_7

energy release component—mean energy_mean

energy release component—highest 7 in month energy_7

burning index—mean BI_mean

burning index—highest 7 in month BI_7

ignition component—mean IC_mean

ignition component—highest 7 in month IC_7

2.2. Methodology

We developed two types of ML models. The first model differentiates observations to
a burned/unburned binary classification. One important issue to address in this regard
is that the full dataset is imbalanced: the number of negative (unburned) observations
is approximately seven times higher than the number of positive (burned) observations.
Not balancing the data would lead to higher prediction accuracies but would not reflect
the actual model performance. For example, if 99% of the observations were unburned,
simply guessing that all pixels are unburned would lead to a 99% accuracy. We applied two
common methods to address this issue. The first method is to balance the data by including
all of the burned observations and randomly sampling an equal number of unburned
observations (as performed in [54], for example). The second method is to use the entire
imbalanced dataset but to impose a penalty on misclassifications of the minority class—in
this case, positive observations (e.g., [55]). It is most common to impose a penalty value
equal to the ratio between the number of majority and minority observations. We examined
this value as well as several lower and higher values.

Since different studies refer to datasets with different spatial and temporal resolutions,
it is difficult to indicate a single benchmark accuracy score. It is more challenging to predict
fire occurrence in datasets with a finer resolution, and lower accuracies are to be expected
for their models. In the absence of a global accuracy benchmark, we followed [15], which
found that a considerable number of papers in the field use the linear or logistic regression
results as a benchmark for a specific dataset.

Different studies use different accuracy metrics for binary classification, two of which
are the accuracy metric, which is the percentage of correctly classified observations, and
the area under the curve (AUC) metric, which is the area under the relative operating
characteristic (ROC) curve [56]. The AUC metric is preferable to accuracy in binary clas-
sifications [57]. A random classification would produce a 0.5 AUC score; AUC scores
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between 0.5 and 0.7 are considered poor prediction accuracies; scores between 0.7 and
0.9 are considered moderate; and AUC scores of 0.9 or above are considered excellent
prediction accuracies [27,58]. It is recommended to present more than a single accuracy
metric [59]. We presented several additional metrics: accuracy, true positive rate (TPR),
and true negative rate (TNR). These metrics can be defined using the four components
of the confusion matrix: true positives (TP), false positives (FP), true negatives (TN), and
false negatives (FN). TPR (also known as sensitivity) describes the percentage of correctly
classified positive observations, whereas TNR (also known as specificity) represents the
percentage of correctly classified negative observations.

accuracy =
TP + TN

TP + FP + TN + FN
(1)

TPR =
TP

TP + FN
(2)

TNR =
TN

TN + FP
(3)

The second group of ML models we developed is of regression models which predict
the size of burned areas. We evaluated the accuracy of these models by measuring the mean
absolute error (MAE), as is common in similar papers (e.g., [25,60,61]). We also presented
the mean-square error (MSE) and the root-mean-square error (RMSE) for each model. It
is recommended to present these metrics alongside MAE, as MAE is known to be less
sensitive to outliers [62].

We included maps describing the prediction accuracies of the testing data for both the
classification and the regression models. In the classification models, the values in these
maps represent the mean prediction accuracy in each region. For the regression models,
these maps describe the MAE scores in each region.

We applied four different classification and regression models: (i) random forest
(RF) [63] (ii) eXtreme Gradient Boosting (XGBoost) [64] (iii) multilayer perceptron (MLP),
which is a form of neural network [65], and (iv) logistic regression [66] for fire occurrence or
linear regression for fire size. We performed a 10-fold cross-validation to reliably compare
the accuracies of the different models. The analyses were performed using Python’s scikit-
learn package [67], except for the eXtreme Gradient Boosting model which is based on the
XGBoost package [64]. As mentioned in the previous section, we reran the models with or
without the regional wildfire history variables.

The RF, XGBoost, and MLP models are tuned by various hyperparameters. We per-
formed hyperparameter optimization for both models to achieve optimal predictions. The
following hyperparameters were examined for the RF and XGBoost: number of estimators
(“n_estimators”) between 100 and 550 and maximal tree depth (“max_depth”) between
8 and 10. The accuracies presented in the Results section are of the optimal hyperparame-
ters. The following hyperparameters were examined for the MLP model: number and size
of hidden layers (“hidden_layer_sizes”)—(1–3 hidden layers of 50–150 neurons).

