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Abstract: Vegetation type is known to affect soil organic carbon (SOC) storage. However, the
magnitudes and distributions of SOC sequestration and driving factors for different vegetation
types are still largely unknown. Thus, we studied the changes in SOC fractions along soil profiles
for different vegetation restoration types and their relationships with soil properties. We selected
five vegetation types and collected soil samples from depth intervals of 0–10, 10–30, 30–60, and
60–90 cm. Five soil carbon fractions and the soil properties were tested to evaluate the soil carbon
fraction distributions and influencing factors. Our results demonstrated that the concentrations of
total organic carbon (TOC) and five carbon fractions were strongly affected by vegetation types and
soil depths. The concentrations of all five soil carbon fractions in 0–10 cm depth were higher than
those in the other three soil depths and generally increased with vegetation complexity. The Pearson
correlations and redundancy analysis showed that the fractions of soil glomalin-related soil protein
(GRSP) and Fe oxides as well as the soil bulk densities, were the most significant related to soil TOC
levels and carbon fractions, which suggests that soil biochemical and physicochemical processes
are among the most important mechanisms that contribute to SOC persistence. Considering the
sensitive indices of the soil carbon variables and PCA results, soil permanganate oxidizable carbon
(POXC) was considered to be the most sensitive index for differentiating the effects of vegetation
types. These results provide important information regarding the distributions and driving factors of
the carbon fractions that result from different vegetation restoration types and will help to improve
our understanding of soil carbon sequestration during vegetation restoration processes.

Keywords: soil carbon fractions; vegetation restoration; glomalin-related soil protein; iron oxides;
permanganate oxidizable carbon

1. Introduction

Soil stores the largest terrestrial organic carbon pool on Earth and it is a major source
and sink of atmospheric CO2 in mitigating the greenhouse effect [1]. Soil organic car-
bon (SOC) is a key indicator for evaluating soil quality because of its physicochemical
properties, biological processes, and ecological functions [2–4]. Ecological restoration is
widely considered as a way to improve SOC sequestration and ecosystem services for
different land-cover types [5]. Through the differences in carbon inputs from biota and
losses through decomposition, different types of vegetation restoration have the potential
to influence soil carbon storage and carbon dynamics, as reported in previous research [6,7].
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Therefore, it is necessary to understand the influences of vegetation restoration on soil C
distributions and stocks to evaluate the soil carbon sequestration capacities and maintain
ecological sustainability.

Generally, the total organic carbon (TOC) levels change slowly and are insensitive to
vegetation restoration over short time periods. In contrast to TOC, the soil carbon fractions,
especially the labile organic C fractions, can often be used to assess the impacts of land
cover or management [8,9]. The soil carbon fractions mainly include dissolved organic
carbon (DOC), particulate organic carbon (POC), permanganate oxidizable carbon (POXC),
light fraction organic carbon (LFOC), and heavy fraction organic carbon (HFOC). Due to
the easy decomposition and short turnover times, the labile C fractions (e.g., DOC, POXC,
POC, and LFOC) are widely adopted as indicators of soil ecosystems to reveal how the SOC
responds to land-cover change [10–12]. In addition, more comprehensive indices based on
soil carbon lability, such as the stability index (SI), carbon pool management index (CMI),
and soil carbon sequestration capacity (SCS), have been widely used in many previous
studies to assess soil quality and soil carbon stability [6,13,14]. However, there is a need
for a comprehensive understanding of the dynamic changes in the SOC fractions under
different vegetation restoration types. In addition, the driving factors that control the SOC
pool and its fractions are still largely unknown.

The soil physicochemical properties that are induced by different vegetation types are
significant factors that influence the distributions of TOC and its fractions. Some studies
have reported that soil properties (such as pH, bulk density, total nitrogen) are closely
associated with the SOC and its fractions [15–17]. Moreover, soil microbial communities
play important roles in soil structures and carbon cycling. Glomalin-related soil protein
(GRSP), produced by arbuscular mycorrhizal fungi (AMF), acts as cementing material to
form soil structures and contributes over 20 times more than the microbial biomass to
SOC [18]. GRSP have been demonstrated that it might be sensitive indicator of soil C
stock and ability [19,20]. In addition, soil extracellular polysaccharide (EPS) is another
important organic cementing material that helps to promote soil carbon stability through the
production of soil aggregates [21]; for example, bacteria exude extracellular polysaccharides
that promote the stability of soil microaggregates (<250 µm) [22], and saprotrophic fungi
can also release extracellular polysaccharides that facilitate formation of soil water-stable
aggregates [23]. However, few data are available on the correlations between biochemical
properties, for example, GRSP and EPS, and soil carbon fraction pools, as well as on the
different contributions of the soil biochemical and physicochemical properties in soil carbon
distributions among different vegetation restoration types.

