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Abstract: The forest mortality models developed so far have ignored the effects of spatial correlations
and climate, which lead to the substantial bias in the mortality prediction. This study thus developed
the tree mortality models for Prince Rupprecht larch (Larix gmelinii subsp. principis-rupprechtii), one of
the most important tree species in northern China, by taking those effects into account. In addition to
these factors, our models include both the tree—and stand—level variables, the information of which
was collated from the temporary sample plots laid out across the larch forests. We applied the Bayesian
modeling, which is the novel approach to build the multi-level tree mortality models. We compared
the performance of the models constructed through the combination of selected predictor variables
and explored their corresponding effects on the individual tree mortality. The models precisely
predicted mortality at the three ecological scales (individual, stand, and region). The model at the
levels of both the sample plot and stand with different site condition (block) outperformed the
other model forms (model at block level alone and fixed effects model), describing significantly
larger mortality variations, and accounted for multiple sources of the unobserved heterogeneities.
Results showed that the sum of the squared diameter was larger than the estimated diameter, and the
mean annual precipitation significantly positively correlated with tree mortality, while the ratio of the
diameter to the average of the squared diameter, the stand arithmetic mean diameter, and the mean of
the difference of temperature was significantly negatively correlated. Our results will have significant
implications in identifying various factors, including climate, that could have large influence on tree
mortality and precisely predict tree mortality at different scales.

Keywords: Bayesian logistic model; climate sensitive model; tree mortality; forest management

1. Introduction

Forest stands change over the years, as tree growth and mortality phenomena oc-
cur. Tree mortality, one of the main components of forest succession and dynamics,
is important for the maintenance of biological and structural diversity in forest ecosys-
tems [1]. Quantitative analysis of tree mortality is very important for understanding stand
structure and dynamics. Tree mortality may be quantified through modeling that produces
tree mortality models, and these are used as fundamental tools for informed decision
making in forestry [2–5].

Forest stand growth is largely affected by many factors, which may be endogenous and
exogenous to a stand itself. The endogenous factors are related to individual tree and stand
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attributes and contribute to tree mortality at different ecological scales. Commonly used
attributes at individual scales include tree species, tree height, tree diameter at breast height
(DBH), diameter increment, basal area increment, and relative basal area increment [6,7].
Moreover, stand attributes affecting tree mortality, including dominant height, stand mean
quadratic diameter, topographic and edaphic factors, and competition. Among them,
factors describing competition, basal area of neighboring trees larger than the target tree
(BAL), relative spacing index (RSI)), sum of basal areas in each diameter class/total basal
area of each sample plot (BAP), are often used as predictor variables in the forest mortality
models [3,4,8–10].

In addition, many exogenous factors also largely affect tree mortality, and they include
the factors of climate, wildfire, insect-pest outbreak, geological hazard, and so on [11–14].
The climate effect on the tree mortality is identified as the most important exogenous
factor [14,15].

The tree mortality mechanism is complex, as the factors involved in the mortality
mechanism are interconnected. Due to this, our understanding of tree mortality could
always be inadequate. This has led researchers to use the predictor variables that could
be easily obtained, such as variables of tree size, stand structure, stand dynamics, stand
density, or competition, to build the tree mortality models [16]. Most of the existing
mortality modeling works have focused on the background mortality associated with
the endogenous processes originating internally from within a stand, including density-
dependent thinning [17], senescence of older trees, crushing and physical damages [18], and
biotic disturbances including endemic pathogen and insect activities [19]. Tree mortality
ultimately drives the long-term patterns of forested ecosystems development.

A number of modeling methods have been applied to develop tree- and stand-level
mortality models, such as ordinary least square regression, mixed-effects modeling, and
machine learning. Hamilton [20] introduced the logistic regression for tree mortality
modeling as an appropriate choice [13,21]. Since then, due to the ease of the parameter
interpretation [22], logistic regression is widely used to build the tree mortality models
(e.g., [14,23,24]). Other mathematical functions and statistical methods used for describing
and modeling tree mortality are exponential function [25], empirical function [26,27],
Weibull function [28], Binomial function [29], Richards function [30], Gamma function [31],
neural networks modeling [32], and Hazard function [33]. However, all these functions
and modeling approaches show a little improvement over the logistic modeling [3,9,13].