To improve the model interpretability, we analyzed and present the SHAP (SHapley
Additive exPlanations) values of the most important features in the highest performance
model. For each feature, SHAP values were calculated by comparing the predictions
without the feature (assigning it some baseline value, usually its mean value) with the
predictions including the feature (for example, [68]). Each dot in each feature represents the
feature’s effect on the prediction in a specific observation. The horizontal axis represents
the effect on the dependent variable, whereas the colors represent the values of the different
independent variables. The independent variables were ordered from the most significant
feature to the least significant one. The SHAP graph representation enables a clear inter-
pretation of the effect each variable had on the model. The colors in the graph provide
information on the sign of each feature’s impact on the model’s output. For example, if the
red dots (high values) of a specific feature are strongly concentrated around the negative
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side of the horizonal axis, this would indicate a negative correlation between this feature
and the dependent variable, and vice versa.

3. Results
3.1. Wildfire Occurrence

In this section we present the results of wildfire occurrence prediction models. We
first present the results of various classification models which predict whether a wildfire
will occur in each observation. We show the results for the balanced dataset, as well as
the analysis of the full weighted dataset. We present both the various metrics described in
the previous section (AUC, accuracy, TPR, and FPR), and the ROC curves, and finally an
analysis of feature importance.

Table 2 and Figure 3 present the different prediction scores and ROC curves for the
different models. The purple line represents a random classifier with an AUC score of 0.5.
The green line represents a logistic regression which serves as the benchmark accuracy
as a non-ML model and achieves an AUC score of 0.73. The best performing models are
the XGBoost model, followed by the RF classifier with excellent AUC scores of 0.97 and
0.92, respectively. The XGBoost model was also superior to the other ML and LR models in
terms of accuracy, TPR, and FPR. The MLP model performed worse than the LR model.
These results address objective (a) by comparing the performances of ML and LR models.

Table 2. Summary of model performances—wildfire occurrence.

Including Regional Wildfire History

Model AUC Accuracy TPR TNR Hyperparameters Tested Best Parameters

RF 0.92 0.83 0.81 0.86
max depth: 8–10 10

n_estimators: 100–550 550

XGBoost 0.97 0.92 0.90 0.93
max depth: 8–10 10

n_estimators: 100–550 550

MLP 0.69 0.67 0.45 0.83
hidden layers: 1–3 1

# neurons in layer: 50–150 100

LR 0.73 0.69 0.52 0.79 - -

Excluding Regional Wildfire History

Model AUC Accuracy TPR TNR Hyperparameters Tested Best Parameters

RF 0.89 0.80 0.77 0.83
max depth: 8–10 10

n_estimators: 100–550 550

XGBoost 0.94 0.86 0.86 0.86
max depth: 8–10 10

n_estimators: 100–550 400

MLP 0.90 0.80 0.81 0.84
hidden layers: 1–3 2

# neurons in layer: 50–150 150

LR 0.81 0.73 0.71 0.76 - -

Optimized prediction scores of the different models. The hyperparameters tested for each model are presented,
alongside the chosen values.

To address objective (b) and verify that the ML models we developed provide accurate
wildfire danger estimations which are not region-dependent, we present the prediction
accuracies by region for the XGBoost and LR models in Figure 4. The XGBoost model
outperformed the LR model in all of the regions around the globe.

Table 3 and Figure 5 present the AUC scores and ROC curve in the full imbalanced
dataset. We present the results for the highest performing ML model, XGBoost, compared
to a logistic regression. As expected, in terms of accuracy some of the XGBoost models
outperformed the previous analysis for the reasons mentioned in the Methods section;
however, in terms of AUC the current models obtained a lower score in comparison to
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the balanced data (0.94 versus 0.97 when regional fire history is included, or 0.92 versus
0.94 otherwise).
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Figure 3. ROC curves—wildfire occurrence classification. ROC curves of the four models used
for wildfire occurrence prediction. The figure refers to the models which include wildfire history
variables; a similar figure for models without the wildfire history variables is presented in Appendix A
(Figure A1). The XGBoost model has the best prediction performance with an AUC score of 0.97
(on a scale of 0 to 1). The random forest model performance is slightly lower with an AUC of
0.92. The accuracy of the MLP model is significantly lower and is even slightly lower than the
logistic regression.
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Table 3. Summary of model performances—weighted wildfire occurrence.

