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Abstract: To explore the temporal and spatial evolution of carbon sinks in state-owned forest regions
(SOFRs) and the efficiency of increased carbon sinks, this study used panel data from 19 periods in
40 key SOFRs in Heilongjiang Province from 2001 to 2019. Additionally, combined with geographic
information system (GIS) and remote sensing (RS) technology, the individual fixed-effect model was
used to estimate the number of forest management investment (FMI) lagging periods, and the panel
threshold model was used to investigate the differences in the FMI efficiency in various forest regions.
From 2001 to 2019, the carbon sink of key SOFRs in Heilongjiang Province showed an upward trend
over time, with a growth rate of 20.17%. Spatially, the phenomenon of “increasing as a whole and
decreasing in a small area” was found, and the carbon sink of each forest region varied greatly.
The standard deviation ellipse of the carbon sink presented a “southeast–northwest” pattern and
had “from southeast to northwest” migration characteristics. The FMI amount from 2001 to 2019
showed an upward trend, with a total of CNY 46.745 billion, and varied greatly among forest regions.
Additionally, the carbon sink amount in each SOFR affected the FMI efficiency. The threshold of the
model was 5,327,211.8707 tons, and the elastic coefficients of the impact of FMI below and above the
threshold on the carbon sink were 0.00953 and 0.02175, respectively. The latter’s FMI efficiency was
128.23% higher than that of the former. Finally, the increase in FMI to a carbon sink followed the law
of diminishing marginal benefits. Therefore, the government should rationally plan the level of FMI
in each SOFR to improve the FMI cost-effectiveness and help achieve the goal of “carbon neutrality”.

Keywords: SOFRs; FMI; carbon sink; efficiency; GIS; RS; carbon neutrality

1. Introduction

Faced with a series of issues such as climate change, frequent increases in extreme
weather, and industrial structural innovation, China has made a serious commitment to
“strive to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality
by 2060”. Under the demand of mitigating climate change, carbon sinks have an impor-
tant ecosystem regulation function [1–3]. Among them, the main ways to increase sinks
are bioenergy with carbon capture and storage (BECCS) and increasing the carbon sink
capacity of terrestrial vegetation [4]. The former method has higher costs for technological
innovation, investment, and maintenance, and its universality and economy have yet to be
considered. Nature-based policies are one of the most cost-effective ways to increase carbon
sinks and simultaneously have large social and economic benefits [5]. Among all terrestrial
vegetation types, forests are the most important carbon pools in terrestrial ecosystems,
accounting for 70%–80% of the global amount of carbon storage [6,7]; additionally, forests
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have the best long-term effects. Therefore, an increase in the forest carbon sink will play a
vital role in the process of carbon neutrality.

State-owned forest regions (SOFRs) are experiencing conflicts between ecological and
economic benefits in the process of reform, and they are undertaking the major goal of
achieving “carbon neutrality” [8]. Therefore, it is necessary to measure the cost-effectiveness
of forest management investment (FMI) in various forest regions and identify areas with
high efficiency in forest management. Forest management measures mainly increase the
carbon storage of forests by improving the forest growth environment, increasing the
forest area, and improving the forest stand quality. SOFRs are large in scale, relatively
standardized in their management, and have a high FMI, such as forest tending. The
main task of SOFRs is to increase forest resources, improve forest quality, give full play
to the production potential of SOFRs, and improve the ecological, social, and economic
benefits of various forest regions. However, the improvement of forest quality is not only
related to forest management measures, but is also affected by regional forest stand quality,
natural climate conditions, and forest region size [9,10]. In particular, forest management
has scale effects, and large-scale management results are better [11]. Moreover, because
forest tending and afforestation measures do not obtain immediate results, there may be
a lag effect. Therefore, the effect of FMI on forest quality improvement is uncertain in
time and space, and there may be differences in the level of investment efficiency among
forest regions. Therefore, identifying high-efficiency investment areas can help alleviate the
conflict between the ecological and economic benefits of SOFRs, and is of great significance
for policymakers who wish to improve the efficiency of policy implementation [12].

Research on the ecological efficiency of SOFRs mainly adopts the methods of data envel-
opment analysis (DEA) and slacks-based measure–data envelopment analysis (SBM–DEA) to
evaluate the ecological efficiency of key state-owned forestry enterprises [13,14]. However,
this research failed to link the FMI with the increase in the carbon sink amount and focused
on the expected and undesired output of the overall input to the ecological environment.
Most of the research on the measurement of the ecological effects of forest management
has focused on measuring the impact of different forest management methods (natural
forests, artificial forests) and forest tending measures on soil and tree diameter at breast
height [15–17]. Similarly, most studies from the perspective of increasing carbon sinks in
forests have focused on small-scale investigations. The research is based on the results
of forest resource surveys used to study the impact of single or several common tree
species, such as selective cutting, thinning intensity, tending, and other forest management
measures, on the forest stock and carbon cycle per unit area [18,19]. Alternatively, carbon
storage can be calculated based on the biomass carbon storage conversion coefficient [20,21].
This type of research typically measures and describes the changes before and after the
implementation of single or several tree species forest management measures in a small
area, ignoring the influence of other interference factors, and it cannot accurately determine
whether changes in carbon sinks are related to forest management measures. Furthermore,
there is no correspondence between forest management measures and capital investment,
and it is impossible to measure the efficiency of FMI and the difference in the investment
efficiency of various forest regions.

In addition, studies have carried out annual calculations on the stock of different
tree species to assess the quality of a forest stand. For example, the enhanced vegetation
index (EVI) was used to establish a biomass allometric growth and inversion model to
measure the changes in the biomass of the different forest species to estimate the changes
in the carbon sink amount [22,23]. Furthermore, in the measurement of large-scale forest
carbon sinks, some studies have comprehensively measured forest biomass based on land
use types and combined with MODIS optical data. The study counted long-term carbon
sequestration changes to quantify the carbon sequestration effects of forest management
measures such as reforestation, thinning, and forest tending, as well as to assess the related
socioeconomic carbon sequestration costs [24–26]. Such studies have comprehensively
considered the changes in forest quality and quantity, and there are few research results.
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Moreover, most studies on the macro scale use the InVEST model to correspond to the
forest species coefficient, and use the change of land type to calculate the total amount
of carbon sequestration in forest land [27,28]. However, the accuracy of this calculation
method is low. Although the carbon density coefficient is considered, it is mostly empirical
and averaged. It can only be used to measure changes in carbon sinks based on changes in
land types. In addition, this method does not consider forest quality and its differences, so
it is difficult to accurately measure the increase or decrease in the carbon sink amount in
the region, and it is impossible to accurately measure the effect of how FMI might increase
the carbon sink amount.