To the authors’ knowledge, climate effects on tree mortality remain poorly character-
ized quantitatively for Prince Rupprecht larch forest in northern China, as most of the stud-
ies have focused on tree biomass and other characteristics including crown width [34–36],
but only a few deal with tree mortality. However, most of these models are also the
traditional ones, and lack the variables that could effectively account for tree mortality
variations caused by climate effects, such as tree-based mortality models for Chinese fir
(Cunninghamia lanceolata (Lamb.) Hook.) and Mongolian oak (Quercus mongolica Fischer ex
Ledebour) [14].

The data set used in the current study was acquired from the trees growing in different
stands with different site conditions, which would result in the hierarchical data structure.
Compared with the traditional modeling methods, the Bayesian multilevel modeling is the
most appropriate to develop the tree mortality models.

The Bayesian multilevel models could be widely used to account for the correlations
among the predictor variables, and to consider the prior knowledge of model parame-
ters [37,38]. Mauricio [39] applied the Bayesian method to estimate tree biomass using
data from six trees, producing similar fitting results, as the classic statistical methods that
uses data from 40–60 trees [40]. Zhang [41] confirmed that the Bayesian method with
the informative priors outperformed the non-informative priors and the classic statistical
methods [39].

The Bayesian estimation method is one of the alternative methods of statistical infer-
ence to evaluate the ecological models [41,42]. The Bayesian method has unique advantages
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in two main situations. Firstly, it is fully consistent with the mathematical logic, while
classic statistical methods are only logical concerning making probabilistic statements
about the long-term average from the hypothetical replicates of data, but not hypotheses.
Secondly, relevant prior knowledge on data can be incorporated naturally into the Bayesian
analysis, whereas classical methods ignore the prior knowledge other than the sample data.

Prince Rupprecht larch (Larix gmelinii subsp. principis-rupprechtii.) forests occupy
approximately 65% of the forested lands in northern China, dominating the forest ecosys-
tems in the area. Many studies have demonstrated that larch forests play critical roles in
carbon storage and carbon cycling in the region [43,44]. Larch is climate sensitive, and the
temperature has increased in recent years, large-scale wilting is found in larch forests in the
region, although its death rate differs significantly among the regions due to differences in
site conditions and environmental factors [45,46]. The climatic and ecological benefits of
the intact larch forests are potentially threatened by increasing tree mortality because of
changes of the endogenous and exogenous factors [47–49].

To address the above-mentioned issues, especially climatic effects and spatial corre-
lations on tree mortality, this study chose the potential predictor variables at three levels:
Tree-level variables, stand-level variables, and climate variables to develop the tree mortal-
ity models for larch species using the Bayesian modeling approach. The specific objectives
of this study were to: (1) Select the best combination of predictor variables that could be
used to develop the precise tree mortality models using the Bayesian modeling, (2) develop
tree-based mortality models and evaluate their performance, and (3) evaluate the effects
of the combined set of the predictor variables on tree mortality. The presented results
will be useful for carbon accounting in the regions and decision making in larch forest
management planning in north China.

2. Materials and Methods
2.1. Data

The mortality data were collected from 102 temporary sample plots (TSPs) laid out
across the state-owned Guandi Mountain Larch forest (67 TSPs) and the state-owned
Boqiang larch forest (35 TSPs) in northern China (Figure 1). TSPs nested into the nine
different site conditions (defined as blocks), and data were collected from July through
September in 2015. Each sample plot is featured with a square shape with an area of 400 m2.
We only considered the trees with diameter at breast height (D) > 5 cm for measurement of
total height, DBH, dominant height, height to live crown base, and four crown radii. Tree
height was measured with the ultrasonic altimeter; crown width was measured in four
directions by the handheld laser range finder, dominant height of the stand was obtained
as an average of the four tallest tree heights in each TSP. Trees were grouped into diameter
classes with 4 cm interval, starting from 5 cm, i.e., [5,6), [6,10), . . . , [58,62). The median
value of the intervals was assumed as a diameter class value. The distribution pattern of
forest mortality is shown in Figure 2.