Including Regional Wildfire History

Model AUC Accuracy TPR TNR

XGBoost (w = 1) 0.94 0.93 0.59 0.98

XGBoost (w = 5) 0.94 0.89 0.81 0.91

XGBoost (w = 7) 0.94 0.88 0.85 0.88

XGBoost (w = 9) 0.94 0.86 0.87 0.86

XGBoost (w = 20) 0.94 0.80 0.92 0.78

XGBoost (w = 50) 0.93 0.72 0.95 0.69

LR (w = 1) 0.64 0.87 0.11 0.98

LR (w = 5) 0.77 0.75 0.71 0.75

LR (w = 7) 0.78 0.70 0.78 0.69

LR (w = 9) 0.79 0.66 0.83 0.63

LR (w = 20) 0.80 0.46 0.95 0.38

LR (w = 50) 0.69 0.14 0.99 0.01

Excluding Regional Wildfire History

Model AUC Accuracy TPR TNR

XGBoost (w = 1) 0.92 0.92 0.52 0.98

XGBoost (w = 5) 0.92 0.88 0.78 0.89

XGBoost (w = 7) 0.92 0.85 0.82 0.86

XGBoost (w = 9) 0.92 0.84 0.85 0.84

XGBoost (w = 20) 0.92 0.76 0.91 0.74

XGBoost (w = 50) 0.92 0.67 0.95 0.62

LR (w = 1) 0.81 0.89 0.26 0.98

LR (w = 5) 0.81 0.80 0.64 0.83

LR (w = 7) 0.81 0.74 0.72 0.74

LR (w = 9) 0.81 0.67 0.78 0.66

LR (w = 20) 0.81 0.43 0.93 0.36

LR (w = 50) 0.81 0.22 0.99 0.10
Prediction scores for the weighted classification models applied on the entire (unbalanced) dataset. The value
marked as “w” represents the weighting ratio between the positive and negative prediction error penalties. The
ratio between negative and positive observations was approximately 7 (rows marked in bold), but additional
weighting values were examined.

The XGBoost model obtained the highest score on this dataset with a weighting ratio
of 7, approximately equal to the ratio between negative and positive observations in the
dataset. The XGBoost models outperformed the logistic regressions in all weighting values.

To address objective (c), we applied the SHAP-value analysis which provides a better
understanding of the most influential features in the models. Figure 6 presents the SHAP
values of the most important features in the XGBoost model of the balanced dataset. For
each feature, SHAP values were calculated by comparing the predictions without the
feature with the predictions including the feature (for example, [68]). Each dot in each
feature represents the feature’s effect on the prediction in a specific observation. The color
of each observation indicates the value of the variable in that observation, and its position
on the horizontal axis indicates its effect on the model output. For clarity of viewing the
figure, 5000 observations were randomly chosen from the entire dataset.
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Figure 5. ROC curves—weighted wildfire occurrence classification. ROC curves of the highest
performing ML model and a logistic regression as a benchmark accuracy. The full results are
presented in Table 3. The figure refers to the models which include wildfire history variables; a similar
figure for models without the wildfire history variables is presented in Appendix A (Figure A3).
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Figure 6. Feature importance by model—wildfire occurrence classification. Feature importance plot
for the highest performance model—XGBoost.

When available (left subplot), the historical mean burned area had the highest im-
pact on the model. This result is in line with the prediction performances of these two
models—the model which did not include regional fire history obtained a lower AUC score
(0.94 versus 0.97). The most significant meteorological factor in both models was RH, both
in the month of the observation and in the previous year. Precipitation was strongly and
negatively correlated with the dependent variable in both models. Although the current
precipitation was negatively correlated with the probability of burning, the 12 months
of precipitation had an opposite effect, as expected. The NDVI index had a substantial
effect on both models. Some fire weather indices were found to be influential; the variable
describing the seven highest FWI values in each month (FWI_7) had the highest effect in
the left subplot. Regional characteristics such as population and slope had a higher impact
on the model that did not include the regional wildfire history variables (right subplot).

