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Abstract: The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) was successfully launched. Due
to its small spot size, multibeam configuration, high sampling rate, and strong immunity to terrain
slopes, it has been regarded as a powerful tool for forest resources surveying and managing. However,
the ICESat-2 photon cloud data contain considerable background photons, which discretely distribute
in the background space of signal photons. Therefore, it is necessary to filter these noise photons.
In this study, photons are divided into three categories: signal photons, noise photons far away
from signal photons, and noise photons adjacent to signal photons. Based on the existing research,
forward and backward elliptical distances were used to express the spatial relationship between
two photons, and backward local density (BLD) was used to describe the density distribution of the
photons. However, the single statistical parameter cannot clearly distinguish three types of photon
cloud. Therefore, forward local density (FLD) and neighboring forward local density difference
(NFLDD) also were defined to describe the density distribution of the photons. Finally, by combining
the support vector machine (SVM), the above three density parameters were used to classify the
photons by signal and noise photons. The proposed method was validated with photon cloud
data acquired by the Simulated Advanced Terrain Laser Altimeter System (MATLAS), the Multiple
Altimeter Beam Experimental Lidar (MABEL), and the ICESat-2 systems over different forested areas.
The results demonstrated that the proposed method can well remove the noise photons and retain the
signal photons without depending on any statistical assumptions or thresholds. The comprehensive
accuracy of the three test sites was 0.99, 0.98, and 0.99, respectively, which was higher than those of
the existing method. In addition, the total errors corresponding to the three test sites were about 0.4%,
0.5%, and 1.0% respectively, which were lower than those of the existing method.

Keywords: ICESat-2; photon cloud filtering; forested areas; elliptical distance parameters; noise
photons; machine learning

1. Introduction

The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2), the successor to ICESat-1,
is equipped with the Advanced Terrain Laser Altimeter System (ATLAS) [1]. It produces
dense footprints with a 17 m diameter and has the characteristics of high resolution and
strong immunity to terrain slopes [2,3]. As a result, ICESat-2 has shown great potential
for vegetation parameter extraction and forest management [4]. However, photon cloud
data contain considerable background noise photons caused by solar background [5]. In
such a case, the removal of these noise photons is very critical for forestry management. In
particular, for vegetation areas, photons can penetrate the vegetation layer due to the gaps,
and it is more difficult to filter the noise photons. To retrieve accurate vegetation height
and sub-canopy topography, a good filter must be employed.
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The main principle of filtering photon cloud data relies on differences in the density
distributions of the noise and signal photons. Several filtering methods have been pro-
posed, such as the voxel-based filtering method [6], the probability density function-based
method [7], the Bayesian decision theory-based method [8], and the density clustering-
based method [9–12]. Although the above methods have been successfully tested with the
photon cloud data acquired over different terrain conditions with different surface features,
they still struggle to completely remove noise photons, especially in forested areas [13].
For complex forested scenes, localized statistics-based filtering methods, such as the local
distance statistics (LDS)-based method and the relative neighboring relationship (RNR)-
based method [14,15], the modified density-based spatial clustering method [16], and the
local outlier factor-based method [17], are more suitable for removing noise photons [13,18].
However, to achieve satisfactory results, localized statistics-based methods must carefully
address three main problems: (1) how to design a photon neighborhood search method
that can describe the distribution of photons under different terrain conditions, (2) how
to define a reasonable filter based on localized statistics that can distinguish signal and
noise photons, and (3) how to remove as many noise photons adjacent to signal photons
as possible.

A reliable photon neighborhood search method should have the ability to find the
neighboring photons around a photon with a similar density distribution, which determines
whether the subsequent localized statistics contain enough information to distinguish the
signal and noise photons. To achieve this goal, the circle-based search method has been
used to define the neighboring photons of a photon [14,15,19]. Although this method can
easily find all neighboring photons, it tends to incorrectly select more noise photons [16].
To resolve this issue, the horizontal ellipse-based search method has been used to select
neighboring photons [16,17,20]. Compared with the circle-based search method, the hori-
zontal ellipse-based search method can define the neighboring photons of a photon more
precisely. However, its performance is strongly dependent on the topographic relief and it
does not work well when the topographic relief is obvious. To overcome this limitation, an
ellipse with adaptive orientations has been adopted to find the neighboring photons of a
photon as accurately as possible under different terrain conditions [13,21].