2.2. Selection of Predictor Variables

All the predictor variables that we evaluated for their potential contributions to tree
mortality were grouped into the three sets based on the information related to tree- or
stand- or climate-related mortality, (1) individual predictor tree variables (I): Diameter at
breast height (D), tree height, ratio of diameter to average square diameter of stand (RD)
and the sum of squares of tree diameters larger than the estimated diameter (DL); (2) stand
predictor variables (S): Stand density (N), stand dominant height (DH), mean quadratic
diameter (SMD) and RSI; (3) Climate predictor variables (C): Sixteen bioclimatic variables
computed at the spatial resolution of 1 km × 1 km grids [50]. Climate data sets (1981–2012)
were downloaded from the Climate AP based on the longitude, latitude, and elevation of
each TSP. Data acquisition interval is one year. The definitions of all the climate variables
are provided in Table 1. The mean values and the amplitude according to these predictor
variables are given in Table 2.
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Table 1. Definition of climate variables.

Variables Meaning

MAT (◦C) Mean annual temperature
MWMT (◦C) Mean warmest month temperature
MCMT (◦C) Mean coldest month temperature

DT (◦C) Temperature difference between MWMT and MCMT, or continentality (◦C)
MAP (mm) Mean annual precipitation
AHM (◦C) Annual heat (MAT + 10)/(MAP/1000)

DD (◦C) Degree-days below 0 ◦C, chilling degree-days
DD5 (◦C) Degree-days above 5 ◦C, growing degree-days

DD_18 (◦C) Degree-days below 18 ◦C, heating degree-days
DD18 (◦C) Degree-days above 18 ◦C, cooling degree-days

NFFD The number of frost-free days

PAS Precipitation as snow (mm) between August in previous year and July in
current year

EMT Extreme minimum temperature over 30 years
EXT Extreme maximum temperature over 30 years
Eref Hargreaves reference evaporation

CMD Hargreaves climatic moisture deficit

Table 2. Summary statistics of the variables at three levels. D: Diameter at breast height, H: Individual
tree height, DL: Sum of squares of tree diameters greater than the estimated diameter, RD: Ratio of
subject tree diameter to average square diameter of stand, N: Stand density, DH: Stand dominant
height, SMD: Stand mean quadratic diameter, RSI: Relative spacing index, and the meanings of
climate variables are shown in Table 1.

Scales Variables Min Max Mean Std

individual tree variables (I)

D (cm) 5.00 67.00 20.92 10.08
H (m) 1.80 37.80 16.52 7.22

DL (cm) 0 4.28 1.52 0.79
RD 0.16 2.93 0.95 0.43

Stand variables (S)

N 250.00 2875.00 1233.00 555.47
DH (m) 15.86 30.72 23.08 3.12

SMD (cm) 12.69 33.44 23.03 3.97
RSI 0.48 1.59 0.77 0.17

Climate variables (C)

MAT (◦C) 0.90 4.40 3.20 1.29
MWMT (◦C) 14.60 17.60 16.52 0.98
MCMT (◦C) −14.20 −10.70 −12.02 1.33

DT (◦C) 28.30 29.00 28.52 0.33
MAP (mm) 574.00 789.00 583.00 77.41
AHM (◦C) 14.20 25.10 20.97 4.17

DD (◦C) 1023.00 1515.00 1194.00 182.19
DD5 (◦C) 994.00 1575.00 1368.00 205.17

DD_18 (◦C) 4917.00 6123.00 5336.00 441.26
DD18 (◦C) 11.00 53.00 34.09 14.21

NFFD 152.00 173.00 164.10 6.87
PAS 41.00 140.00 69.74 38.71
EMT −28.60 −26.30 −27.33 0.86
EXT 25.20 28.80 27.64 1.26
Eref 540.00 719.00 664.50 70.86

CMD 44.00 199.00 139.40 62.70
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3. Model Development
3.1. Individual Tree Variables

The DL was calculated as a larger value than the sum of squares of the diameter of the
target tree in a stand (Equation (1)). The RD was calculated as a ratio of diameter and stand
mean square diameter (Equation (2)).