As an area with high biodiversity, the Mid-Yunnan area in China continues to be
influenced by human activity and disturbance. Deforestation of original natural forest
or conversion from forest to arable land in the 1960s led to profound changes in soil
quality and service. Several ecological restoration measures, including natural recovery
and plantations of fast-growing Pinus species, supply the conditions for elucidating the
effects of ecological restoration measures on soil C distributions [24,25]. This study therefore
evaluated the soil carbon fractions and soil physicochemical and biochemical properties
for different vegetation restoration measures located in a subtropical mountainous area
of China. An adjacent undisturbed climax natural forest community was selected in this
study as a reference community. The aims of this study were to (1) quantify the changes
in the SOC fraction pools and soil properties among the five vegetation types; (2) identify
the main soil physicochemical or biochemical factors that influence the distributions of
soil carbon fractions; and (3) determine the sensitive indicators of carbon to different
vegetation restoration.

2. Materials and Methods
2.1. Study Area

The study area is located at the Samachang ecological observation station (25◦24′09′′ N;
101◦28′18′′ E) in Muding County mid-Yunnan, about 200 km away from Kunming City in
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the Yunnan Province of China (Figure 1). The area has a subtropical monsoon climate with
an average annual rainfall of 846 mm and a mean annual temperature of 16 ◦C. The soil
in this area is a Cambisol. Most of original natural vegetation was cleared for fuelwood
and pastures before the 1960s. Since the 1980s, different vegetation types, mainly including
shrub-grass land (SG), coniferous Pinus forest (PF), coniferous and broad-leaved mixed
forest (MF), and natural secondary forest (NSF), have been used to recover degraded land.
Meanwhile, the undisturbed and mature natural forest (NF) in the Huafoshan Nature
Reserve about 6 km apart from the study area was selected as the reference area. The study
area and reference area belonged to the same climatic and soil zones. Detailed informa-
tion about the restoration history and community characteristics of these four ecological
measures is provided by Fu et al. [24,25] (different plant community abbreviations) and in
Appendix A (Table A1).
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2.2. Soil Sampling

In 2019, 15 comparative study plots were established in three representative sites
with SG, PF, MF, and NSF to assess soil C distribution. At least 3 km distance between
sites was selected to reduce spatial autocorrelation. Four representative 20 × 20 m plot
for every vegetation restoration type were established within each site. In addition, three
representative plots of NF in the nearby Huafoshan Nature Reserve were selected as
references (Figure 1). Eight to ten soil cores from four soil depth levels (e.g., 0–10, 10–30,
30–60, and 60–90 cm) were obtained at random in each plot. These samples were sieved
(2-mm mesh) and air-dried to analyze soil properties and soil C fractions. Additionally, soil
bulk density (BD) and soil water content (SWC) were measured gravimetrically with an
additional three undisturbed soil samples.

2.3. Laboratory Analysis

We measured the soil pH using a soil to water mixture (1:2.5, w:v) with a pH meter and
soil clay contents by the Bouyoucos hydrometer method. Soil total nitrogen (TN) was de-
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termined using the semimicro Kjeldahl method, and total phosphorus (TP) was examined
by phosphomolybdate blue methods [26]. The soil free Fe (Fed), poorly crystalline Fe (Feo),
and organically complexed Fe (Fep) were extracted using dithionite-citrate-bicarbonate
(DCB), ammonium oxalate, and sodium pyrophosphate at pH 10, respectively. The ex-
tracted Fe was measured by using atomic absorption spectroscopy [26].

The SOC concentrations were determined with a TOC analyzer. The DOC was ex-
tracted with a 1:5 ratio of soil to 0.5 M K2SO4 solution and shaken [27]. The solution
was determined with a TOC analyzer after filtration (0.45 µm membrane). The LFOC
(<1.7 g cm−3) and HFOC (>1.7 g cm−3) fractions were determined according to the density
fractionation method described by Gregorich and Ellert [26]. The POXC fraction was
determined by adding 0.333 M KMnO4 for oxidation. The suspension was then centrifuged,
diluted, and measured spectrophotometrically at 565 nm [28]. The POC fraction was sepa-
rated using the wet sieving approach. In brief, 20 g air-dried soil with 5 g L−1 (NaPO3)6
was dispersed for 20 h. The soil suspension was passed through a 53-µm sieve. The fraction
retained on the sieve was oven-dried and analyzed with a TOC analyzer.