In view of this, this paper used panel data from 40 key state-owned forest farms in
Heilongjiang Province from 2001 to 2019 to explore the increase in carbon sink efficiency and
the differences in FMI in various forest regions under the control of natural meteorological
factors. First, this paper combined geographic information system (GIS) and remote
sensing (RS) technology based on RS data on vegetation net primary productivity (NPP)
and accurately calculated the evolution of carbon sinks in the study area from 2001 to 2019.
Second, we controlled for other variables that might affect the increase in forest carbon
sinks, introduced the lag term of carbon sinks, used the individual fixed-effect model to
determine the FMI lag period, and realized the measurement of the causal relationship
between the two. Then, we used the panel threshold model to examine the differences
in FMI efficiency under different carbon sink levels and identify forest regions with a
higher investment efficiency. Finally, we verified that FMI followed the law of diminishing
marginal returns in terms of increasing the carbon sink, and discussed how to rationally
plan investment levels. This research aimed to promote the high-quality development
of forest resources in SOFRs, increase the level of forest carbon sinks, and improve the
utilization efficiency of FMI to achieve “carbon neutrality” as soon as possible.

2. Overview of Study Area, Data, and Methods
2.1. Study Area

Heilongjiang Province is the northernmost and easternmost provincial administrative
region of China. It lies between 121◦11′–135◦05′ E and 43◦26′–53◦33′ N. The terrain is high
in the northwest, north, and southeast and low in the northeast and southwest. It belongs
to the cold temperate zone and has a temperate continental monsoon climate. Heilongjiang
Province is located along the “Belt and Road” and borders Russia. It is the main body of the
terrestrial ecosystem in Northeast Asia. The grassland comprehensive vegetation coverage
in Heilongjiang Province is as high as 67.50%, and the forest coverage rate reaches 43.78%,
of which key SOFRs account for approximately one-fifth of the province’s total area [29].
There are 87 key SOFRs (forest industry enterprises) in northeast and Inner Mongolia, and
Heilongjiang Province is in charge of 40. The 40 key state-owned forest divisions are the
Yichun Forest Industry Group and Longjiang Forest Industry Group. The Yichun Forest
Industry Group has jurisdiction over 17 key SOFRs, and the Longjiang Forest Industry
Group has jurisdiction over 23 key SOFRs. There are 627 forest farms (stations) under the
jurisdiction of the 40 key SOFRs, and the jurisdictions of four forestry bureaus cross the
boundary of Heilongjiang Province [30].

The state-owned forest farm in Heilongjiang Province promotes the development
of the forestry economy while promoting the high-quality development of forests, and
this approach has had large social and economic benefits. These methods include forest
tree breeding and nursery, timber and bamboo harvesting and transportation, economic
forest product planting and collection, flowers, wood processing, wood, bamboo, rattan,
palm, and reed product manufacturing, forestry tourism and leisure services, and the forest
economy. As of 2019, there were nearly 160,000 employees in the industry. In 2019, the total
output value reached CNY 39.51412 billion, with a total investment of CNY 6.99164 billion,
of which afforestation and forest tending investment reached CNY 2.15375 billion [29].
The geographical location map of the 40 key SOFRs in Heilongjiang Province is shown in
Figure 1, where green represents forest land.
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2.2. Index Selection

(1) Explained variable: As the largest terrestrial carbon pool, forests play a major role
in the goal of achieving “carbon neutrality”. The management system of China’s
state-owned forest farms is relatively complete, the FMI is relatively high, and the
forest quality is relatively good. Previous studies mostly used NPP as the basis for
calculating carbon sinks [31,32]. To measure the carbon sink level of 40 key SOFRs,
this paper used vegetation NPP as the basis for calculation. The NPP of vegetation
refers to the amount of organic matter accumulated by green plants per unit area and
unit time, i.e., the remaining part after deducting autotrophic respiration (RA) from
the gross primary productivity (GPP) fixed by plant photosynthesis. This indicator
can measure forest quality to the greatest extent and can calculate the carbon sink
amount based on basic data. The specific calculation method is explained in the
next section.

(2) Explanatory variables: To measure the investment efficiency in forest tending and
management and the investment in various major forestry projects, this paper selected
the total FMI (invest) as the explanatory variable. This measure includes forest
tending investment, forest management and protection investment, forestry fixed
asset investment, afforestation and renewal investment, Natural Forest Protection
Program (NFPP) investment, and forest quality improvement investment.

(3) Socioeconomic factors: Although the increase in the carbon sink amount requires a
large amount of financial investment, it also creates many employment opportunities.
Furthermore, as more become engaged in forest management, tending, and industrial
development, it has a positive effect on increasing forest quality and increasing the
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carbon sink amount. Therefore, the paper incorporated the number of employees
(workpop) into the model. In addition, personnel wages play a positive role in
stimulating forest management measures such as management and maintenance, and
it is necessary to consider the indicator of total wages (wage) [33]. However, forest
maintenance measures such as thinning have led to a large amount of timber output
and income, which also promotes the development of downstream enterprises related
to wood products. Forest maintenance will produce income from tourism, stimulate
the economic development of forest regions, and generate income from the tertiary
industry. Therefore, in the econometric model, the impact of SOFRs’ gross domestic
product (gdp) on the carbon sink should be examined [34]. In addition, there may
be an inverted U-shaped relationship between the economic development level of
the SOFRs and the ecological environment, following the path of the environmental
Kuznets curve (EKC) [35]. Therefore, we put gdp and gdp2 into the model at the same
time as control variables.

