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Abstract: Accurate knowledge of individual tree ages is critical for forestry and ecological research.
However, previous methods suffer from flaws such as tree damage, low efficiency, or ignoring
autocorrelation among residuals. In this paper, an approach for estimating the ages of individual trees
is proposed based on the diameter series of Cinnamomum camphora (Cinnamomum camphora (L.) Presl),
Schima superba (Schima superba Gardn. et Champ.), and Liquidambar formosana (Liquidambar formosana
Hance). Diameter series were obtained by stem analysis. Panel data contains more information,
more variability, and more efficiency than pure time series data or cross-sectional data, which is why
diameter series at stump and breast heights were chosen to form the panel data. After choosing a
base growth equation, a constraint was added to the equation to improve stability. The difference
method was used to reduce autocorrelation and the parameter classification method was used to
improve model suitability. Finally, the diameter increment equation of parameter a-classification was
developed. The mean errors of estimated ages based on the panel data at breast height for C. camphora,
S. superba, and L. formosana were 0.47, 2.46, and −0.56 years and the root mean square errors were
2.04, 3.15 and 2.47 years, respectively. For C. camphora and L. formosana, the estimated accuracy based
on the panel data was higher at breast height than at stump height. This approach to estimating
individual tree ages is highly accurate and reliable, and provides a feasible way to obtain tree ages by
field measurement.

Keywords: individual tree age; panel data; dummy variable; Richards equation; annual ring

1. Introduction

Knowledge of individual tree ages is critical for establishing individual tree growth
models, implementing sustainable forest management measures, and controlling alien tree
species [1–6]. Individual tree ages form the basis of stand age [7,8], which is a common
factor used for formulating forest management plans, determining forest management
cycles, and evaluating forest site quality [9–12]. Age-related tree growth and yield at the
stand level are fundamental to forest management planning from both an economic and
sustainability perspective [13–16]. To protect forest diversity and improve productivity, it
is important to have the ability to readily and accurately estimate individual tree ages.

Many foresters have studied how to estimate tree age. Stokes and Smiley [17] sug-
gested that tree age can be estimated based on the correspondence between each annual
ring and the year in which the annual ring had formed. Based on this assumption, the
tree-ring observation methods including removal of basal stem discs and increment cores
have become mainstream methods for estimating tree age [18–21]. While the removal of
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basal stem discs provides a complete growth series, obtaining, manipulating and surfacing
stem discs is expensive and very time consuming. Compared with using basal stem discs
for tree age estimation, using increment cores is more convenient, but it is possible to
sample anomalous rings or miss rings because of incomplete tree ring information [22].

Studies that used the tree-ring observation method are rare. This is because scars
emerging from the collection of basal stem discs and increment cores can both damage
tree growth [23]. With the development of technology and theory, several new approaches
for obtaining individual tree age have emerged. In general, these can be divided into two
approaches: (1) analyzing instrument measurement records to derive the age and (2) using
growth models to estimate individual tree age.

The key to estimating tree age using instruments lies in the connection between tree
age and the instrument measurement records. Drilling resistance techniques (such as
Resistograph) were used for tree age estimation [24,25]. Analysis algorithms were used
to record the number of peaks and valleys of drilling resistance data for estimating tree
age [23,26]. This approach must be tested in many tree species because wood density varies
between species. X-ray technology has been used in forestry, and it has been proven feasible
to use an X-ray microprobe synchrotron for estimating tree age and growth history [27–29].
In addition, 14C mensuration (which has been applied to archaeology) is also used to obtain
tree age [30]. Factors impeding the spread of X-ray technology and 14C mensuration are
their relatively high cost and operating scenarios.

The key to estimating tree age using growth models is the association between tree age
and tree measurement factors. Baker [31] described an age estimation method that used
two variables (the diameter at breast height (DBH) and crown class) and compared it with
the periodic annual increment (PAI) method. However, this method is less appropriate
for two classes of trees: large-diameter trees and trees enduring long periods of growth
suppression, because this method assumes that diameter growth is constant throughout
ontogeny. Kalliovirta and Tokola [32] used tree height and maximum crown diameter for
estimating tree age and achieved good accuracy, however, data acquisition is difficult and
errors accumulate easily. Silva et al. [3] used generalized linear models for estimating tree
age using factors such as DBH, tree height, and basal area, but the errors were relatively
large. Because of the influence of the growth environment, tree ages differ within the same
woodland with the same diameter grade [33].

Autocorrelation among residuals is common in repeated measurements data in forest
growth research [34]. In previous research, autocorrelation was not processed well. For
example, Wang et al. [35] did not investigate autocorrelation in re-measurement heights in
dominant height modeling. Crecente-Campo et al. [1] developed individual-tree basal area
and height increment models but ignored autocorrelation. Sharma et al. [36] developed
an individual tree diameter growth model but assumed autocorrelation to be insignificant.
However, neglect of autocorrelation in modeling may incur severe consequences in statisti-
cal inference such as inappropriate assessment of the estimation error [37,38]. Therefore,
this study used the difference method to address autocorrelation issues and make the age
estimation more convictive.