Using the above neighborhood search methods, the neighboring photons of a pho-
ton can be selected, and then various statistical parameters can be used to describe the
photon distribution, including the density [16,21,22], the local outlier factor [20], the local
distance [14], and the number of neighbors [13,19,20]. The statistics of the signal and noise
photons can then be fitted by Gaussian-like functions, and the number of signal photons
can be distinguished from background noise photons by setting a reasonable threshold for
the statistics. However, selecting an optimal threshold for the statistics that can completely
distinguish the noise and signal photons is difficult because the threshold varies with many
factors, such as the surface cover, topographic condition, and photon acquisition condition.
Moreover, in some cases, these statistics do not follow a strict Gaussian distribution, which
increases the difficulty of selecting a suitable threshold. As a result, certain noise photons
may not be removed or all the signal photons may not be retained.

In fact, photons can be divided into three categories: signal photons, noise photons
far away from signal photons, and noise photons adjacent to signal photons. Even if an
optimal threshold is adopted, the existing methods may not completely remove noise
photons adjacent to signal photons [19] because noise photons adjacent to signal photons
present similar distribution trends as the signal photons. Moreover, single statistical
parameter-based methods (the existing localized statistics-based methods) cannot clearly
distinguish signal photons and noise photons adjacent to signal photons. Hence, it is
necessary to further investigate the distribution characteristics of noise photons adjacent to
signal photons and to define a new statistical parameter to describe their densities.

In this paper, a new photon cloud filtering method that combines the proposed
elliptical distance parameters and machine learning is proposed. The oriented ellipse-based
search method [16,21] is employed to define the neighboring photons around a photon.
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Subsequently, the backward local density (BLD) [21] is used to define the three category
photons. In addition, the forward local density (FLD) and the neighboring forward local
density difference (NFLDD) are then defined to better describe the heterogeneity between
signal photons and noise photons. Therefore, the three statistical parameters can better
describe the distribution of signal photons, noise photons adjacent to signal photons, and
noise photons far away from signal photons, cooperatively. For single statistical indicator-
based filtering methods, they distinguish the signal and noise photons by calculating
the threshold. However, for multi-parameters, it is unreasonable to directly distinguish
signal and noise by the threshold, which increases the error caused by calculating the
threshold. The machine learning approach provides a way for multi-statistical parameters
to feature fusion. Therefore, with the above three statistical parameters, a machine learning
approach is used to distinguish signal photons and noise photons. The proposed method
has two main advantages over the existing filtering methods: (1) three statistical parameters
are simultaneously adopted to describe the distribution characteristics of the signal and
noise photons to better distinguish the noise and signal photons, especially for those noise
photons adjacent to signal photons; and (2) machine learning is used to adaptively identify
the signal and noise photons without considering the statistical distribution or setting
a threshold.

The novelty of this paper is as follows:

1. We define the FLD to better distinguish signal photons and noise photons far away
from signal photons. In addition, we define the neighboring forward local density
difference (NFLDD) to retain some signal photons that can be easily recognized as
noise photons by the BLD parameter.

2. The above two statistical parameters are defined to express the spatial density differ-
ence in photon clouds together with the BLD. Therefore, different types of photon
clouds can be better expressed by three parameters rather than a single parameter.

3. The machine learning approach is used to combine the FLD, BLD, and NFLDD at-
tribute parameters; it is possible to distinguish the noise and signal photons without
depending on any statistical model or threshold.

2. Materials and Methods
2.1. Photon Cloud Datasets

To test the performance of the proposed method on the photon cloud data acquired by
various platforms, the proposed method was first tested on the airborne photon data and
then verified on the ICESat-2 data. The two kinds of airborne photon data were acquired
by MABEL (Multiple Altimeter Beam Experimental Lidar data) sensor and MATLAS (the
simulated ATLAS system) data.

2.1.1. Airborne Photon Cloud Datasets and Test Sites

Before the launch of the ICESat-2 satellite, in order to test the quality and performance
of the photon cloud data, NASA organized airborne flight experiments on some typical
research areas and obtained a series of airborne simulated photon cloud data, such as
MABEL and MATLAS data. MABEL photon cloud data are measured by emitting infrared
(1046 nm) and green band (523 nm) pulses with a variable repetition rate (5~25 kHz) at a
flying height of 20 km, and have a spot diameter of 2 m [23,24]. MATLAS photon cloud
data are simulated by the MABEL photon cloud data, which aim to be more similar to the
photon cloud data acquired on the ATLAS system [23].