(4) Natural meteorological factors: The effect and efficiency of FMI are related to forest
quality issues. The afforestation land, the growth of young and middle-aged trees, and
the effect of forest tending are greatly affected by climatic factors [36,37]. Climatic fac-
tors such as precipitation and temperature have greater impacts on forest quality and
productivity [38,39]. Additionally, temperature and soil moisture together affect the
photosynthesis sensitivity of plants [40,41]. Therefore, when constructing the model,
precipitation and temperature need to be used as control variables. Furthermore,
because the overall precipitation in the SOFRs of Heilongjiang Province has little
difference, the temperature difference between summer and winter is large. Therefore,
we used the annual average precipitation and the July average temperature data.

2.3. Data Sources and Processing

(1) Carbon sink data: The carbon sink data were calculated based on the carbon content
of vegetation NPP corresponding to vegetation dry matter. The NPP data in this study
were derived from the MODIS satellite-based MOD17A3HGF product released by
the National Aeronautics and Space Administration (NASA). The spatial resolution
of the data is 500 meters, and the time resolution is annual. MRT software and
ArcGIS 10.7 software were used to pre-process the data for splicing, cropping, and
projection, and the raster calculator function was used to eliminate the NPP data
outliers. Finally, the annual NPP sequence data of China from 2001 to 2019 were
obtained, and the unit is gC/m2. After calculating these data, according to the green
vegetation photosynthesis chemical formula (6CO2 + 6H2O→C6H12O6 + 6O2), for
every 1 kg of dry matter produced by vegetation, 1.63 kg of CO2 can be fixed, and
the carbon content in the dry matter accounts for approximately 45% of the total
NPP. Therefore, the calculation formula for the fixed CO2 of vegetation is as follows:
WCO2 = NPP/0.45 × 1.63, and the unit of WCO2 is g/m2. Based on this, the carbon
sink data for China’s forests were calculated in grid form. Then, according to the base
map of the 40 key SOFRs, ArcGIS 10.7 was used to extract the carbon sink of each
forest region from 2001 to 2019, which was processed according to the unit area to
obtain the carbon sink data used in the model.

(2) FMI and socioeconomic data: 1. Data on the FMI, total output value, number of
employees, and total wages of each forest region were all sourced from the 2001–2019
China Forestry and Grassland Statistical Yearbook, which is compiled and obtained
each year. 2. The administrative boundary data of Heilongjiang Province came from
the basic geographic database (http://www.webmap.cn, accessed on 16 July 2021);
the vector maps of the 40 key SOFRs were based on the forest base map and drawn
according to ArcGIS geographic registration.

(3) Natural data: 1. The basic precipitation data in each forest region came from multiyear
station data on the website of the China Meteorological Administration (http://data.
cma.cn/, accessed on 20 August 2021). We selected a total of 40 sites in and near

http://www.webmap.cn
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the SOFRs, and we used the ArcGIS 10.7 interpolation analysis function to perform
spatial interpolation processing; additionally, kriging was used to interpolate based
on the covariance function and to extract the area mean, and the pixel size after
processing was 100 m. 2. The average temperature data for each forest region in
July came from the Loess Plateau Science Data Center, National Earth System Science
Data Sharing Infrastructure, National Science and Technology Infrastructure of China
(http://loess.geodata.cn, accessed on 25 August 2021). This dataset is based on the
global 0.5◦ climate dataset released by the CRU (https://crudata.uea.ac.uk/cru/data/
hrg/, accessed on 13 July 2021) and the high-resolution climate dataset released by
WorldClim (http://www.worldclim.org/, accessed on 6 August 2021). The data were
generated by downscaling in China through the Delta space downscaling scheme and
had a spatial resolution of approximately 1 km [42]. Then, ArcGIS 10.7 software was
used to define the geographic coordinates of the NC data format, project them, and
finally extract the annual average temperature in July in the study area. 3. Land use
data: The land use data for Heilongjiang Province in 2020 (Figure 1) (1 km × 1 km)
came from the Resource and Environmental Science Data Center of the Chinese
Academy of Sciences (http://www.resdc.cn/, accessed on 28 July 2021). In this paper,
referring to the land type classification standard of the Chinese Academy of Sciences,
the study area’s land use/cover was reclassified into two categories: forest land and
other land. The summary of each variable and the descriptive statistical analysis are
shown in Table 1.

Table 1. Variable design and descriptive statistics.

Variable Code Variable Unit Mean Std. Dev. Min Max

carbonsink Forest carbon sink Ton 5,357,876.00 3,167,827.00 1,197,632.00 15,400,000

invest Forest Management
Investment 10 thousand 6150.67 6698.97 240.00 31,260.00

gdp Gross Domestic Product 10 thousand 79,268.55 54,718.58 11,291.84 354,364.00

wage Total wages of on-the-job
employees 10 thousand 7079.68 4884.82 398.60 21,506.10

workpop Average number of
employees Number of people 5199.82 1986.11 1324.00 14,842.00

pre Precipitation mm 639.94 109.03 398.30 934.61
temp Temperature ◦C 20.59 0.96 16.80 23.48

2.4. Research Methods
2.4.1. Analysis of Spatial Distribution Directionality

Spatial distribution directional analysis refers to the outline and dominant direction
of the observed variable in the spatial distribution [43]. The standard deviation ellipse
(SDE) is a spatial statistical method used to reveal the spatial distribution characteristics of
elements [44]. This method mainly measures the centre of gravity, major axis, minor axis,
azimuth angle, and other parameters of the SDE of geographic elements to quantitatively
describe the spatial distribution characteristics of the observed variables in the study
area [45]. The definition formula is as follows:

Center of gravity coordinates:

Xw = ∑n
i=1 wixi/ ∑n

i=1 wi; Yw = ∑n
i=1 wiyi/ ∑n

i=1 wi (1)

tan θ =

(
∑n

i=1 w2
i x̃2

i −∑n
i=1 w2

i ỹ2
i
)
+
√(

∑n
i=1 w2

i x̃2
i −∑n

i=1 w2
i ỹ2

i
)2

+ 4 ∑n
i=1 w2

i x̃2
i ỹ2

i

2 ∑n
i=1 w2

i x̃i ỹi
(2)

X-axis standard deviation:

Xw = ∑n
i=1 wixi/ ∑n

i=1 wi; Yw = ∑n
i=1 wiyi/ ∑n

i=1 wi (3)

http://loess.geodata.cn
https://crudata.uea.ac.uk/cru/data/hrg/
https://crudata.uea.ac.uk/cru/data/hrg/
http://www.worldclim.org/
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Y-axis standard deviation:

Xw = ∑n
i=1 wixi/ ∑n

i=1 wi; Yw = ∑n
i=1 wiyi/ ∑n

i=1 wi (4)

In Formulas (1)–(4), (Xw, Yw) represents the weighted average centre of each observed
variable; (xi, yi) represents the spatial coordinates of the observed variable; wi represents
the spatial weight; θ is the azimuth of the standard deviation ellipse, that is, the main trend
direction of the data distribution; σx, σy respectively represent the standard deviation of
the ellipse′s x-axis and y-axis; and x̃i, ỹi respectively represent the coordinate deviation of
each observed variable to the weighted average centre.