Many age estimation methods suffer from one of the following two flaws [31]. The
first flaw is associated with ecology: estimated lifetime growth trajectories imply that
tree growth is deterministic (i.e., a tree of a given size must be a certain age). The sec-
ond flaw is associated with the method: model predictions are often not tested against
independently derived age data to evaluate their performance [31,39]. This paper aims
to propose an age estimation approach that overcomes these two problems and has high
precision. The proposed approach provides several possible ages for a tree of a given diam-
eter series and evaluates the accuracy of their age estimates independently using age data
obtained from stem analysis. This approach was applied to three subtropical tree species
(i.e., Cinnamomum camphora (Cinnamomum camphora (L.) Presl), Schima superba (Schima su-
perba Gardn. et Champ.), and Liquidambar formosana (Liquidambar formosana Hance)) from
Guangdong, China.
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2. Materials and Methods
2.1. Study Area

This study was conducted in Guangdong Province (109◦45′–117◦20′ E, 20◦09′–25◦31′

N), which covers an area of 179,700 km2. The terrain of this area is high in the north
and low in the south, dominated by low mountains and hills. The area belongs to the
East Asian monsoon region which is rich in sun exposure, heat, and water resources.
The main vegetation types are mid-subtropical evergreen broad-leaved forests, southern
subtropical evergreen broad-leaved forests, and tropical monsoon forests. C. camphora,
S. superba, and L. formosana are the main native tree species and the main tree species
used for carbon sink afforestation, which together account for more than 50% of the total
carbon sink afforestation efforts in Guangdong [40]. Samples were distributed evenly across
Guangdong according to the tree species ratio and diameter grade ratio that originated
from the Chinese National Forest Inventory in 2012, as shown in Figure 1.
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2.2. Diameter Data

Data from 120 tree samples were collected composed of C. camphora, S. superba, and
L. formosana. Tree samples were gotten by typical sampling to collect information on
different growth conditions. Each diameter grade had more than 5 samples with different
growth conditions (tree height). A diameter series obtained from stem analysis formed the
base data for modeling. The DBHs of sample trees were measured before felling. After
felling, 120 sample trees were selected for stem analysis. First, discs were taken at positions
of the stump (0.3 m) and breast height (1.3 m). Then, a disc was taken every 2 m starting
from a distance above 1.3 m. Finally, discs were taken at 1-m intervals when the end of the
tree was more than 1 m but less than 2 m. The diameters of the annual ring at stump (0.3 m,
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No.0 disc) and breast height (1.3 m, No.1 disc) were averages, measured from east to west
and north to south through the LINTAB annual ring analysis system [23], which composed
diameter series of individual trees. In the field measurement, trees with diameters < 5 cm
were not chosen. To simulate field measurement, data with diameter < 5 cm were excluded
from the diameter series. As such, d0 represents the minimum diameter (as initial diameter)
and is > 5 cm. The initial age is the time at which the diameter grows from 0 to d0. Time
intervals are corresponding tree age intervals between the minimum diameter and other
diameters. Finally, the diameter series at stump and breast height were obtained. Table 1
lists the summary statistics of sampled tree age and diameter inside bark (DIB) per species
at different heights.

Table 1. Summary statistics of individual tree age and diameter inside bark (DIB) for sample trees.

Tree Species Sample
Size

Tree Age/Year Diameter Inside Bark/cm

Mean Std Min Max Mean Std Min Max

Stump height (0.3 m)
Cinnamomum camphora 40 27.80 9.77 11 58 23.71 9.79 11.49 45.95

Schima superba 40 25.13 8.29 13 45 22.97 9.40 8.17 49.75
Liquidambar formosana 40 27.05 13.04 11 82 23.69 8.99 10.59 42.10
Breast height (1.3 m)

Cinnamomum camphora 40 25.55 9.06 9 51 20.71 8.00 9.94 36.50
Schima superba 40 23.38 8.21 11 45 20.67 8.61 7.18 44.94

Liquidambar formosana 40 24.48 13.03 8 81 21.29 8.02 10.06 38.62

Note: Std. values are error standard deviations.

Individual tree diameter series do not contain information about intra-specific variabil-
ity. Considering dynamic associations among the same species, panel data (a data structure
commonly used in econometrics) was used. Panel data is multi-dimensional data contain-
ing observations about different cross sections across time. Each value in the panel data
is denoted as yit, where i represents the ith individual and t represents the tth observation
period [41]. If the individuals in the sample were identical in each period, the sample is
called a “balanced panel”, otherwise it is called an “unbalanced panel” [42]. Modeling
panel data can not only control the time-invariant and unobservable heterogeneous factors,
but also the time-varying and unobservable homogeneous factors, which makes parameter
estimation more reliable [41]. Compared with cross-sectional data or time series, panel data
is more conducive for studying dynamic changes within data sets [43,44].

In this paper, the diameter data of an individual tree presents a typical time series.
Panel data consists of individual tree diameter series of the same tree species. Panel data is
unbalanced because different individual trees have different series lengths. Due to a large
number of rows in the panel data, some data are not shown in Table 2.

Table 2. Unbalanced panel data of diameters.

Tree Numbers d(t + 1) d(t) d0 ∆d Time Intervals

102 5.80 5.46 5.46 0.35 0
102 6.82 5.80 5.46 1.01 1

. . .
102 19.66 18.84 5.46 0.81 11
103 6.81 5.60 5.60 1.21 0
103 8.48 6.81 5.60 1.67 1

. . .
103 27.75 26.68 5.60 1.07 12

. . .
177 7.01 5.49 5.49 1.52 0
177 7.70 7.01 5.49 0.70 1

. . .
177 36.50 35.04 5.49 1.46 25

Note: ∆d means diameter annual increment, and d(t) and d(t + 1) mean the diameters of period t and t + 1,
respectively. This table lists only part of the panel data. The symbol ‘ . . . ’ means that some data is omitted.
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2.3. Methods
2.3.1. Base Growth Equations