The soil biochemical properties, including GRSP and EPS, were also determined. The
GRSP fractionation was determined using the method described by Singh et al. [29]. Briefly,
easily extractable GRSP (EE-GRSP) was extracted from 1.0 g of soil incubated with 8 mL
of 20 mM citrate (pH 7.0) by 30 min autoclaving. The T-GRSP was obtained from 1.0 g
of soil with 8 mL of 50 mM citric acid (pH 8.0) by six successive autoclaving cycles. The
GRSP contents in the extracts were assayed using a Bradford assay [29]. The difficultly
extractable GRSP (DE-GRSP) was the difference between T-GRSP and EE-GRSP. The EPS
levels were determined on the supernatant by the anthrone method [30].

2.4. Calculations of Soil Carbon Indices

The SOC stock was calculated as follows [6]:

SOC stock (kg m−2) = ∑n
i=1 BDi × SOCi ×Di (1)

where BDi is bulk density (g cm−3) at soil layer i, SOCi is the soil organic carbon content
(g kg−1) at soil layer i, and Di is the soil depth (cm).

The sensitivity index (SI) was defined as the reductions in soil carbon fractions after
different vegetation restorations and was calculated as follows [31]:

SI = (carbon variables of restoration vegetation − carbon variables of refer-
ence natural forest)/carbon fractions of reference natural forest

(2)

The carbon management index (CMI), carbon pool index (CPI), and soil carbon se-
questration capacity (SCS), which are the systematic, sensitive indicators used to assess
SOC changes, were also calculated as follows [31–33]:

CPI = SOC of restoration vegetation/SOC of natural forest (3)

CMI = CPI × LI × 100 (4)

SCS = CPI/C lability (5)

where LI (lability index) = C lability of restoration vegetation/C lability of natural forest,
C lability = POXC/Non-POXC, and non-POXC = TOC-POXC. Meanwhile, the SIs of these
three carbon indices were also calculated using Equation (2).

2.5. Statistical Analyses

Normality and homogeneity tests were applied to all variables. Two-way ANOVA
was used to compare the effects of vegetation restoration type and soil depth on the
concentrations of the basic soil properties and soil carbon variables. The significances of the
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differences in the tested parameters among the vegetation restoration types were compared
using LSD (Least Significant Difference) at the 0.05 level.

Pearson correlations and redundancy analysis (RDA) were applied to elucidate the
relationships among the soil carbon variables and soil characteristics among all soil samples
from different vegetation restoration types. To summarize the total variance of the data,
we performed a principal component analysis (PCA) that included all soil carbon fractions
and carbon indices for the combined vegetation types and soil depths. The above analyses
were conducted using SPSS 20 (SPSS, Chicago, USA) and CANOCO 5.0.

3. Results
3.1. Basic Soil Characteristics

Two-way ANOVA showed that the vegetation restoration type had a strong effect on
all basic soil properties except for the SWC, and soil depth had a significant effect only on
the BD and Fep (p < 0.05, Table A2). Throughout the soil profile (0–90 cm), the soil BD and
pH values decreased, and the concentrations of soil TN, Fep, Feo, and soil clay contents
increased with the vegetation complexity (Figure 2). The highest values of BD, TP, and pH
were found in soils under SG. The TN, Fep, and Feo concentrations were obviously higher
in soils under NF than those under the other four vegetation restoration types (Figure 2
and Table A2).
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Figure 2. Basic physicochemical properties of the soils (0–90 cm) under different vegetation restoration
types. Different letters indicate significant differences between vegetation types at the same soil
depths at the 0.05 level. NF, natural forest; SG, shrub-grass land; PF, coniferous Pinus forest; MF:
coniferous and broad-leaved mixed forest; and NSF, natural secondary forest. BD, bulk density;
SWC, soil water content; TN, soil total nitrogen; TP, soil total phosphorus; Fed, free Fe; Feo, poorly
crystalline; Fep, organically complexed Fe.