DLijk =

nij

∑
l=1

D2
ijl if Dijl > Dijk (1)

RDijk =
Dijk

∑
nij
l=1 D2

ijl/Nij
(2)

where DLijk and RDijk are the corresponding DL and RD of the kth tree on the jth sample
plot nested within the ith block, Dijk (Dijl) is the DBH of the kth (lth) tree on the jth sample
plot nested within the ith block, and Nij is the number of observations in the jth sample plot
nested within the ith block.

We dealt with the multiple collinearity problems between the predictor variables using
the variance inflation factor (VIF). We retained the predictor variables with VIF < 5 in our
final models, for example, D2, 1/D and other variables with VIF > 5 were excluded. In
addition, DL and RD also significantly correlated with D, which could more effectively
reflect the competition intensity than D, and therefore we excluded D from our final model.

3.2. Stand Variables

We chose widely used stand-level variables, such as dominant height and relative
spacing index to fit the models. The index (Equation (3)) was calculated as suggested by
Wyckoff and Clark [51].

RSIij =

(
10000

Nij

)0.5

DHij
(3)

where RSIij, Nij, and DHij are the RSI, stand density (N, trees/ha) and dominant tree
height (DH, m), respectively, of the jth sample plot nested within the ith block. The four
dominant trees (four largest trees in a 400 m2 sample plot) were identified and measured.
DH is arithmetic mean of four dominant heights [52].

3.3. Climate Variables

We evaluated the potential contributions of each climate variable (Table 1) to the
description of the mortality variations. Only those variables, which were uncorrelated
or less correlated or had VIF < 5 and contributed significantly to the descriptions of tree
mortality were retained in the final model. With this selection approach, only two predictor
variables—mean of difference in temperature (DT) and mean annual precipitation (MAP)—
were found to significantly contribute to the mortality models, and were included as
predictor variables in the extended mortality models.

As mentioned earlier, we developed the logistic mortality models through retaining
only the significant predictor variables in the models. For an individual tree, it was
convenient to fit the probability of survival with a binary response variable (living or dead,
1 or 0, respectively). A widely used function for precisely describing the binary data is the
logistic model [13,53], which is expressed as,

Pij =
1

1 + e(β0+βxij)
(4)
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where Pij is the probability of survival in the jth sample plot nested in the ith block, xij is the
matrix vector of predictor variables used to fit the model, including individual, stand and
climate variables, β0 is the intercept, and β is the parameter vector.

By combining predictor variables at three different scales (individual tree, stand and
climate), the advantages and disadvantages of the resulting models were compared. We
built the models with combinations of the three scales of variables, such as I (only individual
tree variables), S (only stand variables), C (only climate variables), I + S (individual tree
and stand variables), S + C (stand and climate variables), I + S + C (individual tree, stand,
and climate variables), and then selected the best among these combinations using the area
under receiver operating curve (AUC), which the common statistical index used for model
comparison. Then, we used the best one to establish the logistic two-level models through
the Bayesian modeling.

3.4. Two-Level Models

Due to the hierarchical structure of data (trees in sample plots that are nested in a
block). We established both the one- and two-level models: Block (level 1) and sample
plot (level 2) level models. Let i(i = 1, 2, . . . , M) represent the level 1 unit (block) and
j(j = 1, 2, . . . , ni) represent the level 2 unit (plot); thus, a two-level random intercept logistic
model is expressed as:

In
(

p
1−p

)
= α1 + β1x1ij + β2x2ij + β3x3ij + . . . βqxqij + µi + vij

µi ∼ N(0, σ2
i ); vij ∼ N(0, σ2

ij)
(5)

where µi is a two-level random effect assumed to have a normal distribution with mean
0 and variance σ2

i . vj is a two-level random effect assumed to have a normal distribution
with mean 0 and variance σ2

ij. ui and vij represent the random effects of the ith block

and jth sample plot, respectively. β1–βq are the fixed-effect parameters and x1ij–xqij are q
selected predictors.