Lundqvist–Korf, Richards, Monomolecular, and Logistic equations are widely used in
tree growth modeling [45–47]. These four equations were selected as the base equation for
estimating tree age. The Richards equation was used as an example and was calculated
according to Equation (1):

dt = a · (1− e−b·t)
c

(1)

where dt is the diameter obtained by measuring the annual ring width, t is the age i.e.,
the number of annual rings, and a, b, c are model parameters. Parameter a is the limit
value parameter of the growth of the tree diameter. Parameter b is related to the tree
growth rate in Richards or Monomolecular equations and reflects the intrinsic growth rate
in the Logistic equation. Moreover, parameter b is related to the intrinsic growth rate and
attenuation power exponent in the Korf equation. Parameter c is a shape parameter, which
is related to the power exponent of the assimilation in the Richards equation and related to
the attenuation factor in plant growth in the Korf equation [48,49].

2.3.2. Constraint Growth Equations

Exploratory research showed that fitting effects using base equations were unstable.
Therefore, a constraint was used that ensured that the growth curve passed through the
point (0, d0), which made models more stable.

Bailey and Clutter [50] derived the base-age invariant model using an algebraic differ-
ence approach which allowed one parameter to be subject-specific. This model produced
anamorphic site curves of a New Zealand pine plantation. On this basis, Cieszewski and
Bailey [51] proposed a generalized algebraic difference approach that considered more than
one parameter as subject-specific parameters. This model produced polymorphic curves
with multiple asymptotes. The present research adopted an algebraic approach inspired by
this generalized algebraic difference approach. The calculation details are summarized in
the following:

Replacing the variable t in the base model with unknown initial age plus time interval,
the new growth function was obtained as shown in Equation (2):

d = a · [1− e−b·(t′+age0)]
c

(2)

where t′ is the time interval and age0 is the initial age. The meanings of other parameters
are the same as those used in Equation (1). In fact, Equation (2) is another special solution
to the exponential growth equation for t′ = 0 and d = d0 [45]. age0 from Equation (2) was
assumed as a specific parameter and solved for age0:

age0 =
− ln(1− ( d

a )
1
c )

b
− t′ (3)

By substituting initial values (0, d0) into t′ and d, the algebraic solution of age0 was
obtained. Substituting this assumption into Equation (2), the constraint growth equation
based on the Richards equation was obtained, as shown in Equations (4) and (5):

d = a · [1− e−b·(t′+age0)]
c

(4)

where

age0 =
− ln(1− ( d0

a )
1
c )

b
(5)

After setting age0 as a specific parameter, the other three base growth equations could
also be derived with constraints similarly (Table 3).
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Table 3. The difference restriction forms of different base equations.

Author or Designation Base Equation Constraint Equation Difference Constraint Equation Constraint

Lundqvist–Korf dt = a · e−b·t−c
dt = a · e−b·(t′+age0)

−c
∆dt′ = a · [e−b·(t′+1+age0)

−c
− e−b·(t′+age0)

−c
] age0 = ( b

ln(a)−ln(d0)
)

1
c

Richards dt = a · (1− e−b·t)
c

d = a · [1− e−b·(t′+age0)]
c

∆dt′ = a · {[1− e−b·(t′+1+age0)]
c − [1− e−b·(t′+age0)]

c} age0 =
− ln(1−( d0

a )
1
c
)

b
Monomolecular dt = a · (1− e−b·t) dt = a · (1− e−b·(t′+age0)) ∆dt′ = a · {[1− e−b·(t′+1+age0)]− [1− e−b·(t′+age0)]} age0 =

− ln(1− d0
a )

b
Logistic dt =

a
1+m×e−b·t dt =

a
1+m×e−b·(t′+age0)

∆dt′ = a · [ 1
1+m×e−b·(t′+1+age0)

− 1
1+m×e−b·(t′+age0)

] age0 =
ln(b)−ln( a

d0
−1)

c
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2.3.3. First-Order Difference Method

The first-order difference method is always suitable for the case where the original
model has a high degree of first-order autocorrelation [52]. Using the first-order difference
method, the difference constraint growth equation was developed as shown in the following:

∆dt′ = a · [1− e−b·(t′+1+age0)]
c
− a · [1− e−b·(t′+age0)]

c
(6)

where

∆dt′ = dt′+1 − dt′ , age0 =
− ln(1− ( d0

a )
1
c )

b
(7)

In Equation (6), t′ is the time interval, age0 is the initial age, ∆dt′ is the diameter
increment in the time interval t′, and other parameters have the same meaning as above.
The difference constraint equation is the increment equation. Similarly, the difference forms
with constraints of other base equations are shown in Table 3.

2.3.4. Diameter Increment Equation with Parameter A-Classification

A diameter increment equation with parameter a-classification was proposed to im-
prove suitability. In this process, the fitting data was the panel data composed of the
diameter series of the same species and heights. Parameter a was allowed to vary and pa-
rameters b and c were held as a single value for the same fitting data, as b and c were related
to the inherent properties of tree species and a was related to the site. In the model without
parameter classification, parameter a was the most unstable. Further experiments showed
that among the models with one parameter classification and the other two parameters
maintaining a single value, the model with parameter a-classification had the best goodness
of fit. a-classification constructed from dummy variables improved the applicability of
the model [53]. Taking Richards equation as the base equation, the steps to establish the
equation were as follows:

Step 1: Using the dummy variable method, dummy variables were generated to
indicate tree-specific parameters. For difference constraint Equations (6) and (7), the
dummy variable models were given as:

∆dit′ = a · {[1− e−b·(t′+1+agei0)]
c
− [1− e−b·(t′+agei0)]

c
} (8)

where

agei0 =
− ln(1−( di0

a )
1
c
)

b ,

a = a1 +
m
∑

i=2
Si × ai

(9)

In Equations (8) and (9), ∆dit′ is the diameter increment in time interval t′ for ith
sample tree, m is the number of sample trees, t′ is the time interval, agei0, and di0 are initial
age and initial diameter for the ith sample tree, respectively, Si is the dummy variable with
value of 1 for the ith sample tree and 0 otherwise (except S1 is a constant with value of
1), ai is the tree-specific parameter, and i is ranged from 1 to m. The meanings of other
parameters are the same as above.