Vegetation types and soil depths had significant effects on the distributions of soil
GRSP and EPS (p < 0.05), except vegetation types had no effect on EPS (p > 0.05) (Table A2).
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The concentrations of EE-GRSP and EPS in the 0–10 cm soil layer increased with the
vegetation complexity (Figure 3).
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(EPS) concentrations for five vegetation types. EE-GRSP, easily extractable GRSP; DE-GRSP, dif-
ficultly extractable GRSP; T-GRSP, total extractable GRSP. NF, natural forest; SG, shrub-grass
land; PF, coniferous Pinus forest; MF: coniferous and broad-leaved mixed forest; NSF, natural
secondary forest.

3.2. Distributions of Soil Carbon Variables

The concentrations of TOC and those of all five carbon fractions were strongly affected
by the community types and soil depths (Table 1). The TOC, POXC, LFOC, HFOC, and
POC concentrations in the surface layer (0–10 cm) were higher than those in the other
three soil layers and generally increased with the vegetation complexity (Figure 4). The
DOC concentrations in the surface layer exhibited more significant difference than those
in the other soil layers and those of the other carbon indices among the five vegetation
types (Figure 4). The CPI and CMI values in the surface layer (0–10 cm) were lower than
other vegetation types. The CPI and SCS values exhibited increasing trends with soil depth
(Figure 4, Table A3).

The SOC stocks and carbon fractions in different soil layers or throughout the soil
profile under NF were higher than those under the other vegetation restoration types
(Figure 5 and Table A3). The SOC stocks did not display significant differences among SG,
YF, MF, and NSF, although the SOC stocks exhibited an increasing trend with vegetation
complexity (Figure 5).
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Table 1. Results of two-way ANOVA of the single and interactive effects of soil depths and vegetation
types on soil organic carbon, carbon fractions, and the sensitivity indices of the soil carbon indices.

Factors Community Type Soil Depth Community Type × Soil Depth

Soil organic carbon and carbon fraction (p value)
TOC <0.001 <0.001 0.688
DOC <0.001 <0.001 0.210
POXC <0.001 <0.001 0.867
LFOC <0.001 <0.001 0.644
HFOC <0.001 <0.001 0.860
POC <0.001 <0.001 0.174

Sensitivity index of soil carbon indices (p value)
TOC <0.001 0.271 0.992
DOC <0.001 0.175 0.845
POXC <0.001 0.663 0.741
LFOC <0.001 0.277 0.786
HFOC <0.001 0.199 0.969
POC <0.001 <0.001 0.294
CPI <0.001 0.248 0.979
CMI <0.001 0.565 0.463
SCS <0.05 0.079 0.979
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NF, natural forest; SG, shrub-grass land; PF, coniferous Pinus forest; MF: coniferous and broad-leaved
mixed forest; NSF, natural secondary forest.
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3.3. Multivariate Analysis between SOCs and Soil Properties

The Pearson correlations showed that the soil TOCs and all five carbon fractions were
significantly negatively correlated with the BD and pH, and positively related to EE-GRSP,
DE-GRSP, T-GRSP, EPS, TN, Fep, and Feo (Figure 6). The RDA results showed that the first
axis explained 62.55% of the variances in the carbon fractions. The soil GRSP, Fe oxides,
and BD were the most driving factors that were significantly related to the soil TOCs and
carbon fractions (Figure 7).
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3.4. Sensitivity of Soil Carbon Variables to Vegetation Restoration Types

The two-way ANOVA results showed that the community type had a significant effect
on the SI values for the soil carbon fractions and CPI, CMI, SCS. Soil depth had a significant
effect only on the SI value for soil POC (Table 1). The CMI and CPI values under NSF were
highest in all the five vegetation types. The average SI values for the soil carbon indices
along the soil profile (0–90 cm) indicated that the SI values for CMI were highest and were
followed by the CPI, SCS, and POC, while the DOC, POXC, LFOC, HFOC, and TOC were
less sensitive to changes in community types (Figure 8).
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0.05 level.

The principal component analysis (PCA) demonstrated that the first two component
explained 63.56% (PC1) and 16.75% (PC2) of the total variance, respectively (Figure 9). All
of the carbon fractions and carbon indices positively contributed to PC1. However, POXC,
POC, and HFOC contributed more than the other carbon fractions and carbon indices. The
SCS and CPI presented positive and significant associations with PC2.
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coniferous and broad-leaved mixed forest; NSF, natural secondary forest; 1–4 indicates soil 0–10,
10–30, 30–60, and 60–90 cm depths.