3.2. Size of Burned Areas

In this section we present the results of the burned area prediction models. We present
the results of various ML regression models which estimate the size of burned areas for
each observation, compared to a linear regression as a benchmark accuracy.
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Table 4 presents the MAE values for the different models. Once again, the XGBoost
model outperformed all the other models including the RF, MLP, and linear regression
(MAE scores of 3.13, 3.44, 4.78, and 7.48, respectively). The MSE and RMSE scores were
higher than the MAE scores in all models, but lower in the XGBoost model compared
to the other models. In similarity to the fire occurrence analysis, removing the regional
fire history variables reduced the accuracy of the highest performing model (XGBoost)
and increased the MAE score from 3.13 to 3.75. The LR models had significantly lower
accuracies compared to the various ML models in both types of analyses.

Table 4. Summary of model performances—size of burned areas.

Including Regional Wildfire History

Model
MAE RMSE MSE

Parameters Tested Best Parameters(
km2 )

(
km2 )

(
km4 )

RF 3.44 16.21 262.87
max depth: 8–10 10

n_estimators: 100–550 550

XGBoost 3.13 14.30 204.61
max depth: 8–10 10

n_estimators: 100–550 100

MLP 4.78 21.34 455.63
Hidden layers: 1–3 2

# neurons in layer: 50–150 150

Linear Regression 7.48 21.28 452.94 - -

Excluding Regional Wildfire History

Model
MAE RMSE MSE

Parameters Tested Best Parameters(
km2 )

(
km2 )

(
km4 )

RF 4.08 17.78 316.15
max depth: 8–10 10

n_estimators: 100–550 400

XGBoost 3.75 15.67 245.50
max depth: 8–10 10

n_estimators: 100–550 100

MLP 3.90 17.11 292.62
Hidden layers: 1–3 3

# neurons in layer: 50–150 150

Linear Regression 7.51 22.03 485.52 - -

Optimized prediction scores of the different regression models. The hyperparameters tested for each model are
presented, alongside the chosen values.

To compare and evaluate the performance of the developed models in different regions
around the globe (objective (d)), we present the prediction accuracies by region in Figure 7.
Unlike the fire occurrence analysis, the advantage of the XGBoost model over the LR model
was not uniform in all continents. Its performance was only slightly better in Australia and
North America, as opposed to a major advantage in Africa, Asia, and South America.

Figure 8 presents the SHAP values for the XGBoost regression model. Similar to the fire
occurrence analysis, the historical mean regional wildfire variable was the most influential
when included. RH and precipitation were once again the most important meteorological
factors. In the current analysis, the fire weather indices were considerably more influential
compared to the wildfire occurrence models. Specifically, the mean monthly FWI value
was ranked high in both models. Additional indices such as ISI and FFMC were also
highly influential in the model excluding wildfire history. Similar to the wildfire occurrence
analysis, the NDVI was the most important vegetation index and had a higher impact than
the LAI variables and the percentage of the burnable area.
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4. Discussion

In this paper we applied multiple ML models to predict the occurrence and size of
wildfires around the globe. The models included random forest, XGBoost, multilayer
perceptron, and logistic and linear regressions. The models were trained using a large
dataset which includes wildfire observations from around the globe over a full year. Once
trained, the best models provided promising prediction accuracies and were able to predict
wildfire occurrence with over 90% accuracy and burned area size with an MAE score of
3.13 km2. The XGBoost model obtained the most accurate results, followed by random
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forest. All models showed a substantial improvement in prediction accuracies after being
trained on a large dataset with a million observations.

The prediction accuracies varied significantly between different regions of the globe.
In the wildfire occurrence prediction, the XGBoost classification model outperformed the
logistic regression in all the examined regions. As for burned area predictions, however,
the improved performance of the XGBoost regression model was most significant in Africa,
Asia, and South America. Its advantage over the linear regression in North America,
Australia, and Europe was significantly smaller. One possible explanation is that North
America and Australia are the central regions for which the traditional fire weather indices
were planned, and thus the simple linear model which includes the traditional indices
provides a relatively good prediction accuracy in these regions. The advantage of the ML
model is most distinct in other regions, where fire weather indices were not originally
planned to be used.