Step 2: The appropriate number of classes was selected based on sample size, and
five classes were chosen. Estimated values of parameter a obtained by Step 1 were clus-
tered using one-dimensional K-means clustering to obtain the class each sample tree
belonged to [54,55].

Step 3: Using the dummy variable method, dummy variables were generated to
indicate class-specific parameters. The dummy variable model can be specified as

∆dit′ = a · {[1− e−b·(t′+1+agei0)]
c
− [1− e−b·(t′+agei0)]

c
} (10)
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where

agei0 =
− ln(1−( di0

a )
1
c
)

b ,

a = a1 +
g
∑

j=2
Lj × aj

(11)

In Equations (10) and (11), g is the number of classes, Lj is the dummy variable with
value of 1 for the jth class in which ith sample tree belongs to and 0 otherwise (except L1 is
a constant with value of 1), aj is the class-specific parameter, and j is ranged from 1 to g.
The meanings of other variables and parameters are the same as above.

Step 4: The estimated initial age of each sample tree was calculated using the estimated
value of parameters in Step 3, as shown in Equation (12):

âgei0 =
− ln(1− ( di0

âclass
)

1
ĉ )

b̂
(12)

where âgei0 is the estimated initial age for ith sample tree, âclass is the estimated value of a
in the class that ith sample tree belongs to, and b̂, ĉ are the parameter estimates of b, c in
Equation (10), respectively.

Step 5: The estimated age in each period was obtained by adding the estimated initial
age to the time interval, as (âgei0 + t′).

Similarly, the same steps were used for other growth equations.

2.3.5. Quality of Fit and Verification

The fitting models were evaluated using the adjusted coefficient of determination
(R2

adj), the standard estimated error (SEE), and the mean prediction error (MPE), using
Equations (13)–(15).

R2
adj = 1−

n
∑

i=1
(yi − ŷi)

2/(n− p− 1)

n
∑

i=1
(yi − y)2/(n− 1)

(13)

SEE =

√
n

∑
i=1

(ŷi − yi)
2/(n− p) (14)

MPE = tα × (SEE/y)/
√

n× 100 (15)

where yi is the diameter increment for ith sample tree, ŷi is the estimated value of yi, y is
the average value of yi, n is the number of samples, p is the number of parameters in the
equation, and tα is the t-value when the confidence level is 1-a.

The model was validated by comparing estimated ages with the real tree ages obtained
from stem analysis. The accuracy of the validation was calculated using the mean error
(ME), the mean absolute error (MAE), and the root mean square error (RMSE), as shown in
Equations (16)–(18).

ME =
1
n
×

n

∑
i=1

(agei − âgei) (16)

MAE =
1
n
×

n

∑
i=1
|agei − âgei| (17)

RMSE =

√
1
n
×

n

∑
i=1

(agei − âgei)
2 (18)

where agei is the true age for the ith sample tree, âgei is the estimated value of agei, and n is
the number of samples.
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3. Results
3.1. Selection of Base Growth Equation Based on Individual Tree Diameter Data

To select the most suitable base growth equation and analyze autocorrelated residuals,
known age and diameter series were used to fit different base equations (as shown in Table 3).

3.1.1. Fitting Results from Base Growth Equation

Table 4 shows the fitting results. At the individual tree scale, the fitting results and pa-
rameters robustness of different equations differed. From the perspective of fitting results,
the Richards equation and Logistic equation converged more readily than the Korf equation
and Monomolecular equation. In terms of distributions of parameter estimates, the esti-
mated parameters of the Richards equation and Logistic equation were more concentrated
than the Korf equation and Monomolecular equation. The biological meaning of parameter
a in the growth equations is the asymptote. The maximum DIB (see Table 1), derived
from field measurement, was close to the estimated parameter a in the Richards equation.
Therefore, the Richards equation was chosen to develop the diameter increment equation.

Table 4. Parameters of base equations based on individual tree diameter series.

Tree Species Model Sample Size
.5 Parameters Convergence

Failurea b c

Stump height (0.3 m)

Cinnamomum
camphora

Korf 40 84.4(20.5~309.1) 28.5(5.8~202) −0.97(−2.6~−0.33) 19
Richards 40 37.3 (16.7~101.1) 0.089(0.01~0.37) 2.8(1.03~14.2) 12

Monomolecular 40 62.1(26.5~113.8) 0.022(0.005~0.074) — 27
Logistics 40 30.8(15.5~60.1) 13.5(6.0~28.7) 0.15(0.07~0.26) 10

Schima superba

Korf 40 87.9(10.4~584.4) 204.0(4.9~2995.230) −1.1(−3.2~−0.38) 15
Richards 40 41.8(9.1~106.6) 0.094(0.02~0.30) 3.4(1.3~15.9) 5