2.4.2. Individual Fixed-Effects Model

The individual fixed-effects model refers to deterministic variables other than explana-
tory variables, whose effects vary only with the individual and not with time. Because the
carbon sink value of the explained variable in the study was affected by the previous period,
the lag term of the explained variable was added to the model explanatory variable. Then,
the Hausman test found that the fixed-effects model was better than the random-effects
model, so the individual fixed-effects model was used. This paper first built an individual
fixed-effects model and judged the regression results of the model without considering the
carbon sink as a threshold variable. The model was basically constructed as follows:

lncarbonsinkit = β1lninvestit + β2lngdpit + β3lngdp2
it + β4lnwageit + β5lnworkpopit + β6llncarbonseit

+β7lnperit + β8lntempit + ui + εit
(5)

In Formula (5), i represents the SOFR, and t represents the year. carbonsinkit represents
the carbon sink of each SOFR; investit represents the amount of FMI; gdpit represents the
gross domestic product of each SOFR; gdp2

it represents the square of the gross domestic
product of each SOFR; wageit represents the total wages; workpopit represents the number of
employees in each SOFR; lcarbonsinkit represents the carbon sink level after a period of lag;
perit represents the annual precipitation; tempit represents the average temperature in July;
β1 to β8 are the parameters to be estimated in the model; ui is the individual effect; and εit
is the random disturbance term. If the regression result of the model is unreasonable, the
investit variable was adjusted for the lag period to determine a reasonable lag period.

2.4.3. Panel Threshold Model

The threshold effect means that when a certain parameter reaches a certain critical
value (threshold value), it will cause another parameter to change in direction or quan-
tity [46]. The threshold regression model does not need to use cross-terms to determine
the nonlinear relationship between FMI and carbon sinks in key SOFRs in Heilongjiang
Province, and it was determined by its endogeneity. To determine the specific critical value
of the threshold variable, this paper used the panel threshold model and then used the
bootstrap method to estimate the significance of the threshold γ. The basic model was set
as follows:

lncarbonsinkit = β1lninvest′it I(carbonseit ≤ γ) + β2lninvest′it I(γ < carbonseit) + β3lngdpit + β4lngdp2
it

+β5lnwageit + β6lnworkpopit + β7llncarbonseit + β8lnpreit + β9lntempit + εit
(6)

In Formula (6), γ is the threshold value to be estimated; I(·) is the indicative function,
and the value in parentheses is 1 or 0; β1 to β9 are the coefficients to be estimated in the
model; and other variables indicate the same meaning as those for Formula (5).

2.4.4. Partially Linear Functional-Coefficient Panel Data Model

A partially linear functional-coefficient regression model allows for linearity in some
regressors and nonlinearity in other regressors, where the effects of these covariates on
the dependent variable vary according to a set of low-dimensional variables nonparamet-
rically [47], thereby showing distinct advantages in capturing nonlinearity and hetero-
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geneity [48]. The main purpose of this model is to avoid the incorrect specification of the
function form caused by the linear assumption of the measurement model, and to verify
that the effect of the FMI increasing the carbon sink value follows the law of diminishing
marginal benefits. Therefore, we set the FMI as a variable with functional coefficients in the
function setting, and we set it as variables that enter the functional coefficients that interact
with variables in the order specified by the variables that had functional coefficients. The
specific form of the model is as follows:

carbonsinkit = Z′itg(Uit) + X′itβ + αi + εit (7)

In Formula (7), i represents the SOFR, and t represents the year. carbonsinkit is a scalar
dependent variable; Uit = (U1,it, · · · , Ul,it)

′ is a vector of continuous variables, that is,
investit; Zit = (Z1,it, · · · , Zl,it)

′ is the vector of covariates in the model; the coefficient is
g(Uit) =

{
g1(U1,it), · · · , gl(Ul,it)

}′; Xit is a k × 1 vector of covariates with a constant slope
β, which is also investit; αi is the individual fixed effect that may be related to Zit, Uit and
Xit; and εit represents the error term.

3. Results and Analysis
3.1. Spatiotemporal Evolution of Carbon Sink and SDE Analysis
3.1.1. Time Change Analysis of Carbon Sink

To investigate the time evolution trend of the carbon sink in the 40 key SOFRs in
Heilongjiang Province during the study period, ArcGIS software was used to calculate the
annual carbon sink value of each forest region and draw it as a line graph (Figure 2).
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From the perspective of time, the carbon sink of the SOFRs showed an upward
trend from 2001 to 2019, with a total growth rate of approximately 20.17%, and the fitting
formula for annual growth was y = 1.5042x − 2809. It reached the maximum value in 2018,
approximately 233.78 million tons, but the overall fluctuation was relatively large. The
reasons for the overall increase in the carbon sink are as follows. According to the data from
the fifth to eighth forest resource surveys, Heilongjiang has a relatively large proportion of
natural forests and a relatively small proportion of artificial forests. The carbon storage per
unit area of planted forests is approximately twice that of natural forests. Since 2000, the
implementation of the NFPP and the increase in the area of planted forests have increased
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the intensity of forest management and protection. Therefore, the carbon sink function of
forest stands has been enhanced, and the overall trend is increasing.