As expected, the most important predictor of wildfire occurrence and burned area size
was the regional wildfire history, with the mean burned area variable providing higher
predictive performance than the median burned area. These variables have not been used
in most studies in the field [16–34]; although they provide little insight as to the factors
which dominate wildfire occurrence, they improve the performance of the models, so we
recommend including them in future studies and in models used for practical applications.
Relative humidity, both in the month of the observation and in earlier times, was found to
be the most important meteorological factor, followed by precipitation. This is in line with
most previous studies in the field (e.g., [33]). As expected, the longer-term precipitation and
RH had the opposite effect than the values of these factors in the month of the observations.
Although precipitation substantially decreases the risk of wildfires, its occurrence in earlier
times is correlated to increased vegetation growth and, therefore, increased wildfire risk
(e.g., [69]).

NDVI was also an especially influential factor for both types of models and had
a substantially larger effect on the models compared to LAI or the percent of burnable
area. Whereas some previous studies (e.g., [40]) included both NDVI and LAI in their
models and found NDVI to have a higher contribution, some papers only included LAI
as an independent variable (e.g., [33]). We suggest including both in future studies. Other
regional factors were substantially less significant than expected, especially population
density and topographic slope. This is an unexpected result, as previous studies have found
a strong negative correlation between population density and burned areas (e.g., [39]) and
a positive correlation between topographic slope and wildfire propagation (e.g., [51]). The
most probable explanation is that these factors are steady and do not change significantly
over time, and their effect is therefore reflected in the mean regional burned area variable.
For example, a steeper slope is known to increase the wildfire propagation rate, and thus
regions in which the mean slope is high also suffer from higher historical burned areas.

The models which did not include the wildfire history variables mostly had somewhat
lower prediction accuracies, both in the classification analysis and in the regression analysis.
The ML models still significantly outperformed the logistic and linear regressions. When
examining the most influential variables in these models, the relative importance of some
regional variables increased in comparison to the models which included the wildfire
history variables. Namely, topographic slope, elevation, and population density had a
much larger effect on the models which did not include the regional wildfire history
(Figures 6 and 8). This is probably because the regional wildfire history variables already
reflected certain regional characteristics with little or no temporal variability, and thus
including them concealed the effects of the additional regional characteristics.

Different fire weather indices were important for both types of models. Among the
various indices, the Canadian FWI index and the FFMC index had the most substantial
effect on the models. Both the seven highest values in each month and the mean values
of the entire month had an impact on the model, depending on the index and the specific
model. Although some similar studies include fire weather indices as independent variables
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and find them to be beneficial (e.g., [26]), many other studies do not include them and
instead only include the raw meteorological factors. As these indices clearly contribute to
wildfire danger estimation, we suggest including them in future models to build on the
accumulated knowledge in the field.

Accurate wildfire danger estimation by ML models presents a promising opportunity
to improve wildfire alerts and provide forest managers with tools of assessing regional
wildfire risk. We propose to build upon the results of this research and develop regional
wildfire indices that take local fire history into account. Such indices would require training
ML models on a dataset of daily resolution, as opposed to the monthly resolution of
the current study. The models developed in this study could benefit from validation
on additional wildfire datasets. The monthly resolution of the current study limits its
applicability for fire weather indices, as these require a daily resolution. In addition, it is
very likely that the results and the most influential features in a daily resolution model
would differ from the current one. For example, in the current study mean monthly wind
velocity is one of the least significant factors, whereas previous studies have demonstrated
the importance of wind velocity on the day of the fire. Regional fire indices could vary
based on local firefighting abilities, fuel characteristics, and climate. The disadvantage of
developing regional fire weather indices is that the data in each region are more limited
than data from the entire globe. However, as satellites continue to gather information
and global datasets continue to grow, it is a matter of time until wildfire datasets will be
large enough to train region-specific ML models which would probably provide improved
prediction accuracies and could potentially replace the traditional fire weather indices.