Monomolecular 40 124.5(17.5~390.2) 0.018(0.002~0.056) — 27
Logistics 40 27.9(12.3~62.6) 19.0(8.0~57.1) 0.21(0.084~0.39) 14

Liquidambar formosana

Korf 40 142.9(28.7~420.6) 12.0(6.4~30.2) −0.69(−1.1~−0.37) 19
Richards 40 42.3 (16.8~73.6) 0.07(0.016~0.204) 2.1(0.66~4.04) 12

Monomolecular 40 109.9(18.3~269.5) 0.017(0.004~0.069) — 25
Logistics 40 30.6 (14.5~54.1) 13.9(5.5~37.6) 0.16(0.037~0.31) 13

Breast height (1.3 m)

Cinnamomum
camphora

Korf 40 70.3 (18.0~205.1) 15.6(3.7~39.6) −0.93(−1.7~−0.38) 23
Richards 40 45.8 (13.3~184.3) 0.08(0.006~0.34) 2.2(0.91~5.2) 12

Monomolecular 40 62.3(17.3~188.7) 0.026(0.005~0.098) — 22
Logistics 40 22.8(11.9~38.8) 11.7(4.4~39.7) 0.19(0.077~0.53) 7

Schima superba

Korf 40 103.5(9.2~338.3) 23.9(6.1~223.1) −0.8(−2.6~−0.38) 11
Richards 40 39.7(8.1~88.1) 0.089(0.016~0.29) 2.3(1.2~5.7) 3

Monomolecular 40 64.9(10.5~212.2) 0.03(0.005~0.084) — 26
Logistics 40 24.8(7.8~47.3) 14.6(6.5~47.5) 0.21(0.09~0.37) 1

Liquidambar formosana

Korf 40 76.6(14.3~299.2) 12.5(4.7~68.5) −0.79(−2.0~−0.30) 22
Richards 40 46.2(12.2~131.0) 0.075(0.012~0.23) 1.9(1.1~5.9) 8

Monomolecular 40 69.2(15.2~182.6) 0.024(0.005~0.072) — 24
Logistics 40 26.0(11.6~49.5) 12.6(5.2~41.3) 0.20(0.042~0.42) 1

Note: Estimated parameter values are the averages. Values in parentheses are the ranges of parameter estimates.

3.1.2. Autocorrelation Test and Treatment

Based on fitting the diameter series results at breast height, the residuals were calcu-
lated and the presence of autocorrelation was detected by the Durbin–Watson (DW) test. At
a 5% significance level, if the DW statistic is in the interval [0, 1.39], the series has a positive
autocorrelation, if it is in the interval [2.61, 4], the series has a negative autocorrelation with
reference to the DW test table [52,56]. The results showed that approximately 48% of the
DW statistics of the individual tree diameter series regression fell within the interval [0,1.39]
except for certain non-convergent results, for which it can be assumed that the diameter
series had autocorrelation. Table 5 shows the results of the DW test. The orders of auto-
correlation can be roughly determined by observing the autocorrelation figure and partial
correlation figure. In the test results, the first-order and second-order autocorrelation in the
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residuals accounted for about 32% and 20% of the total samples. About 1% had third-order
autocorrelation and above. About 21% did not have autocorrelation and about 26% of
samples could not be accurately judged. The difference method can handle autocorrelation,
so the difference constraint growth equation was developed (Equations (6)–(7)) and was
also called increment equations.

Table 5. The DW statistic distribution of the individual tree diameter series regression.

Tree Species Samples Min 1st
Quantile. Medium 3rd

Quantile. Max Mean Convergence
Failure

Cinnamomum camphora 40 0.1398 0.4325 0.6711 1.0382 2.6075 0.8611 12
Schima superba 40 0.2464 0.5403 0.8319 1.3459 2.4225 1.0913 3

Liquidambar formosana 40 0.2873 0.5856 0.7896 1.6657 2.8405 1.0980 8

3.2. Increment Equation with Parameter Classification Based on Panel data

According to the fitting results based on the individual tree diameter series shown in
Table 4, the estimated value of parameters fluctuated greatly on the individual tree scale.
For example, when fitting the diameter series at stump height for C. camphora using the
Richards equation, the estimated parameter c ranged from 1.03 to 14.2, indicating poor
stability. This was because the intra-specific correlation was ignored. The panel data was
composed of all the individual tree diameter series in the same species; therefore, the
intra-specific correlations could be fully considered. To model the panel data, diameter
increment equations with parameter a-classification were developed.

3.2.1. Fitting Evaluation

Fitting effects based on the panel data were better than fitting the diameter series
(Table 6). The range of the SEEs was from 0.23 to 0.33, and the MPEs were below 2.5% for
different tree species and different heights, but the R2s were not high, and ranged mainly
from 0.59 to 0.7. All estimated values of parameters were statistically significant because
p-values were less than 0.01. Table 6 shows t-values of parameter estimates. T-values in
Table 6 were larger than 2.58 (the t-stat value at 1% significance level on sample degrees
of freedom). Overall, the fitting result was relatively good. The estimated parameter
a gradually increased from class 1 to 5, which means that trees in different classes had
different growth environments. The estimated parameter b was distributed mainly around
0.02, and the estimated value of parameter c was around 1.

Table 6. Fitting results of diameter increment equation with parameter a-classification.