3.1.2. Spatial Distribution of Carbon Sink and SDE Analysis

To reflect the differences in the carbon sinks of the key SOFRs within the spatial scope,
the carbon sink values of the 40 forest regions in 2019 were sorted, and ArcGIS 10.7 was
used to link this information with the locations of the forest regions. Then, the natural
breaks (Jenks) classification method was selected to classify the carbon sinks in 2019 and
visualize them (Figure 3). Additionally, to calculate the direction of the spatial distribution
of the carbon sink in the 40 SOFRs, this paper used the spatial statistical tools in ArcGIS
10.7 software to calculate the statistical parameters of the SDEs of the carbon sink in each
forest region each year (Table 2).

Regarding the distribution of the carbon sink in each forest region in 2019, the carbon
sink of each forest region was quite different, and the overall regional distribution of the
carbon sink was characterized by “more in the north and south, but less in the middle”,
as shown in Figure 3. Among them, the four forest regions of ZhanHe, DongFanghong,
DongJingcheng, and SuiYang had the highest carbon sinks, ranging from 9.925 million
tons to 14.951 million tons. Mainly due to the large scale of these forest regions and the
implementation of key forestry projects, the quality of these forests is better, and thus,
the carbon sink value is higher. The seven forest regions of ShuangFeng, DaiLing, HeLi,
WuMahe, TangWanghe, WuYing, and ShangGanling had the lowest carbon sinks, with
values in the range of 1.683–2.803 million tons. Most likely because of the small scale
of these forest regions, the management and maintenance of large-scale forest regions is
relatively low.
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Table 2. Changes in the standard deviation ellipse of the carbon sink in the SOFRs.

Year Shape
Length/m

Shape
Area/km2 CenterX/m CenterY/m XStdDist/m YStdDist/m Rotation/◦

2001 1,328,061 130,954.8 1,871,536 5,231,694 164,395.2 253,577.7 155.3266
2003 1,302,777 125,081.2 1,864,519 5,235,355 158,822.4 250,703.2 155.0508
2005 1,307,601 124,978.8 1,860,008 5,240,324 156,842.8 253,660 154.5311
2007 1,337,554 133,949.3 1,872,019 5,235,407 168,557.8 252,970.3 154.9004
2009 1,302,006 123,871.8 1,857,691 5,245,039 156,074.5 252,651.1 154.1664
2011 1,298,014 123,574.6 1,859,176 5,241,175 156,737.9 250,977.7 154.9246
2013 1,297,644 123,315.5 1,858,332 5,245,219 156,223.4 251,276.5 154.0126
2015 1,311,897 126,615.3 1,860,552 5,245,518 159,369.9 252,906.4 153.7399
2017 1,308,664 125,750.8 1,865,522 5,235,737 158,372.2 252,761.9 155.5142
2019 1,297,216 123,603.7 1,862,388 5,234,714 157,096 250,464.6 155.0689

From 2001 to 2019, the SDE of the SOFRs showed an overall pattern of “southeast–
northwest” and reflected the characteristics of “from southeast to northwest” migration,
but the range of change was small. The turning angle θ showed a fluctuating downward
trend, but the magnitude of change was small, indicating that the carbon sink growth rate
of the SOFRs in the southeast of the ellipse axis was slightly slower than that of the SOFRs
in the northwest of the ellipse axis. The area of the SDE showed a fluctuating downward
trend. The overall area of the ellipse decreased by 7351.1 km2 compared with the value
in 2001, and the rate of decrease was 5.61%. The area of the ellipse reached its maximum
value in 2007 at 133,949.3 km2. The short-axis standard deviation fluctuated downwards,
decreasing by 7299.2 m; the long-axis standard deviation also fluctuated, decreasing by
3113.1 m. The changes in the carbon sink values in the SOFRs in Heilongjiang Province
showed a trend of agglomeration and migration to the northwest.

3.1.3. Analysis of Spatial Changes in the Carbon Sink Value

To investigate the spatial changes in the carbon sink value during the study period,
this paper used the spatial distribution maps of the carbon sink (500 m) in the SOFRs in 2001
and 2019. Combined with the function of map algebra in ArcGIS 10.7, the growth rate of
the carbon sink at the grid scale was calculated. Then, based on the clustering of the results,
the spatial regional carbon sink growth was classified, and the spatial change trend map of
the carbon sink in the studied region from 2001 to 2019 was drawn (Figure 4). ArcGIS 10.7
then reclassified the results and calculated the area and corresponding proportions of the
five changing trends.

From the perspective of the growth rate of the spatial carbon sink in the 40 key SOFRs
in Heilongjiang Province, the carbon sink of the SOFRs from 2001 to 2019 showed an
“overall increase and small-scale reduction” phenomenon (Figure 4). Among them, the
area where the growth rate of the carbon sink was between 0.151 and 0.300 was the largest,
accounting for 36.15%; the second largest growth rate of the carbon sink was between 0.001
to 0.150 and 0.301 to 1.353, accounting for 29.90% and 27.05%, respectively. From 2001
to 2019, the total proportion of positive growth in the carbon sink value in the SOFRs in
Heilongjiang Province reached 93.10%. The areas with negative growth rates were divided
into two levels, namely, −0.908~−0.086 and −0.087~0.000, and the corresponding area
proportions were 2.06% and 4.84%, respectively. Areas with a growth rate of 0.151 or more
accounted for 63.20%, indicating that the carbon sink in most regions increased significantly
during the study period. Corresponding to the analysis in Figure 3, the carbon sinks of the
regions with higher growth rates were lower, which proved that the initial value was lower
and the growth potential was greater. However, the regions with growth rates of 0.001 to
0.150 and negative growth rates were mostly located in regions with high carbon sinks, and
their growth space was small.
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The possible reasons for the negative growth of the carbon sink in some regions are as
follows. First, the DongFanghong Forest Region has a large scale of forest management and
high timber output, which makes forest management and protection more difficult. Second,
after 1998, forest management and protection were strengthened, resulting in a decrease
in logging, but the geographical distribution was wider. Therefore, there is illegal carbon
burning in forest areas with inconvenient transportation and low population density. In
addition, it takes a certain period for the area of unforested land to increase as a result of
forest tending and other methods to transform into forest land. Therefore, there may be a
decrease in the carbon sink value during the study period.