5. Conclusions

Wildfire occurrence and burned areas are extremely difficult to predict as they depend
on nonlinear interactions between numerous factors. In this study we compared the
prediction performance of ML models to LR models on a global dataset. We demonstrated
the overwhelming advantage of ML models over LR models in these tasks (objective (e)).
Working with a global dataset provides vast amounts of data for model training and
validation, and in addition, allows researching the effect of various factors in a global
context, rather than region-dependent phenomena. We analyzed and presented the main
contributing factors of each model and their relative importance. We found that LR models
which include traditional fire weather indices perform well in North America and Australia,
but less so in other continents. The ML models, however, obtain excellent predictive
performance worldwide. The results of this study demonstrate the advantage of ML
models over traditional fire weather indices in wildfire danger estimation. We propose
to work towards the application of ML-based fire weather indices, which we believe will
gradually replace the traditional indices.
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25. Castelli, M.; Vanneschi, L.; Popovič, A. Predicting Burned Areas of Forest Fires: An Artificial Intelligence Approach. Fire Ecol.
2015, 11, 106–118. [CrossRef]

26. Wood, D.A. Prediction and data mining of burned areas of forest fires: Optimized data matching and mining algorithm provides
valuable insight. Artif. Intell. Agric. 2021, 5, 24–42. [CrossRef]

27. Cao, Y.; Wang, M.; Liu, K. Wildfire Susceptibility Assessment in Southern China: A Comparison of Multiple Methods. Int. J.
Disaster Risk Sci. 2017, 8, 164–181. [CrossRef]

28. Yu, B.; Chen, F.; Li, W.; Wang, L.; Wu, M.; Mingquan, W.; Bo, Y.; Fang, C.; Bin, L. Fire Risk Prediction Using Remote Sensed
Products: A Case of Cambodia. Photogramm. Eng. Remote Sens. 2017, 83, 19–25. [CrossRef]

29. Van Beusekom, A.E.; Gould, W.A.; Monmany-Garzia, A.C.; Khalyani, A.H.; Quiñones, M.; Fain, S.J.; Andrade-Núñez, M.J.;
González, G. Fire weather and likelihood: Characterizing climate space for fire occurrence and extent in Puerto Rico. Clim. Chang.
2018, 146, 117–131. [CrossRef]

30. De Angelis, A.; Ricotta, C.; Conedera, M.; Pezzatti, G.B. Modelling the meteorological forest fire niche in heterogeneous pyrologic
conditions. PLoS ONE 2015, 10, e0116875. [CrossRef]

31. Chen, F.; Du, Y.; Niu, S.; Zhao, J. Modeling Forest Lightning Fire Occurrence in the Daxinganling Mountains of Northeastern
China with MAXENT. Forests 2015, 6, 1422–1438. [CrossRef]

32. Toujani, A.; Achour, H.; Faïz, S. Estimating Forest Fire Losses Using Stochastic Approach: Case Study of the Kroumiria Mountains
(Northwestern Tunisia). Appl. Artif. Intell. 2018, 32, 882–906. [CrossRef]

33. Wang, S.C.; Wang, Y. Predicting wildfire burned area in South Central US using integrated machine learning techniques. Atmos.
Chem. Phys. Discuss. 2019, 20, 1–25.

34. Bjånes, A.; De La Fuente, R.; Mena, P. A deep learning ensemble model for wildfire susceptibility mapping. Ecol. Inform. 2021,
65, 101397. [CrossRef]

35. Chuvieco, E.; Pettinari, M.L.; Lizundia-Loiola, J.; Storm, T.; Padilla Parellada, M. ESA Fire Climate Change Initiative (Fire_cci):
MODIS Fire_cci Burned Area Pixel product, version 5.1. Centre for Environmental Data. Data Anal 2018, 1. [CrossRef]

36. Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; van der Werf, G.R.; Randerson, J.T. The Global Fire Atlas
of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [CrossRef]

37. Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area
mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 111493. [CrossRef]

38. Chuvieco, E.; Pettinari, M.L.; Koutsias, N.; Forkel, M.; Hantson, S.; Turco, M. Human and climate drivers of global biomass
burning variability. Sci. Total Environ. 2021, 779, 146361. [CrossRef] [PubMed]