Figure 1 shows the original photon maps of two study areas. Test site A, which is
located on the west coast of the USA, is a mountainous area covered with dense vegetation.
The corresponding photon data were collected by the airborne MATLAS system, which can
be downloaded from http://icesat.gsfc.nasa.gov/icesat2 (accessed on 15 March 2019). Test
site B, which is located in Alaska, USA, is characterized by gently sloping topography. The
granule ID of these data is MABEL_l2_20140801t173100_010_1, and we obtained MABEL
data from http://icesat.gsfc.nasa.gov/icesat2 (accessed on 15 March 2019). The strong

http://icesat.gsfc.nasa.gov/icesat2
http://icesat.gsfc.nasa.gov/icesat2
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beam is used to test the proposed method, as demonstrated in the existing work [19]. It can
be seen from Figure 1 that in comparison to the photon data from test site A, the photon data
acquired over test site B include denser and more nonuniformly distributed noise photons.
In addition, due to the dense vegetation in test site A, more photons are concentrated in
the canopy layer than in test site B, where more photons can reach the sub-canopy ground
surface. Test sites A and B are both typical forest areas officially announced by NASA,
which can effectively test the performance of the proposed method.
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Figure 1. (a) Original photons of test site A. (b) Original photons of test site B.

2.1.2. ICESat-2 Dataset and Test Site

The proposed method was also tested using ATL03 photon cloud data acquired by
the ICESat-2 system. The ATL03 data contain the height, latitude, longitude, and time [5].
Figure 2 shows the original photon maps of the spaceborne photon cloud dataset. Test
site C is located in Africa, with a complex forest structure, which can test the effective-
ness of the proposed method on ICESat-2 data well. The granule ID of these data is
ATL03_20190414053207_02440301_001_01, and we obtained the ATL03 photon cloud data
from the website (https://search.earthdata.nasa.gov/search, accessed on 15 October 2019).
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2.1.3. Validation Data

With the auxiliary photon classification results provided by NASA, we carefully
performed a visual inspection to add signal photons and remove noise photons [17].
Therefore, the obtained signal photons used to quantitatively evaluate the proposed method
are classified.

https://search.earthdata.nasa.gov/search
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2.2. Elliptical Distance-Based Filtering Parameters

It is a fact that the ellipse-based neighborhood search method is more suitable for find-
ing the neighbors of a photon with similar distribution characteristics than the circle-based
neighborhood search method [14]. In addition, to adapt to different terrain conditions, the
adaptive ellipse-based neighborhood search method [21] was used to define the forward
elliptical distance (FED) and backward elliptical distance (BED) [21]. Based on this, Yang
et al. defined the backward local distance (BLD) to distinguish signal photons and noise
photons adjacent to signal photons, thoroughly. However, photons are divided into three
types, as shown in Figure 3, including signal photons, noise photons adjacent to signal
photons, and noise photons far away from the signal photons; the single statistical param-
eter BLD cannot clearly distinguish three types of photon cloud. For example, although
the parameter BLD shows better performance at distinguishing signal photons and noise
photons adjacent to signal photons [21], it has a poor performance on retraining signal
photons enough due to its sensitivity to noise photons. Therefore, the other two statistical
parameters are defined to express the spatial density difference in photon clouds together
with the BLD. The FLD is defined to better distinguish signal photons and noise photons far
away from signal photons, and the neighboring forward local density difference (NFLDD)
is defined to retain some signal photons that can be easily recognized as noise photons by
the BLD parameter. Therefore, different types of photon clouds can be better expressed by
three parameters rather than one parameter.
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2.2.1. Forward Elliptical Distance and Forward Local Density

The forward elliptical distance (FED) Dpq(αi) from photon p to its neighboring photon
q is defined as Equation (1).

Dpq(αi) =
√

∆x2

a2 + ∆z2

b2

∆x = cos αi ·
(

xp − xq
)
+ sin αi ·

(
zp − zq

)
∆z = cos αi ·

(
zp − zq

)
− sin αi ·

(
xp − xq

)
αi =

i
60 · π, i = 0, 1, 2, ..., 60

(1)

where a and b are the long and short semi-axes of the ellipse, respectively, which can be
empirically set according to the surface cover, e.g., αi is the clockwise angle between the
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long semi-axis and the horizontal direction, which is used to define the orientation of the
ellipse. The FED varies with the angle αi.