3.2. Analysis of Temporal and Spatial Distribution of Amount of FMI in Key SOFRs

To visually reflect the changes in the annual FMI during the study period, the paper
summarized the total annual FMI and created a histogram (Figure 5). To reflect the dif-
ference in FMI in the 40 key SOFRs within the spatial scope, the thesis comprehensively
organized the total amount of FMI in the 40 SOFRs during the 19-year study period and
used ArcGIS 10.7 to connect with the forest regions. The natural break point classification
method (Jenks) was chosen to classify the FMI amount and visualize it (Figure 6).
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The temporal change in FMI in the SOFRs showed an overall upward trend. The
fitted curve was y = 2.4747x − 0.144, but the R2 value was low at 0.2947. The investment
amount fluctuated from 2001 to 2015. The amount of investment soared from 2016 to
2018 and dropped sharply in 2019. The total FMI from 2001 to 2019 was approximately
CNY 46.745 billion. Among them, the highest investment amount was CNY 8.926 billion
in 2018. This was followed by that in 2016 and 2017, with values of CNY 7.156 billion and
CNY 8.224 billion, respectively. Except from 2016 to 2018, the average FMI in other years
was CNY 1.402 billion.

The amount of FMI in various forest regions in Heilongjiang Province was quite differ-
ent, the regional distribution of FMI was uneven, and there was no obvious aggregation
state. Among them, ZhanHe, NanCha, ChaiHe, and DongJingcheng had the highest level
of FMI in the four forest regions, ranging from CNY 1.3942 to 1.6655 billion, accounting for
13.55% of the total FMI. Additionally, the amount of FMI in the 12 forest regions of YouHao,
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XinQing, HeBei, TieLi, LangXiang, XingLong, DongFanghong, WeiHe, DaHailing, Shan-
Hetun, SuiYang, and MuLeng was in the fourth tier, ranging from CNY 1.195–1.3941 billion,
accounting for 33.93%. The amount of FMI in the eight forest regions of TongBei, SuiLeng,
JinShantun, CuiLuan, MeiXi, HuaNan, FangZheng, and YaBuli was between CNY 1.0803
and 1.1957 billion, accounting for 19.97%. The investment in the 10 forest regions of
Hailing, LinKou, ShuangYashan, TaoShan, DaiLing, WuMahe, HongXing, WuYiling, WuY-
ing, and TangWanghe was between CNY 918.8 million and 1.0802 billion, accounting
for 21.79%. In ShangGanling, HeLi, ShuangFeng, QingHe, YingChun, and BaMiantong,
the amount of FMI in the six forest regions was among the lowest tiers, ranging from
CNY 769.3 to 918.8 million, accounting for only 10.76%.

3.3. Analysis of Effect of Threshold Model Testing

We first examined whether the threshold effect existed, and then determined the
number of threshold values based on the test results. According to the analysis of the
test results in Table 3, the F statistic and its significance level verified the existence of the
threshold effect. The F statistics of the single-threshold model and the dual-threshold
model were 78.20 and 90.44, respectively, and both passed the 1% significance level test.
The p value indicated that both a single threshold and a double threshold could be selected,
and the width of the confidence interval was small. However, a small sample size in the
interval would lead to inaccurate estimation results. Therefore, considering the sample
size of each interval, the research should select a single threshold model. When the
corresponding likelihood ratio statistic LR was 0, the threshold parameter estimated value
was γ = 5,327,211.87.

Table 3. Test results of threshold effect.

Threshold Type F Value p Value BS Times Threshold Confidence Interval

Single threshold
(pfgc1) 78.20 *** 0.0000 300 5,327,211.8707 [5,289,995.8337, 5,341,231.7847]

Double threshold
(pfgc1) 90.44 *** 0.0000 300 5,327,211.8707 [5,289,995.8337, 5,341,231.7847]

(pfgc2) 2,494,641.9549 [2,461,170.3222, 2,506,791.0606]

Note: *** indicates significance at the levels of 1%; the p value and critical value are obtained by repeated sampling
300 times using the bootstrap method.

3.4. Analysis of Model Results

The study used Stata 16.1 measurement software to conduct the regression to inves-
tigate the efficiency of FMI in increasing carbon sinks in 40 key SOFRs in Heilongjiang
Province. The specific results are shown in Table 4.

Model (1) showed the regression result of the individual fixed-effects model, which
verified the cost-effectiveness of increasing the carbon sink by FMI without considering the
lagging impact of FMI on the carbon sink. Model (2) and Model (3) examined the efficiency
of FMI in increasing the carbon sink when FMI lagged by one and two periods. Model (4)
used the carbon sink as the threshold variable to examine the differences in the efficiency
of FMI under different levels of the carbon sink.

(1) Model (1) showed that the impact of FMI in SOFRs on the carbon sink did not pass
the 10% significance test. However, from a theoretical point of view, FMI includes
forest tending investment, forest management and protection investment, forestry
fixed asset investment, afforestation and renewal investment, NFPP investment, forest
quality improvement investment, and other aspects. These funds will increase the
forest stock to varying degrees, thereby increasing the forest carbon sink, but the
results of the model had no significant impact. The possible reasons are as follows.
First, after the investment of forestry funds, the implementation of measures such as
afforestation and forest tending take a certain amount of time. Second, some forest
management and protection measures do not have an immediate positive impact on
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forest carbon sinks. For example, thinning will cause a short-term decline in carbon
storage. In addition, measures such as forest tending and artificial afforestation
require a certain amount of time to affect the carbon sink, and they do not have an
immediate impact on the carbon sink. Therefore, it takes a certain period from the
investment to produce obvious effects—that is, the influence of the variable lninvestit
on lncarbonsinkit lags.

(2) We determined the reasonable lag period for FMI in 40 key SOFRs and used this as a ba-
sis to analyze the efficiency of increasing the carbon sink, such as in Models (2) and (3).
Since we took the logarithm of all variables, the coefficient in the result indicated
the sensitivity of the carbon sink to changes in FMI. The results showed that the
elasticity coefficients of FMI for the first and second periods of lag were 0.01419 and
0.00750, respectively. The elasticity coefficient (sensitivity) was the largest when the
FMI lagged for a period, which was 0.01419. This result means that for every 1%
increase in the amount of FMI, the carbon sink will increase by 0.0142%. Therefore,
we chose one lagging period of FMI as a reasonable lag period.