4. Discussion
4.1. Effects of Different Vegetation Types on the Soil Organic Carbon Variables

Our results showed that different vegetation restoration types affected the soil carbon
contents and exhibited an increasing pattern with increased vegetation complexity, which
was corroborated by previous studies [13]. Generally, the SOC stocks are determined by the
balance between plant litter/root inputs and outputs or decomposition. First, the inputs of
litter and roots in the relatively complex communities (e.g., MF, NSF, and NF) were higher
than those in the SG and YF communities [24,34], so less organic matter was returned to the
soil in the SG and YF communities. Second, as the early stages of community succession,
the rapid growth of plants in SG and YF communities greatly consumed soil nutrients
by roots. In contrast, the higher accumulated biomass levels in the relatively complex
communities increased the organic matter levels through litter and roots. Meanwhile, with
the improvements in soil structure and functions, the losses of soil carbon and nutrients due
to soil erosion and runoff were reduced [24]. Our study also revealed that the concentrations
of TOC and most carbon fractions decreased along the soil profile. This possibly occurred
because the TOC and its fractions were mainly affected by root residues and secretion at
deeper depths and less by litter, which led to carbon decrease along the soil profile for all
the different vegetation restoration types [35,36].

Significant positive correlations were found between the TOC and soil carbon fractions
(p < 0.001), which suggested that the conversion from SOC to carbon sequestration in
the forms of labile and non-labile carbon fractions can increase synchronously with the
vegetation complexity. DOC is a key component of soil carbon cycling and plays a vital
role in soil processes and functions [11]. The DOC contents in the surface layer exhibited
more significant differences, which indicated that DOC was more sensitive to vegetation
change than the other carbon fractions and soil depths. The POXC and LFOC fractions
have been used as measures of labile carbon under different land cover or vegetation
types [28,37]. For example, significant correlations have been reported in many studies.
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de Moraes Sá et al. [13] and Sheng et al. [32] found a positive relationship between SOC
and POXC and LFOC during ecological succession.

4.2. Influencing Factors of Soil Carbon Distributions

The present study showed that the GRSP fractions were the most influencing factors
that were significantly correlated with soil TOC and carbon fractions (Figure 6) and vali-
dated the contribution of biochemical properties to increase the carbon pools composed of
TOC and carbon fractions. The significant correlation between SOC and GRSP has been
reported in several previous studies [17,19,20,38]. By relating the GRSP contents to the
SOC contents, the proportions of T-GRSP/SOM were 41%, 40%, 39%, 32%, and 28% for
SG, YF, MF, NSF, and NF soils, respectively, which indicate that GRSP contributes highly
to the SOC in soils. In addition, high GRSP contents can be found in relatively simple
plant communities that are susceptible to changes in abiotic stress. Higher glomalin levels
under environmental stresses are produced by arbuscular mycorrhizal fungi [39,40]. On
the other hand, GRSP can protect SOC from decomposition by enhancing the formation of
soil aggregates and partially sealing the soil pore system to slow down the penetration of
water into the aggregates [19,41]. Overall, our results indicated that T-GRSP and its two
fractions might be the reliable indicators under vegetation restoration. Similar to GRSP,
EPS plays an important role in improving the production of soil aggregates and promoting
soil carbon stability [21]. In our study, we found that soil GRSP contributes more to SOC
than to EPS. Therefore, soil GRSP are generally considered to be a sensitive indicator of
long-term C storage [19,20,42].

In line with previous works that were studied in other tropical and subtropical
sites [19,43], our results also showed that Fe and BD have significant correlations with
TOC and carbon fractions (Figures 6 and 7). This result indicates an interdependency
between SOC, GRSP, and some soil physicochemical properties. The significantly negative
relationships between BD and SOC and GRSP indicated that SOC and GRSP increase with
decreasing soil structure. In addition, compared to the soil Fed concentrations, significant
correlations between the Fep and Feo concentrations and the carbon fractions were also
found in our study, which implies that different vegetation restoration types may change
the associations of SOC with Fe oxides and eventually influence the SOC contents. Iron
oxides in soil play an important role in soil C stability because they are involved in the
physical, chemical, and biological protection mechanisms of SOC [44–46]. Different forms
of Fe oxides have different roles in the process of SOC stability by improving the formation
of soil aggregates. Feo and Fep have extensive surface areas and strong binding capacities
to stabilize SOC [47]. Compared to Fed, Feo and Fep contributed more to SOC stability
because their effects on the formation of soil aggregates were significantly greater than that
of Fed [10].