39. Forkel, M.; Andela, N.; Harrison, S.P.; Lasslop, G.; van Marle, M.; Chuvieco, E.; Dorigo, W.; Forrest, M.; Hantson, S.;
Heil, A.; et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation
models. Biogeosciences 2019, 16, 57–76. [CrossRef]

40. Zhang, G.; Wang, M.; Liu, K. Deep neural networks for global wildfire susceptibility modelling. Ecol. Indic. 2021, 127, 107735.
[CrossRef]

41. Shwartz-Ziv, R.; Armon, A. Tabular data: Deep learning is not all you need. Inf. Fusion 2022, 81, 84–90. [CrossRef]
42. Ahmad, A.; Ahmad, S.R.; Gilani, H.; Tariq, A.; Zhao, N.; Aslam, R.W.; Mumtaz, F. A Synthesis of Spatial Forest Assessment

Studies Using Remote Sensing Data and Techniques in Pakistan. Forests 2021, 12, 1211. [CrossRef]
43. ECMWF WEBSITE-European Centre for Medium-Range Weather Forecasts. Available online: https://cds.climate.copernicus.eu/#!

/home (accessed on 9 June 2022).

http://doi.org/10.1016/S0957-4174(03)00095-2
http://doi.org/10.1071/WF05091
http://doi.org/10.1016/j.engappai.2011.02.017
http://doi.org/10.1016/j.procs.2012.09.070
http://doi.org/10.1038/srep03188
http://doi.org/10.1098/rsos.150241
http://doi.org/10.1007/s10618-011-0213-2
http://doi.org/10.1016/j.agrformet.2016.05.003
http://doi.org/10.4996/fireecology.1101106
http://doi.org/10.1016/j.aiia.2021.01.004
http://doi.org/10.1007/s13753-017-0129-6
http://doi.org/10.14358/PERS.83.1.19
http://doi.org/10.1007/s10584-017-2045-6
http://doi.org/10.1371/journal.pone.0116875
http://doi.org/10.3390/f6051422
http://doi.org/10.1080/08839514.2018.1514808
http://doi.org/10.1016/j.ecoinf.2021.101397
http://doi.org/10.5285/58f00d8814064b79a0c49662ad3af537
http://doi.org/10.5194/essd-11-529-2019
http://doi.org/10.1016/j.rse.2019.111493
http://doi.org/10.1016/j.scitotenv.2021.146361
http://www.ncbi.nlm.nih.gov/pubmed/34030254
http://doi.org/10.5194/bg-16-57-2019
http://doi.org/10.1016/j.ecolind.2021.107735
http://doi.org/10.1016/j.inffus.2021.11.011
http://doi.org/10.3390/f12091211
https://cds.climate.copernicus.eu/#!/home
https://cds.climate.copernicus.eu/#!/home


Forests 2022, 13, 1050 19 of 19

44. Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al.
ERA5 Monthly Averaged Data on Pressure Levels from 1979 to Present. Copernicus Climate Change Service (C3S) Climate Data
Store (CDS). 2019. Available online: http://10.24381/cds.6860a573 (accessed on 23 April 2021).

45. Troccoli, A. Solar Radiation—Variable Fact Sheet. Copernicus Climate Change Service. Available online: https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 2 July 2022).

46. Fire Danger Indices Historical Data from the Copernicus Emergency Management Service. Fire Danger Indices His-torical Data
from the Copernicus Emergency Management Service—User Guide. 2021. Available online: https://cds.climate.copernicus.eu/
cdsapp#!/dataset/cems-fire-historical?tab=overviewlast (accessed on 17 May 2021).

47. Center for International Earth Science Information Network-CIESIN-Columbia University. Gridded Population of the World,
Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center
(SEDAC). 2018. Available online: https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11 (accessed on
16 October 2021).

48. Blessing, S.; Giering, R. Leaf Area Index and Fraction Absorbed of Photosynthetically Active Radiation 10-Daily Gridded Data from
1981 to Present. 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-lai-fapar?tab=overviewlast
(accessed on 10 May 2021).

49. Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation index User’s Guide (MOD13 Series); University of Arizona,
Vegetation Index and Phenology Lab.: Tucson, AZ, USA, 2015.

50. De Jeu, R.; Van der Schalie, R. Algorithm Theoretical Basis Document Soil Moisture Products from active and passive microwave
sensors. In Copernicus Climate Change Service. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-
soil-moisture?tab=overview (accessed on 27 May 2022).