(3) The efficiency of FMI in forest regions with high carbon sinks was greater than that
of regions with low carbon sinks, as shown in Model (4). At different carbon sink
levels, FMI had a significant positive impact on the carbon sink (p < 0.01), but there
was strong heterogeneity. The carbon sink of each forest region can, to a large extent,
represent the scale of the forest region and the endowment of forest resources. The
areas with higher carbon sinks were mostly forest regions with large scales and better
endowments of forest resources. Due to the existence of the scale effect, the large-scale
forestry management effect was obviously better [11]. When the carbon sink was less
than 5,327,211.8707 tons, FMI had a significant positive impact on the carbon sink
(p < 0.01), and the elasticity coefficient was 0.00953. That is, for every 1% increase in
FMI, the carbon sink value of the region increased by 0.00953%. When the carbon
sink was higher than 5,327,211.8707 tons, FMI had a significant positive impact on
the carbon sink (p < 0.01), and its elasticity coefficient was 0.02175. That is, for every
1% increase in FMI, the carbon sink value of the region increased by 0.02175%. The
higher the value of the elasticity coefficient of FMI was, the greater the contribution
rate of FMI to the growth of the carbon sink, and the higher the investment efficiency.
The latter’s FMI efficiency was 128.23% higher than that of the former. According to
the threshold regression results, Figure 7 was drawn, in which the pink and blue areas
are areas with low and high FMI efficiency, respectively.
Among the control variables (Models 1, 2, 3, and 4), the GDP has an inverted U-
shaped impact on the carbon sink. That is, as the level of forestry output value in each
forest region increased, the carbon sink showed a trend of “rising first, then falling”,
following the basic path of the environmental Kuznets curve. In Model (4), the number
of employees had a significant positive impact on the carbon sink (p < 0.01), and the
coefficient value was 0.03713. Precipitation had a significant positive impact on the
carbon sink (p < 0.01), with a coefficient value of 0.22435. That is, for every 1% increase
in precipitation, the carbon sink increased by 0.22435%. The results met the tree
growth principles and theoretical expectations, thus verifying the logic of the model
and the reliability of the results.

(4) The FMI shows a law of diminishing marginal benefits for increasing carbon sinks
in each forest region, as shown in Figure 8. With the increase in FMI, the effect of
increasing the carbon sink showed a downward sloping curve. The result passed
the significance test, and the confidence interval of the coefficient value at each point
did not include 0. Since this model was the result of nonparametric estimation, the
estimation result of FMI on the carbon sink parameters in the individual fixed-effects
model should be an oblique upward curve, and the coefficient value should be positive.
When the investment amount in the forest region exceeded CNY 100 million, the
growth rate of the carbon sink remained at a low level. However, the marginal benefit
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curve did not intersect or approach 0, indicating that FMI has not yet reached the
optimal investment scale, and additional investment should be reasonable.

Table 4. Test results of threshold effect.

lncarbonsink
Model (1) Model (2) Model (3) Model (4)

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

lninvest 0.0025 0.0032
l1lninvest 0.0142 *** 0.0028
l2lninvest 0.0075 *** 0.0025
l1lninvest

(carbonsink < 5,327,211.87) 0.0095 *** 0.0036

l1lninvest
(carbonsink > 5,327,211.87) 0.0218 *** 0.0036

lngdp −0.4726 *** 0.1355 −0.4226 *** 0.1353 −0.5291 *** 0.1517 −0.3747 *** 0.1178
lngdp2 0.0225 *** 0.0062 0.0205 *** 0.0062 0.0251 *** 0.0069 0.0184 *** 0.0053
lnwage 0.0053 0.0057 0.0027 0.0058 0.0043 0.0059 −0.0048 0.0067

lnworkpop 0.0218 ** 0.0108 0.0342 *** 0.0125 0.0302 ** 0.0127 0.0371 *** 0.0117
llncarbonsink 0.1633 *** 0.0151 0.1634 *** 0.0143 0.1343 *** 0.0173 0.1551 *** 0.0299

lnpre 0.2460 *** 0.0309 0.2352 *** 0.0301 0.2370 *** 0.0309 0.2244 *** 0.0183
lntemp −0.0147 0.0517 −0.1008 ** 0.0442 0.0096 0.0508 −0.0596 0.0929
_cons 13.5153 *** 0.9451 13.3558 *** 0.9058 14.1423 *** 1.0501 13.1809 *** 0.9350

Note: *** and ** indicate significance at the levels of 1% and 5%, respectively; llncarbonsink is the lncarbonsink
value of lagging phase one; l1lninvest is the lninvest value of lagging phase one, and the rest may be deduced by
analogy. To reduce the possible heteroscedasticity in the model, we took the logarithm of the variables on both
sides of the formula.
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4. Discussion

This paper used panel data from 40 SOFRs in Heilongjiang Province from 2001 to 2019
for 19 periods, selected the panel threshold model to divide the carbon sink threshold, and
examined the efficiency and difference of FMI in increasing the carbon sink value under
different carbon sink levels. The analysis of the results showed that the amount of carbon
sink greatly affected the efficiency of FMI and verified the law of diminishing marginal
returns of FMI. The main differences from previous studies are as follows: (1) We visualized
the changes in the carbon sink and FMI in key SOFRs in Heilongjiang Province in time
and space to facilitate dynamic analysis. (2) We excluded the sensitivity of FMI changes to
carbon sinks on a large scale. (3) We used the panel threshold model to fully investigate
the impact of the carbon sink in each forest region on investment efficiency, and then
identified efficient FMI areas. (4) Partially linear functional-coefficient panel data models
were used to verify that the FMI in the key SOFRs in Heilongjiang Province followed the
law of diminishing marginal returns. The research significance of this article mainly lies
in the following: carbon sinks were used to characterize the natural conditions, forest
resources, and scale of each forest region, and natural factors were included in the system
to measure the efficiency of FMI in increasing carbon sinks. According to the differences
in FMI in different forest regions, the results provided a decision-making basis for SOFR
management, capital allocation, and high-quality forest development, and promoted the
realization of the “dual carbon” goal.