4.3. Indices for Assessing the Vegetation Restoration Effect on the Soil Carbon Pool

The PCA results indicate that all soil carbon fractions and carbon indices had the
potential to be used as indicators to assess the vegetation restoration effects on the soil
carbon pool (Figure 9). The PCA showed that the first PC mainly distinguished the different
restoration vegetation types, and the second PC resulted in the differentiation among soil
depths. Considering the SI values and correlations between principal components and
carbon variables (Figures 8 and 9), it can be inferred that POXC, POC, and HFOC were
the most sensitive indices for differentiating vegetation types, whereas the SCS and CPI
were more sensitive for differentiating the effects of soil depth. The POC is more sensitive
to both rapid losses and gains in TOC as a result of management or land-use conversions,
and the LFOC and HFOC, which are separated by using densitometry techniques, are
also more sensitive to land cover changes and management practices [48,49]. The soil
POXC is more sensitive to the presence of lignin or lignin-like compounds and therefore
to the nature of the vegetation present [50], which may explain the highest sensitivity of
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POXC to vegetation type. Therefore, POXC is considered to be the most sensitive index for
differentiating the effects of vegetation types in our region.

5. Conclusions

The present study demonstrated that the SOC stocks exhibited an increasing trend
with vegetation complexity in this region. However, there were no significant differences
among SG, YF, MF, and NSF. Meanwhile, the TOC, POXC, LFOC, HFOC, and POC contents
in the surface layer were higher than those in the other three deeper soil layers. These
results suggested that the concentrations of TOC and all five carbon fractions were strongly
affected by the community types and soil depths. The positive correlations between the
SOC fractions and soil BD, Fe, and GRSP suggested that soil physicochemical and microbial
processes are among the most important mechanisms that contribute to SOC persistence.
Although all soil carbon indices have the potential to be used as indicators to assess
vegetation recovery, POXC could be considered as most sensitive indicator of soil carbon
changes that are associated with vegetation restoration.

Author Contributions: Conceptualization, X.W. and D.F.; methodology, G.H. and H.S.; validation,
All authors; formal analysis, X.W. and D.F.; investigation, data curation; resources, X.W. and D.F.;
data curation, X.W. and D.F.; writing—original draft preparation, X.W.; writing—review and editing,
C.D. and D.F.; visualization, all authors; supervision, C.D.; project administration, C.D.; funding
acquisition, C.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number U2002208 and 31860133, and China Yunnan Provincial R & D Programs, grant number
202101AS070033.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Description of disturbances and records of different plant communities.

Plant Community Disturbance History Restoration Process and Management

Shrub-Grass Land
(SG)

1950s: the aboveground parts of all big trees were felled in
the zonal forest; 1960s: all aboveground biomass of big
shrub plants was progressively harvested for fuel; 1970s:
most of the underground biomass of shrub plants was
harvested for fuel; 1980s and 1990s: degraded ecosystem
was used for grazing.

Intense disturbance; Restoration by
natural succession; Stands have been
closed for afforestation and felling
prohibited since 1999.

Coniferous Pinus
Forest (PF)

1950s: the aboveground parts of all big trees were felled in
the zonal forest; 1960s and 1970s: aboveground and
belowground parts of trees and shrub plants were all
harvested for fuel.

Human-assisted restoration plus natural
succession; Stands were seeded with P.
yunnanensis in 1980, and have been closed
ever since for afforestation, felling
is prohibited.

Coniferous And
Broad-Leaved Mixed

Forest (MF)

1950s: the aboveground parts of all big trees were felled in
the zonal forest; 1960s: aboveground parts of big shrub
plants were harvested for fuel; 1970s: belowground parts
of big shrub plants were harvested for fuel and
intermediate and small shrub plants were left.

Human-assisted restoration plus natural
succession; Stands were seeded with P.
yunnanensis in 1980, and have been closed
ever since for afforestation, felling
is prohibited.

Natural Secondary
Forest (NSF)

1950s: the aboveground parts of big trees were felled;
1960s and 1970s: all of the aboveground parts of big and
small trees were harvested at intervals but the
underground parts were left intact.

Weak disturbance; Restoration by natural
succession; Stands have been closed for
afforestation and felling prohibited
since 1980.