51. Pimont, F.; Dupuy, J.-L.; Linn, R.R. Coupled slope and wind effects on fire spread with influences of fire size: A numerical study
using FIRETEC. Int. J. Wildland Fire 2012, 21, 828–842. [CrossRef]

52. Amatulli, G.; Domisch, S.; Tuanmu, M.-N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale
topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [CrossRef]

53. Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; National Taiwan University: Taipei, Taiwan, 2003.
54. Hasanin, T.; Khoshgoftaar, T. The effects of random undersampling with simulated class imbalance for big data. In Proceedings

of the 2018 IEEE International Conference on Information Reuse and Integration (IRI), 6–9 July 2018, Salt Lake City, UT, USA;
pp. 70–79.

55. Huang, C.; Li, Y.; Loy, C.C.; Tang, X. Learning deep representation for imbalanced classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 5375–5384.

56. Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982,
143, 29–36. [CrossRef] [PubMed]

57. Ling, C.X.; Huang, J.; Zhang, H. AUC: A better measure than accuracy in comparing learning algorithms. In Conference of the
Canadian Society for Computational Studies of Intelligence; Springer: Berlin/Heidelberg, Germany, 2003; pp. 329–341.

58. Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997,
30, 1145–1159. [CrossRef]

59. Khan, A.M.; Li, Q.; Saqib, Z.; Khan, N.; Habib, T.; Khalid, N.; Majeed, M.; Tariq, A. MaxEnt Modelling and Impact of Climate
Change on Habitat Suitability Variations of Economically Important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests
2022, 13, 715. [CrossRef]

60. Al_Janabi, S.; Al_Shourbaji, I.; Salman, M.A. Assessing the suitability of soft computing approaches for forest fires prediction.
Appl. Comput. Inform. 2018, 14, 214–224. [CrossRef]

61. Xie, Y.; Peng, M. Forest fire forecasting using ensemble learning approaches. Neural Comput. Appl. 2019, 31, 4541–4550. [CrossRef]
62. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the

literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]
63. Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [CrossRef]
64. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
65. Ramchoun, H.; Idrissi, M.A.J.; Ghanou, Y.; Ettaouil, M. Multilayer Perceptron: Architecture Optimization and Training. Int. J.

Interact. Multimed. Artif. Intell. 2016, 4, 26. [CrossRef]
66. Lever, J.; Krzywinski, M.; Altman, N. Logistic regression: Regression can be used on categorical responses to estimate probabilities

and to classify. Nat. Methods 2016, 13, 541–543. [CrossRef]
67. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;

Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
68. Mangalathu, S.; Hwang, S.H.; Jeon, J.S. Failure mode and effects analysis of RC members based on ma-chine-learning-based

SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [CrossRef]
69. Verhoeven, E.M.; Murray, B.R.; Dickman, C.R.; Wardle, G.M.; Greenville, A.C. Fire and rain are one: Extreme rainfall events

predict wildfire extent in an arid grassland. Int. J. Wildland Fire 2020, 29, 702. [CrossRef]

http://10.24381/cds.6860a573
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-fire-historical?tab=overview last
https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-fire-historical?tab=overview last
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-lai-fapar?tab=overview last
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-soil-moisture?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-soil-moisture?tab=overview
http://doi.org/10.1071/WF11122
http://doi.org/10.1038/sdata.2018.40
http://doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
http://doi.org/10.1016/S0031-3203(96)00142-2
http://doi.org/10.3390/f13050715
http://doi.org/10.1016/j.aci.2017.09.006
http://doi.org/10.1007/s00521-018-3515-0
http://doi.org/10.5194/gmd-7-1247-2014
http://doi.org/10.1007/s11749-016-0481-7
http://doi.org/10.9781/ijimai.2016.415
http://doi.org/10.1038/nmeth.3904
http://doi.org/10.1016/j.engstruct.2020.110927
http://doi.org/10.1071/WF19087

	Introduction 
	Materials and Methods 
	Data 
	Methodology 

	Results 
	Wildfire Occurrence 
	Size of Burned Areas 

	Discussion 
	Conclusions 
	Appendix A
	References