During the study period, the overall carbon sink level of the key SOFRs in Heilongjiang
Province fluctuated greatly. The possible reason is that the SOFRs, as one of the country’s
timber supply producing areas, have an annual timber output of up to 4 million cubic
meters, and the objects of logging are mostly mature forests and overmature forests. The
carbon storage in mature forests and overmature forests is higher than that in young,
middle-aged, and near-mature forests, and logging will result in a short-term decline in
carbon storage. Additionally, the annual net productivity of young forests and middle-aged
forests will reach the highest value after a certain period of time and do not immediately
contribute to the increase in carbon storage. In addition, measures such as forest tending
and artificial afforestation require a certain amount of time to affect the carbon sink, so
immediate results are not visible. In addition, forests are affected by multiple factors, such
as pests, wind breaks, and drought. Especially in 2007 and 2011, the annual rainfall was
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significantly lower than that in other years, which restricted the growth of trees and caused
a short-term decline in the carbon sink. In addition, in 2015, the state issued a policy stating
that logging was prohibited in all natural forests in northeast China [49,50], and the carbon
sinks of forest regions increased. Therefore, there were large fluctuations in the changes in
the carbon sink in the study area.

Previous research methods did not consider the impacts of forest scale and resources
on the efficiency of FMI. Therefore, it was impossible to accurately identify high-efficiency
investment areas, and it was difficult to improve the level of carbon sinks and the efficiency
of FMI in a targeted manner, resulting in a waste of forestry funds. In this paper, the
investment efficiency of forest management in the key SOFRs of Heilongjiang Province,
divided according to the amount of carbon sink, was quite different. There were 21 forest
regions with carbon sinks of less than 532,721.87 tons, and their FMI efficiency was 56.18%
lower than that of forest regions with more than 532,721.87 tons. In forest regions with low
FMI efficiency, first, the amount of FMI should be reasonably controlled, and limited funds
should be allocated to forest regions with higher efficiency. Second, the management and
supervision of the use of forestry funds should be strengthened, disease and insect pests
and drought should be prevented in a timely manner, and timely thinning and replanting
should be carried out to improve forest quality in SOFRs.

This paper verified that the effect of increasing the carbon sink of FMI reflected the
law of diminishing marginal benefits. According to the results of the model, when the FMI
was greater than CNY 100 million, the marginal benefit remained at a stable low level. This
result means that when the FMI reached CNY 100 million, the carbon sink volume did not
change significantly. However, the marginal benefit curve did not intersect at 0, indicating
that FMI has not yet reached the optimal investment scale. Therefore, the government
should reasonably increase the amount of FMI when planning FMI in various forest regions.
However, since all FMI is used to improve forest quality, the growth potential of each unit
area of forest in a certain period of time is limited. Therefore, even without considering
the problems in the process of fund management and use, there is a diminishing marginal
benefit for each share of funds to increase the carbon sink. Generally, after the forest quality
reaches a certain level, even if the FMI gradually increases, the forest quality tends to have
a stable and slow growth state. Therefore, the effect of increasing the carbon sink of FMI
shows a law of diminishing marginal benefits.

The main contribution and innovation of the research lies in the establishment of
an evaluation system for FMI efficiency. In addition, natural factors and forest resource
characteristics are incorporated into the system to measure the utilization efficiency. Our
research will help to explore the reasons for the differences in FMI efficiency, promote forest
management according to local conditions, and improve the utilization efficiency of SOFRs.
Furthermore, our research constructs a calculation method for the optimal investment scale
for the purpose of ecological benefit. It plays an important role in improving government
budget and final accounts, and provides a decision-making basis for forest management,
fund allocation, and high-quality forest development. Of course, our research has limita-
tions. Our research area was limited to SOFRs in Heilongjiang Province, and the results
of the study have directional policy significance for SOFRs. However, due to regional
heterogeneity, the applicability of this result to other SOFRs remains to be further verified.
Future research can use the methods described in this paper to explore the difference in the
efficiency of state-owned FMI and collective FMI in increasing carbon sinks. In addition,
future research can subdivide the efficiency of increasing the carbon sink in various SOFRs
and provide targeted suggestions for government FMI management and decision making.

5. Conclusions

This paper used the panel data from 40 SOFRs in Heilongjiang Province from 2001 to
2019 as the research sample. First, the individual fixed-effects model was used to determine
a reasonable lag period, and then the panel threshold model was selected to investigate
the increase in carbon sink efficiency and differences in FMI under different carbon sink
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levels. In addition, partially linear functional-coefficient panel data models were used to
verify the law of the effect of FMI on increasing the carbon sink. The main conclusions
of the study were as follows. (1) The aggregate carbon amount of SOFRs in Heilongjiang
Province from 2001 to 2019 showed an overall upward trend, the total growth rate was
20.17%, and the overall fluctuation was large. In terms of space, the carbon sink showed a
phenomenon of “increasing as a whole and decreasing in a small area”. The SDE of the
carbon sink presented a pattern of “southeast–northwest” and showed the characteristics of
“from southeast to northwest” migration. In addition, the carbon sink of each forest region
was quite different, showing the characteristics of “more in the north and south, but less in
the middle”. (2) The total FMI from 2001 to 2019 was approximately CNY 46.745 billion,
showing an upward trend, but the amount of FMI varied greatly among forest regions.
(3) The amount of carbon sink in each forest region significantly affected the efficiency of
increasing the carbon sink by FMI. When the carbon sink was less than 5,327,211.8707 tons,
the elasticity coefficient of the impact of FMI on the carbon sink was 0.00953. When the
carbon sink was higher than 5,327,211.8707 tons, the elasticity coefficient of the impact of
FMI on the carbon sink was 0.02175, and the latter’s FMI efficiency was 128.23% higher
than that of the former. (4) The increasing carbon sink effect of FMI showed the law of
diminishing marginal benefits, but it has not yet reached the optimal investment scale.
When the FMI reached CNY 100 million, the growth rate of the carbon sink remained at a
low level.

Overall, the government should reasonably increase the level of FMI in various forest
regions and simultaneously strengthen the management and supervision of the use of forest
management funds. Additionally, timely prevention of plant diseases and insect pests,
drought prevention and moisture conservation, and timely implementation of forestry
measures such as thinning and replanting should be implemented. The high-quality
development of forests in the key SOFRs of Heilongjiang Province should be promoted and
the realization of the “dual carbon” goal can be achieved.
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