Tree Species Height R2
adj SEE MPE/%

Parameter Estimations

a.c1 a.c2 a.c3 a.c4 a.c5 b c

Cinnamomum
camphora

Stump 0.63 0.33 2.47 57.81
(4.28)

90.28
(4.36)

117.10
(4.32)

145.92
(4.31)

204.55
(4.30)

0.011
(2.88)

0.98
(10.85)

Breast
height 0.65 0.27 2.4 33.99

(7.33)
54.07
(7.69)

65.02
(7.42)

87.21
(7.45)

116.91
(7.37)

0.021
(4.54)

1.15
(13.15)

Schima superba Stump 0.59 0.29 2.09 25.29
(14.06)

33.65
(17.31)

46.58
(19.87)

61.58
(20.20)

72.39
18.34

0.046
(9.72)

1.63
(1.63)

Breast
height 0.61 0.26 2.11 33.28

(9.01)
49.03
(9.51)

60.65
(9.69)

73.67
(9.79)

92.22
(9.42)

0.024
(5.28)

1.04
(15.12)

Liquidambar
formosana

Stump 0.64 0.28 2.12 35.44
(12.48)

54.79
(13.15)

73.63
(12.76)

94.17
(12.69)

128.22
(12.37)

0.027
(7.83)

1.43
(13.45)

Breast
height 0.7 0.23 1.9 30.5

(14.21)
44.00

(14.20)
54.87

(15.44)
71.09

(14.86)
95.00

(14.71)
0.029
(8.88)

1.40
(14.78)

Note: values in the table were parameter estimated values, and values in parentheses were t-values of parameters.

The estimated values of each parameter were substituted into Equation (12) to estimate
the initial age. This approach achieved good precision of tree age estimation (Table 7).
Except for C. camphora at stump height and S. superba at breast height, MEs were all in the
interval [−1,1], RMSEs were less than 3 years, and MAEs were less than 2 years. Estimated
tree ages for C. camphora at stump and S. superba at breast height were underestimated.
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Error standard deviations for L. formosana at the two heights were 2.59 and 2.44, respectively,
which were slightly larger than for the other two tree species.

Table 7. Tree age estimation results of diameter increment equation with parameter a-classification.

Tree
Species Height ME MAE RMSE

Error

Min Mean Max Std.

Cinnamomum
camphora

Stump 3.05 3.24 3.89 −1.76 3.05 8.33 2.45
Breast
height 0.47 1.55 2.04 −5.51 0.47 4.60 2.01

Schima
superba

Stump 0.84 1.8 2.42 −3.15 0.84 6.24 2.29
Breast
height 2.46 2.59 3.15 −0.82 2.46 6.86 2

Liquidambar
formosana

Stump −0.35 1.93 2.59 −7.42 −0.35 5.05 2.59
Breast
height −0.56 1.76 2.47 −5.24 −0.56 8.43 2.44

Note: Std. values are error standard deviations.

Errors were mainly distributed in the interval [−5, 5] except for a few outliers (Figure 2).
Median errors for C. camphora and S. superba exceeded 0, especially for C. camphora at stump
height and S. superba at breast height, indicating that the approach slightly underestimated
their ages. The estimation error for L. formosa was more evenly distributed around 0, while
the outliers caused large error standard deviations. In general, the error of individual tree
age estimates using the approach was small and the estimation accuracy of different tree
species differed. Through error check-up, a phenomenon is that the error size was not
directly related to diameters, but was related to the diameter growth rate at the young tree
stage (diameter < 5 cm). If the diameter growth rate at the young tree stage is small, their
estimation errors are relatively large. This phenomenon is obvious for C. camphora at stump
height and S. superba at breast height.
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3.2.2. Comparison of Fitting Diameter Panel Data at Different Heights

From the perspective of model fitting (Table 6), compared with the panel data at stump
height, R2

adjs for modeling based on the panel data at breast height increased by 0.02, 0.02,
and 0.06, SEEs decreased by 0.06, 0.03, and 0.05, and MPEs decreased by 0.07%, −0.02%,
and 0.22% for the three species, respectively. As a result, the fitting effect of the panel
data was better at breast height. For C. camphora and L. formosana, the estimated value of
parameter a of the panel data at breast height was smaller than the estimated value of the
panel data at stump height, while this was the opposite for S. superba. The estimated values
of parameter b and parameter c had no obvious difference between the different heights.

From the perspective of tree age estimation (Table 7), compared with the panel data
at stump height, MAEs for modeling based on the panel data at breast height decreased
by 1.69 and 0.18 years and RMSEs had decreased by 1.85 and 0.12 years for C. camphora
and L. formosana, respectively. However, for S. superba, MAE for the panel data at breast
height increased by 0.79 years, and RMSE increased by 0.73 years. Among the three tree
species, the error standard deviation based on the panel data at breast height was lower.
For C. camphora, the error estimated based on the panel data at breast height was closer
to 0 and the interquartile range of the error was smaller, while this was the opposite for
S. superba. For L. formosana, the difference between the two heights was not apparent
(Figure 2). Overall, based on the panel data at breast height, the average MAE for the three
species was 1.97 years and the average RMSE was 2.55 years. Based on the panel data at
stump height, the average MAE for the three species was 2.33 years and the average RMSE
was 2.97 years. Therefore, the estimated effect based on the panel data at breast height was
better for C. camphora and L. formosana, and the estimated effect based on the panel data at
stump height was better for S. superba.