Mature Natural
Forest (NF) Original natural vegetation, No human disturbance In 1982, it was designated as a state-level

nature reserve.
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Table A2. Basic soil physicochemical properties and results of two-way ANOVA of single and
interactions effects of soil depth and vegetation type on soil properties.

Vegetation Soil Depth
BD

(g cm−3)
SWC

Clay
(%)

pH
TN

(mg kg−1)
TP

(mg kg−1)
Fep

(g kg−1)
Feo

(g kg−1)
Fed

(g kg−1)

NF 0–10 cm 1.13 ± 0.02 0.15 ± 0.01 34.37 ± 0.61 4.18 ± 0.10 0.43 ± 0.07 0.28 ± 0.03 0.49 ± 0.02 1.77 ± 0.30 7.16 ± 0.25
10–30 cm 1.19 ± 0.01 0.17 ± 0.01 32.65 ± 0.42 4.17 ± 0.03 0.36 ± 0.04 0.25 ± 0.02 0.42 ± 0.13 1.55 ± 0.54 5.95 ± 0.01
30–60 cm 1.22 ± 0.00 0.16 ± 0.01 33.08 ± 0.48 4.06 ± 0.04 0.24 ± 0.01 0.23 ± 0.02 0.37 ± 0.07 1.12 ± 0.16 6.34 ± 0.43
60–90 cm 1.29 ± 0.01 0.14 ± 0.01 32.05 ± 1.70 4.06 ± 0.01 0.25 ± 0.03 0.19 ± 0.00 0.27 ± 0.04 0.88 ± 0.27 6.62 ± 0.09

SG 0–10 cm 1.32 ± 0.02 0.18 ± 0.01 27.44 ± 0.60 4.67 ± 0.12 0.18 ± 0.07 0.39 ± 0.06 0.08 ± 0.00 0.54 ± 0.05 6.94 ± 0.95
10–30 cm 1.39 ± 0.01 0.19 ± 0.00 27.40 ± 1.07 4.68 ± 0.08 0.15 ± 0.06 0.47 ± 0.07 0.09 ± 0.02 0.72 ± 0.11 6.96 ± 0.82
30–60 cm 1.44 ± 0.01 0.18 ± 0.01 27.09 ± 2.31 4.71 ± 0.13 0.17 ± 0.09 0.47 ± 0.07 0.10 ± 0.01 0.72 ± 0.09 7.00 ± 0.30
60–90 cm 1.55 ± 0.01 0.19 ± 0.01 28.06 ± 4.93 4.63 ± 0.02 0.17 ± 0.10 0.47 ± 0.06 0.13 ± 0.04 0.60 ± 0.04 7.16 ± 0.78

YF 0–10 cm 1.34 ± 0.02 0.18 ± 0.00 31.42 ± 1.70 4.58 ± 0.07 0.18 ± 0.08 0.19 ± 0.05 0.17 ± 0.01 0.87 ± 0.12 8.43 ± 0.83
10–30 cm 1.41 ± 0.01 0.17 ± 0.01 31.68 ± 1.88 4.53 ± 0.11 0.08 ± 0.02 0.19 ± 0.06 0.10 ± 0.02 0.75 ± 0.14 9.49 ± 0.75
30–60 cm 1.48 ± 0.01 0.24 ± 0.07 33.31 ± 2.64 4.50 ± 0.11 0.13 ± 0.09 0.19 ± 0.05 0.11 ± 0.02 0.73 ± 0.21 9.73 ± 0.82
60–90 cm 1.53 ± 0.04 0.19 ± 0.01 28.03 ± 6.18 4.44 ± 0.06 0.06 ± 0.02 0.20 ± 0.08 0.16 ± 0.04 0.78 ± 0.31 9.23 ± 0.78

MF 0–10 cm 1.22 ± 0.03 0.19 ± 0.02 26.43 ± 1.57 4.50 ± 0.17 0.14 ± 0.05 0.30 ± 0.03 0.10 ± 0.03 0.70 ± 0.09 6.42 ± 1.14
10–30 cm 1.26 ± 0.03 0.17 ± 0.01 27.85 ± 1.38 4.51 ± 0.19 0.17 ± 0.07 0.30 ± 0.04 0.10 ± 0.02 0.73 ± 0.10 6.76 ± 0.33
30–60 cm 1.28 ± 0.02 0.18 ± 0.00 30.57 ± 0.87 4.56 ± 0.18 0.16 ± 0.05 0.31 ± 0.02 0.06 ± 0.01 0.73 ± 0.12 7.77 ± 0.37
60–90 cm 1.33 ± 0.07 0.17 ± 0.01 31.43 ± 1.86 4.45 ± 0.11 0.16 ± 0.10 0.28 ± 0.03 0.05 ± 0.02 0.77 ± 0.12 8.21 ± 0.49