Based on the FED, the FLD of photon point p is defined as in every orientation αi, the
sum of the FEDs is calculated, and the minimum sum value is regarded as the FLD:

FLDp = min

(
K1

∑
q=1

Dpq

(
αF

i

))
(2)

where K1 is the number of nearest neighbors selected by the ellipse search window. The
corresponding orientation αi is called the forward local density orientation (FLDO) and is
expressed as αmin, which is the optimal search direction.

For example, for the two photons p and s in Figure 3, the FLD of signal photon p is
significantly different from that of noise photon s. However, for the noise photons adjacent
to signal photons, since they distribute in a similar way to the signal photons, it is difficult
to determine an appropriate threshold for FLDs to identify signal photons. To solve this
problem, the backward elliptical distance (BED) was then defined [21].

2.2.2. Backward Elliptical Distance and Backward Local Density

The BED from photon p to photon q is defined as shown in Figure 4. In the FLDO
α

q
min of photon q, the FED from q to p is called the BED from p to q, as shown by qp’ [21].

The difference between the FED and the BED is the use of different FLDOs to calculate
their elliptical distance values. The BLD of p can then be calculated by the sum of the BED
values corresponding to different orientations α

q
min [21]. It can be known from its definition

that, for one photon, its neighboring photons with similar FLDO values are preferred for
calculating the backward local density (BLD). Thus, for a noise photon that is adjacent to
signal photons, the BLD does not tend to choose the signal photons to calculate its BLD [21].
Therefore, the BLD has the ability to distinguish signal photons and noise photons adjacent
to signal photons.
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2.2.3. The Neighboring forward Local Density Difference

For a forested area, the signal photons interacting with the dense canopy and ground
can be easily recognized by the FLD and BLD. However, gaps occur between the canopy
and ground surface and signal photons are sparsely distributed. As a result, these signal
photons are easily misclassified into noise photons since their distribution characteristics are
similar to those of the noise photons adjacent to signal photons. To overcome this problem
based on the BLD, the neighboring forward local density (NFLD) is defined as follows:

NBLDp = min

(
K1

∑
q=1

Dqp

(
α

q
min

))
(3)
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where K1 is the number of nearest neighbors selected by the ellipse search window. Before
giving the definition of NFLD difference (NFLDD), we first divide the ellipse search window
into two parts by a line L, as shown in Figure 5c, where line L is the perpendicular line of
the long axis of the ellipse:

y = xp α
p
min = 0 or 180

◦

y = 0 α
p
min = 90

◦

y = − 1
tan α

p
min
· (x− xp) + yp 0 < α

p
min < 90

◦ ∪90
◦
< α

p
min < 180

◦

(4)

where xp and yp are the coordinates of photon p along the horizontal and vertical directions,
respectively. The NFLDD is then expressed as follows:

NBLDDp =


∣∣min(NBLDpart1)−min(NBLDpart2)

∣∣ case1∣∣∣∣min(NBLD part1 or part2 )−min(NBLDp)

∣∣∣∣ case2
(5)

where the geometrical explanations of cases 1 and 2 are shown in Figure 5a,b. For signal
photon p between the canopy photons and the ground photons, since its neighboring
photons selected by the ellipse search window are dominated by signal photons with similar
distribution characteristics, it has a relatively small NFLDD value. However, for noise
photons adjacent to signal photons, the two groups of neighboring photons are dominated
by the signal and noise photons. Consequently, it has a relatively large NFLDD value. In
such a case, the NFLDD can retain the signal photons and further enhance the ability to
identify the noise photons adjacent to signal photons and the sparse signal photons.
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2.3. Filtering Method Based on Machine Learning Approach
2.3.1. Machine Learning Approach

The FLD, BLD, and NFLDD are used for describing the density distribution of photons
in space. However, the problem that should be considered is how to use the three attribute
parameters to remove the noise photons and retain as many signal photons as possible. A
simple strategy adopted by the existing methods is to calculate the statistics of one attribute
parameter and then fit the statistics by a specific probability density function, which is
then utilized to remove the noise photons by setting a threshold. However, in this study,
this process could not be easily carried out because three attribute parameters are used to
describe the density distribution of the photons and predefining a reasonable probability
density function and an optimal threshold for filtering the noise photons is difficult. Thus,
based on the above three parameters, we use a machine learning method, namely, the
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support vector machine (LiBSVM) method [25,26], to distinguish the signal photons from
the considerable background noise photons.