4. Discussion
4.1. Estimation and Applicability

Based on the modeling results of the base growth equation, the Richards equation
was chosen as the optimal base equation for individual trees. The parameter classification
method was used to improve the suitability of the equation, because sample plots were
widely distributed, and their environments were different. Dummy variables were gen-
erated to indicate class-specific parameters. Parameter a was taken as the class-specific
parameter. Then, diameter increment equations with parameter a-classification were used
to obtain several lifetime growth curves. A range of tree ages was obtained using the
approach for a given diameter series and the first flaw was eliminated. The diameter
growth increment curve clusters for three tree species at two heights are drawn in Figure 3.
Diameter increment curve clusters reflect several growth conditions. Their shapes were
unimodal and the maximum increment value increased with growth potentials except for
C. camphora at a stump height (0.3 m). However, the ages at which the diameter increment
reached the maximum value on different growth curves were identical, which was caused
by the same values of parameters b and c in different classes. When the estimated value
of parameter c was close to 1, there was either no extreme point or the extreme point
appeared very early in the diameter increment curve. For example, the diameter increment
for C. camphora at stump height decreased monotonously with age, and the extreme point
of the diameter increment curve for S. superba at breast height already appeared when the
tree was very young. The age at which diameter increment reached the maximum value
for S. superba was less than that for L. formosana.
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The estimated age obtained by this approach was validated using age data indepen-
dently obtained from stem analysis. Tree age estimation achieved high precision. RMSEs of
ages at breast height for C. camphora and L. formosana were 1.85 years and 0.12 years lower
than at stump height, while the RMSE of ages at breast height for S. superba was 0.73 years
higher (Table 7). However, tree ages at breast height ignore the time for the tree to grow
to breast height [7,57]. Ages at stump height were closer to the real tree age, but ages at
breast height obtained better estimated results. Therefore, the second flaw that existed in
previous age estimation methods was also eliminated.

In previous studies, Kalliovirta and Tokola [32] used tree height and maximum crown
width to predict tree ages and achieved RMSEs of 9.2% to 12.8% of the average age,
while tree height and crown width were difficult to measure. Silva et al. [3] established a
growth model of tree age, tree height, DBH, and other tree measuring factors to estimate
tree age with an RMSE of around 9 years. Pan et al. [26] estimated tree age based on
spectrum analysis and obtained a MAE of 2 years, however, this approach needs to be
tested in more tree species but has great development potential. Age estimation using the
proposed approach provides good precision. MAEs of age at breast height for C. camphora,
S. superba, and L. formosana were 1.55, 2.59, and 1.76 years, respectively. RMSEs were 2.04,
3.15, and 2.47 years, accounting for 6.07%, 11.08%, and 7.19% of the average age of each
species, respectively.

The approach was proposed for tree diameter data measured in forest inventory. The
diameter series obtained from stem analysis in this paper was to simulate diameter data
measured in the field, both of which were time series. The stem analysis can also obtain
real tree ages and then use the real ages to validate this method. In practical application,
modeling data are from diameter data measured in the field. To overcome autocorrelation,
we consider the difference method and developed a different form of the diameter equation.
Hence, the diameter increment data and time interval data were needed to estimate the tree
age. The diameter increment data can be obtained by subtracting the diameter measured
earlier from the diameter measured later. Time intervals are the time from the initial
diameter measurement to each measurement.

Hence, the proposed approach can estimate tree age using diameter data measured in
the field rather than increment core (or stem disc) data. Based on diameter data measured
in the field, diameter increment (∆dit′ ) data are calculated and time interval (t′) data are
obtained. The diameter measured initially (di0) is also recorded. These data are modeled
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with ∆dit as the dependent variable and t′, di0 as the independent variable according to
steps in Section 2.3.4. The estimated initial age is calculated using the estimated value of
parameters according to Equation (11).

This approach can also be applied to new trees. If new trees belong to the tree
species that are involved in modeling and come from the same study region, diameter data
measured in at least two periods are required, and the steps to apply the approach to new
trees are as follows: firstly, choosing a value of class i for parameter a (estimated by Equation
(10) and (11)) and substituting the two field-measured diameter data into Equation (19),
respectively, two estimated ages such as agei1 and agei2 of the two measurements are
obtained. This step needs to be performed for each class of parameter a. The constant g is
the number of classes and g groups of estimated ages (agei1 and agei2, i = 1,2, . . . , g) for
a tree are obtained through this step. Then, the difference value (D-value) between the
two ages for each class of parameter a needs to be recorded (g classes of parameter a get g
differences value: D1, D2, . . . , Dm). Comparing the D-value with the actual measurement
time interval, the class of parameter a with the smallest change between the D-values and
the measurement time interval was selected as the appropriate class of this new tree.

âgeMT =
− ln(1− ( dMT

âclass
)

1
ĉspecies )

b̂species
(19)

where âgeMT is the estimated age at measurement time, dMT is the measured diameter,
âclass is the estimated value of a in classes, and b̂species, ĉspecies are the parameter estimates
of b, c of the tree species in Equation (10), respectively. But if new trees don’t belong to
tree species involved in the modeling or come from other study regions, they cannot be
calculated using the steps above, but instead need sufficient samples to repeat the modeling
process in 2.3.4.

The applicability of the model is discussed from the perspectives of the usage scenario,
sample collection, and validation. The first key point of method applicability is the usage
scenario of the approach. This approach is proposed for diameter data measured in forest
inventory and can estimate tree age using diameter data measured in the field. Stem discs
are important for validating this approach rather than modeling.

The second key point of method applicability is the collection of model-building
samples. The sample size and sampling range have impacts on modeling. The sample size
for modeling should fulfill the statistical requirements and should be much larger than the
number of parameters. The sampling range refers not only to the range where the sample
data were collected, but also to the range of different growth conditions. These factors
determine the appropriate number of classes. Model-building samples need to contain
comprehensive growth information, so the established model can be applied to samples of
various growth environments. It is worth mentioning that the number of samples for each
species is not the best sample size to develop this equation. Model accuracy may improve
further if the sample size is increased.