NSF 0–10 cm 1.14 ± 0.02 0.23 ± 0.02 28.78 ± 1.71 4.38 ± 0.12 0.22 ± 0.10 0.29 ± 0.04 0.20 ± 0.05 0.91 ± 0.13 8.32 ± 1.15
10–30 cm 1.20 ± 0.03 0.16 ± 0.01 31.65 ± 1.22 4.32 ± 0.03 0.19 ± 0.06 0.28 ± 0.03 0.20 ± 0.02 0.74 ± 0.04 8.39 ± 0.87
30–60 cm 1.27 ± 0.03 0.18 ± 0.00 34.02 ± 1.33 4.30 ± 0.04 0.19 ± 0.05 0.28 ± 0.04 0.17 ± 0.00 1.06 ± 0.14 8.44 ± 0.73
60–90 cm 1.32 ± 0.03 0.18 ± 0.01 36.80 ± 3.61 4.29 ± 0.06 0.16 ± 0.07 0.27 ± 0.04 0.14 ± 0.03 1.01 ± 0.16 9.18 ± 0.60

Two-way ANOVA
Community 65.25 *** 1.63 3.39 * 12.90 *** 3.91 * 15.50 *** 43.86 *** 8.57 *** 8.58 ***

Depth 36.94 *** 0.77 0.59 0.61 0.81 0.10 2.88 * 0.68 0.75
Community × Depth 0.69 1.02 0.73 0.10 0.33 0.28 1.58 1.30 0.41

* and *** indicate significant difference at 0.05 and 0.001 level, respectively.

Table A3. Soil CPI, CMI, and SCS in different soil depths in five vegetation types.

Depth Vegetation CPI CMI SCS

0–10 cm SG 0.49 ± 0.10b 59.45 ± 9.99b 0.41 ± 0.11b
YF 0.64 ± 0.09b 95.54 ± 2.07a 0.44 ± 0.12b
MF 0.66 ± 0.15b 83.03 ± 17.04a 0.55 ± 0.06b
NSF 0.66 ± 0.06b 84.14 ± 6.63a 0.52 ± 0.06b
NF 1.00a 100a 1.00a

10–30 cm SG 0.57 ± 0.14b 64.89 ± 13.53a 0.51 ± 0.14b
YF 0.60 ± 0.04b 76.25 ± 15.01a 0.53 ± 0.16b
MF 0.54 ± 0.10b 60.65 ± 13.98a 0.49 ± 0.07b
NSF 0.61 ± 0.07b 72.24 ± 1.62a 0.53 ± 0.14b
NF 1.00a 100a 1.00a

30–60 cm SG 0.64 ± 0.10b 56.68 ± 10.65b 0.82 ± 0.32a
YF 0.54 ± 0.14b 72.58 ± 13.54ab 0.46 ± 0.19a
MF 0.56 ± 0.10b 62.24 ± 9.85b 0.51 ± 0.11a
NSF 0.70 ± 0.10ab 105.00 ± 12.45a 0.52 ± 0.19a
NF 1.00a 100a 1.00a

60–90 cm SG 0.83 ± 0.24a 78.97 ± 7.53ab 0.96 ± 0.45a
YF 0.70 ± 0.26a 66.89 ± 19.09b 0.75 ± 0.47a
MF 0.66 ± 0.11a 51.69 ± 11.40b 0.86 ± 0.14a
NSF 0.86 ± 0.20a 84.23 ± 4.99ab 0.99 ± 0.43a
NF 1.00a 100a 1.00a

Two-way ANOVA
Community 7.07 *** 6.94 *** 2.79 *

Depth 1.43 0.69 2.44
Community × Depth 0.33 1.00 0.33

CPI, carbon pool index; CMI, carbon management index; SCS, soil carbon sequestration capacity; SG, shrub-grass
land; PF, coniferous Pinus forest; MF: coniferous and broad-leaved mixed forest; NSF, natural secondary forest.
The different letters for each carbon index indicate significant differences among vegetation types at the 0.05 level.
* and *** indicate significant difference at 0.05 and 0.001 level, respectively.
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