2.3.2. Filtering Progress

Figure 6 shows the flow chart of the proposed method; there are three key procedures
that should be carefully considered:

(1) Photon cloud coordinate system conversion: We convert the raw photon cloud data
under the WGS-84 coordinate system to the Universal Transverse Mercator Grid
System (UTM). The distance between all photon points and the starting photon is
calculated along with the track distance (m); therefore, the elevation of photon cloud
data is rearranged according to these distances.

(2) Coarse filtering: The coarse filtering procedure is used to remove the noise photons
that are far away from the signal photons, which can improve the computational
efficiency [9]. The main steps are as follows. First, the original photon cloud data
are divided into multiple parts with a size of X meters along the flight direction and
Z meters along the vertical direction. Subsequently, along the vertical direction, the
number of photons in each grid cell is counted and the grid cell with the most photons
is regarded as the grid cell containing the signal photons. To ensure that no signal
photons are omitted, two or four neighboring grid cells of the selected grid cell along
the vertical direction are also selected.

(3) Training sample selection: Before performing the filtering process, the noise photon
samples far away from signal photons, the signal photon samples, and the noise
photon samples adjacent to signal photons should be provided to find the relationship
between the photon types and the proposed elliptical parameters (FLD, BLD, and
NFLDD) by LiBSVM. In this study, we build the filtering model and assess the perfor-
mance of the filtering method by cross-validation. In detail, for the three experiments,
only 3–6% of the total photons are randomly selected for training, and the rest 94–97%
of the total photons are used for testing the proposed method. To achieve this goal,
the three kinds of photons are randomly selected by artificial classification. Regarding
the selection of training samples, we roughly divide the photons into three types ac-
cording to the histogram statistics of the three defined parameters of the photon cloud.
In addition, some training samples are then randomly selected. These preliminarily
selected samples inevitably have errors; therefore, we remove all the obviously wrong
sample points through visual interpretation. Through the above steps, the training
samples can be selected semiautomatically.
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2.3.3. Accuracy Indicators

To evaluate the performance of the proposed method, the recall R, the precision P, and
the comprehensive evaluation value F are introduced [8,27], as is shown in Figure 4. R
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indicates the ratio of the correctly identified signal photons to the total signal photons, P
is the ratio of the correctly identified signal photons to the total identified photons, and F
refers to the harmonic mean of the recall ratio R and the precision P. In addition, another
three error indices are also employed to evaluate the different methods [28]. The first error
index e1 denotes the ratio of the signal photons misclassified into noise photons to the total
signal photons; the second error index e2 is the ratio of the noise photons misclassified into
signal photons to the total noise photons; and the third error index e3 is used to express the
ratio of all the misclassified photons to the total photons.

3. Results
3.1. Performance Assessment on Airborne Photon Cloud Data

The original photon cloud data in Figure 1 were firstly filtered, and the results are
shown in Figures 7 and 8. Specifically, the long semiaxis and the short semiaxis of the
ellipse in (1) were set as 15 m and 4 m, respectively. The number of neighbors (K) was set as
30. To better evaluate the performance of our filtering method, the LDS-based method [14],
which has been widely employed to filter various photon cloud data [10], was also used to
filter the photon cloud data. Due to the difference between the two datasets, the selected
training samples accounted for 4.07% and 5.68% of the total photons in MATLAS and
MABEL data. For both test sites, the proposed method can remove more noise photons
than the LDS method. As a result, we can more easily identify the signal photons from the
canopy layer and the signal photons from the ground surface, which helps us to extract the
vegetation height and the sub-canopy topography.
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To quantitively evaluate the performance of the above two methods in filtering photon
data, three accuracy assessment parameters (R values, P values, and F values) and three
error indices (e1, e2, and e3) are utilized, as shown in Figure 9. For test site A, the accuracy
assessment indicator values (R, P, and F) for the LDS method are 0.9995, 0.9560, and
0.9773, respectively, and the three error indices (e1, e2, and e3) are 0.05%, 4.05%, and 2.18%,
respectively. For the proposed method, the corresponding accuracy assessment indicator
values are 0.9948, 0.9961, and 0.9954, respectively, as well as the error indices (e1, e2, and e3)
being 0.52%, 0.35%, and 0.43%, respectively. The recall R for the LDS method is slightly
larger than that for the proposed method, and the error index e1 for the LDS method is
smaller than that for the proposed method, which means that more signal photons have
been removed by the proposed method during the filtering process. However, this does
not mean that the LDS method performs better in filtering noise photons than the proposed
method, and although the LDS method can retain the signal photons, fewer noise photons
are removed, as demonstrated by the precision P and the error index e2. In particular, for the
LDS method, 4.05% of the total noise photons are misclassified into signal photons, which
is significantly more than for the proposed method. The comprehensive evaluation value
F and the error index e3 can provide a comprehensive evaluation of all the misclassified
photons, and both indicate that the proposed method has the better advantage to balance
any retaining signal photons and to remove as many noise photons as possible.