The third key point of method applicability is validation. The estimation effect needs
to be evaluated in the application. When this method is applied to new trees, whether the
accuracy of tree age estimation needs to be re-evaluated mainly depends on tree species
and the sampling region, because different estimated values of parameters and different
estimated effects may be obtained. This approach was applied to subtropical tree species
with high accuracy. The accuracy of the approach applied to tree species in other climate
regions needs to be evaluated.

4.2. Equation Structure Analysis

To improve the estimation stability, an algebraic structure similar to the generalized
algebraic difference approach was used [50,58]. The difference is that no new variables were
introduced into the growth function (Equation (4)). A constraint on the growth equations
was added by making the growth curve pass through the initial point (0, d0). Furthermore,
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another constraint was also considered that the growth curve passed through the point
(t′, dt′ )median corresponding to the median of the diameter sequence. Under this constraint,
the MAE of the estimated age at breast height was less than 4.5 years, and the MAE at
stump height was less than 3 years. Compared with the equations with the first constraint
(the initial point), there was not much difference in estimation accuracy for C. camphora and
S. superba, but the estimated error was larger for L. formosana. Therefore, the estimation
effect of taking the initial point (0, d0) as the initial condition was better. The selection of
the initial value impacted tree age estimation, but it tended to be stable.

To further understand the influence of class-specific parameters, parameter b was
taken as the class-specific parameter and the two other parameters maintained a single
value in the same species and heights. Table 8 shows the estimated error of tree age
from the diameter increment equations with parameter b-classification. The estimation
result was slightly worse compared with a-classification. For example, when fitting the
panel data at stump height for C. camphora, the estimated a and b were not significant,
and age estimation obtained a large error for L. formosana at stump height. The result
showed that b-classification was not sufficiently stable to estimate different tree species.
The diameter increment equation with parameter c-classification was also not ideal for
estimating tree age.

Table 8. Tree age estimation results of diameter increment equation with parameter b-classification.

Tree
Species Height ME MAE RMSE

Error

Min Mean Max Std.

Cinnamomum
camphora

Stump 3.35 3.49 4.27 −0.96 3.35 9.07 2.65
Breast
height 1.30 1.99 2.45 −5.00 1.30 5.18 2.07

Schima
superba

Stump 1.66 2.11 2.83 −1.70 1.66 7.39 2.29
Breast
height 2.48 2.98 3.36 −3.01 2.48 7.95 2.27

Liquidambar
formosana

Stump −6.95 7.02 9.11 −23.80 −6.95 1.33 5.89
Breast
height −1.64 2.66 3.80 −10.98 −1.64 6.65 3.42

Note: Std. values are error standard deviations.

Parameters b and c had lower numeric values and were related to the inherent prop-
erties of the tree species. Hence, parameter a was taken as a class-specific parameter
while constraining parameters b and c to be the same for the same species and heights.
The variability between different sites and intra-specific variability was considered by
this approach.

4.3. Autocorrelation and Processing

Autocorrelation existed in the residuals of age estimation. In previous research, the
first-order autoregressive error structure (AR1) was used to deal with such autocorrelation
in forestry. Li and Weiskittel [38] improved the traditional AR1 and opted to use the CAR1
correlation structure, which was a continuous version of AR1. In addition, the mixed-effect
model was also a good way to deal with autocorrelation [38,59]. In this study, by test
statistics (involving the DW statistic and the Breusch–Godfrey statistic) and observation of
partial correlation figures, autocorrelation was found to exist in more than 50% of sample
trees, which was consistent with the above-mentioned literatures’ judgment regarding
autocorrelation. Considering the applicability of the model and previous scholars’ research
experiences [34,38,59,60], for this paper, the first-order difference method was adopted.
This approach enabled efficient processing of autocorrelation while it was not sufficiently
strict because different autocorrelation orders appeared in the residuals. This imposed
higher requirements for the form of the difference equation.

In the past, few scholars have focused on the orders of autocorrelation in forestry
research. The DW test can only detect the presence of first-order autocorrelation [61]. The
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Breusch–Godfrey statistic and partial correlation figures have been used to detect high-
order autocorrelation. In this study, first-order and second-order autocorrelation were
common in the tree diameter series, accounting for over 52% of the total samples. There
were residuals that cannot be accurately judged because either the diameter series size was
too small or the partial correlation figure lacked regularity. Autocorrelation violates the
Gauss–Markov condition in the base assumptions of the regression model. Although the
parameters passed the test, the variance of the parameter estimation has not reached the
minimum, which means that the best unbiased estimator has not yet been identified.

5. Conclusions

In this paper, a diameter increment equation with parameter a-classification was de-
veloped for estimating individual tree age. Panel data contained intra-species information,
which was helpful for modeling. The parameter classification method improved the suit-
ability of the equation. Validation was done using the real tree age obtained from stem
analysis for three subtropical tree species. MAEs of the estimated tree ages for the three tree
species were less than 3.5 years and RMSEs were less than 4 years. The estimated result
for L. formosana was the most stable, and its MAE was less than 2 years. The estimated
results for C. camphora and L. formosana based on the panel data at breast height were better
than at stump height, while this was the opposite for S. superba. Furthermore, first-order
and second-order autocorrelations were more common in the tree diameter series, whilst
higher-order autocorrelation was rare. Overall, the developed approach improves the
accuracy and parameter stability for estimating individual tree age and provides a feasible
way to obtain tree age in field measurement.
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