For test site B, although the photon cloud data are disturbed by the noise photons with
a nonuniform distribution, a satisfactory result is still obtained by the proposed method,
with the accuracy assessment indicators (P and F) being larger than 0.98. Figure 9 shows
that the differences in recall R and error index e1 associated with the LDS method and the
proposed method are smaller than those in test site A, which means that for this test site,
the two methods have a similar ability to retain signal photons. In addition, compared
with the result for test site A, due to the impact of the dense noise photons with a nonuni-
form distribution at test site B, more signal photons are misidentified as noise photons.
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Nevertheless, fewer signal photons are removed, which does not significantly distort the
useful information in the signal photons. In terms of the other two accuracy assessment
indicators and the two error indices, they all demonstrate that the new method shows a
good performance in removing noise signals and retaining signal photons. Furthermore,
we can conclude that the proposed method has a stronger tolerance to noise photons than
the LDS method since the comprehensive evaluation value F and error index e3 do not
decrease as much when the noise level is high.
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3.2. Performance Assessment on ICESat-2 Data

The original photon data are shown in Figure 2, which were also processed via the
steps shown in Figure 6 and the LDS method. The selected training samples accounted
for 3.62% of the total photons. To quantitatively evaluate the experimental results of the
ICESat-2 data, we selected signal photons by visual interpretation. Table 1 shows that the
accuracy assessment indicator values (R, P, and F) for the proposed method are 0.9977,
0.9886, and 0.9931, respectively, and the three error indices (e1, e2, and e3) are 0.23%, 3.13%,
and 1.01%, respectively, which are better than those of the classical filtering method. As
is shown in Figure 10, the final results are presented, which show that the result of the
LDS method has retained more noise photons than the proposed method. The reason is
consistent with that for the airborne experiment, and we can conclude that the proposed
method is also able to filter ICESat-2 data.

Table 1. Filter results of ICESat-2 data.

Accuracy Indicators The Proposed Method LDS

R 0.9977 0.9963
P 0.9886 0.9596
F 0.9931 0.9776

e1 (%) 0.23 0.37
e2 (%) 3.13 11.29
e3 (%) 1.01 3.33
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4. Discussion

Although localized statistics-based filtering methods [13–22] have been widely used
in forest areas, it is difficult to completely distinguish signal photons from noise photons.
These localized statistics-based filtering methods [13–22] all use one statistical parameter to
measure the density of the photon point cloud. Actually, the photon cloud can be divided
into three categories: signal photons, noise photons far away from signal photons, and
noise photons adjacent to signal photons. One statistical parameter can better distinguish
two categories of photons at most. Moreover, it is difficult to find an optimal threshold for
classifying the signal photons and noise photons adjacent to signal photons [19], because
noise photons adjacent to signal photons present similar distribution trends as the signal
photons. To better describe the distribution of photons, the FED and BED were used to
model the spatial relationship between two photons. The FLD, BLD, and NFLDD attribute
parameters were also defined to describe the density distribution of photon cloud data. A
machine learning method, the support vector machine (LiBSVM) method [26], was used to
combine the proposed statistical parameters.

The existing method only depends on one statistical parameter (such as LDS [14]) to
describe the distribution of photons, which has a low sensitivity to the different distribu-
tions between signal photons and noise photons. In order to explain the reason behind this
phenomenon intuitively, some signal photons and noise photons adjacent to signal photons
were selected for analysis. The local distance in the existing method [14] and the three
elliptical parameters in the proposed method were calculated for every selected photon.
The corresponding statistical results for the above four parameters are represented by the
box plots shown in Figure 11. The difference in the LDS between the noise photons and
the signal photons is small (see Figure 11a), which explains the difficulty in distinguishing
the signal photons and noise photons. Similarly, the FLD also shows a poor ability to
separate noise photons from signal photons (see Figure 11b). However, the box plots (see
Figure 11c,d) show that the BLD and NFLDD values corresponding to the noise and signal
photons are significantly different. These attribute parameters both have a better ability to
distinguish noise and signal photons. Since the photons can be classified into noise photons
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far away from signal photons, noise photons adjacent to signal photons, and signal photons,
their distribution is difficult to describe by only one parameter. The proposed FLD, BLD,
and NFLDD attribute parameters provide us with the possibility to better understand the
distribution of the photons.

Forests 2022, 13, x FOR PEER REVIEW 13 of 15 
 

 

because noise photons adjacent to signal photons present similar distribution trends as 
the signal photons. To better describe the distribution of photons, the FED and BED were 
used to model the spatial relationship between two photons. The FLD, BLD, and NFLDD 
attribute parameters were also defined to describe the density distribution of photon 
cloud data. A machine learning method, the support vector machine (LiBSVM) method 
[26], was used to combine the proposed statistical parameters. 

The existing method only depends on one statistical parameter (such as LDS [14]) to 
describe the distribution of photons, which has a low sensitivity to the different distribu-
tions between signal photons and noise photons. In order to explain the reason behind 
this phenomenon intuitively, some signal photons and noise photons adjacent to signal 
photons were selected for analysis. The local distance in the existing method [14] and the 
three elliptical parameters in the proposed method were calculated for every selected pho-
ton. The corresponding statistical results for the above four parameters are represented 
by the box plots shown in Figure 11. The difference in the LDS between the noise photons 
and the signal photons is small (see Figure 11a), which explains the difficulty in distin-
guishing the signal photons and noise photons. Similarly, the FLD also shows a poor abil-
ity to separate noise photons from signal photons (see Figure 11b). However, the box plots 
(see Figure 11c,d) show that the BLD and NFLDD values corresponding to the noise and 
signal photons are significantly different. These attribute parameters both have a better 
ability to distinguish noise and signal photons. Since the photons can be classified into 
noise photons far away from signal photons, noise photons adjacent to signal photons, 
and signal photons, their distribution is difficult to describe by only one parameter. The 
proposed FLD, BLD, and NFLDD attribute parameters provide us with the possibility to 
better understand the distribution of the photons. 

 
Figure 11. Local distance statistics results for (a) LDS, (b) FLD, (c) BLD, and (d) NFLDD. 

5. Conclusions 
Forest vertical structure parameters play an important role in carbon cycle investiga-

tions. The new generation of the spaceborne lidar (ICESat-2) was equipped with the AT-
LAS system, and has been demonstrated to be a potential tool for obtaining forest vertical 

Figure 11. Local distance statistics results for (a) LDS, (b) FLD, (c) BLD, and (d) NFLDD.

5. Conclusions

Forest vertical structure parameters play an important role in carbon cycle investiga-
tions. The new generation of the spaceborne lidar (ICESat-2) was equipped with the ATLAS
system, and has been demonstrated to be a potential tool for obtaining forest vertical
structure parameters on a large scale. However, there are a lot of background noise photons
in the photon cloud. Therefore, photon cloud filtering is a crucial step for obtaining forest
vertical structure parameters.

In this paper, different from previous studies, the three statistical parameters are used
to jointly measure the spatial density of the three types of photon cloud by a machine
learning approach. The relevant assessment revealed that the three statistical parameters
combined with the machine learning approach can accurately filter noise photons and
retain signal photons accurately; most noise photons adjacent to signal photons were
distinguished correctly. The performance of the proposed method showed that the three
statistical parameters are easier to reflect the spatial density differences between the three
types of photon cloud than the single statistical parameter. In addition, by combining the
FLD, BLD, and NFLDD attribute parameters with the machine learning tool, it is possible
to distinguish the noise and signal photons without depending on any statistical model or
threshold. These findings demonstrated that the proposed filtering method would be useful
for forest vertical structure parameter inversion of ICESat-2 vegetation and surface research.
However, the performance of the machine learning-based filtering process depends on
the number of training samples and their spatial distribution. In our future work, we will
pay more attention to the effect of the training samples on the filtering performance and
focus on the smallest possible number of training samples and their optimal distribution.
In addition, the proposed method will also be tested using a photon cloud dataset acquired
over other surfaces.
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