To develop the models, fixed effects only, block random effects, and two-level random
effects were included into the intercept, in addition to the three-level variables (individual,
stand, and climate variables). Both the one- and two-level models were fitted to account for
the autocorrelations of the observations in the block (level 1) with sample plot (level 2).

All the parameters of the Bayesian logistic models are estimated through the Markov
chain Monte Carlo (MCMC) simulation using the R package MCMCglmm, which uses the
combination of Gibbs sampling, slice sampling, and Metropolis–Hastings sampling [54]. We
used “non-informative” priors for all the regression coefficients, i.e., a normal distribution
with zero mean and a large variance (104). It is important to note that the posterior mean
depends largely on the choice of the non-informative priors for the variance component,
i.e., uniform (0, 1) and Inverse Gamma (0.001, 0.001) [53]). We set some parameters, such
as the total number of iterations: 60,000 with a burn-in of 10,000 for tree mortality models.
Additionally, thinning parameters were all set to 10 to reduce the autocorrelations and we
chose the Inverse Gamma (0.001, 0.001) as the variance component.

The Akaike Information Criteria (AIC) was used to evaluate the fitting performance of
models [55]. The smaller the AIC, the better the model fitting effect would be.

3.5. Model Evaluation

The Bayesian two-level models were compared with the Bayesian fixed-effect (non-
hierarchical) models using the deviance information criterion (DIC) [55], which is calculated as:

Q = −2 log(Prob(y |Ω ))
DIC = 2Q−Q(Ω)

(6)

where Q
(
Ω
)

is some set of the model parameters and it is the effective number of param-
eters in the model, mean deviance (Q) is calculated over all the iterations, and it is the
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posterior mean of the deviance, Q(Ω) = 2Q−Qhat. Qhat is a point estimate of deviance
given by Qhat = −2 log(Prob(y

∣∣Ω)) . The advantage of DIC over other criteria in Bayesian
model selection is that DIC can be easily calculated from samples generated by an MCMC
simulation. Models with lower DIC values indicate a better fit to the data in which differ-
ences ≥5 are regarded as substantial evidence and differences ≥10 are regarded as very
strong evidence in favor of the model with the lowest DIC [54].

The value of the area under the receiver operating curve (AUC) is a threshold-
independent indicator to differentiate live and dead trees. The models with larger AUC
values indicate a better fit to the data [56]. In general, an AUC value of 0.5 suggests no
discrimination, 0.6–0.7 indicates poor discrimination, 0.7–0.8 suggests acceptable discrimi-
nation, and 0.8–0.9 stands for an excellent discrimination between live and dead trees [8].
The threshold is calculated by the ROCR package in R [57], which is used to determine
that the predicted values of the developed models were 1 or 0. If the predicted values of
tree mortality were greater than or equal to the corresponding threshold, the tree mortality
would be equal to 1; otherwise, it would be equal to 0.

4. Results
4.1. Model Evaluation

The results showed that I, S, C, I + S, S + C, and I + S + C were the best model forms
for simulating tree mortality through the Bayesian modeling with a combination of three
levels of the predictor variables (Table 3). The models including individual variables (e.g.,
I, I + S, I + C, and I + S + C) showed the superior fit indices (higher AUC values) compared
to other models (S, C, S + C), which had smaller AUC values. Thus, we considered only
four models (I, I + S, I + C, I + S + C) with the individual predictor variables to develop
both the one- and two-level models.

Table 3. Model comparison and selection; AUC area under receiver operating characteristic.

Model Equation AUC Threshold

I 1.7026 − 1.4113DL + 7.1936RD 0.832 0.908
S 29.6056 + 0.4059SMD − 0.8952DH 0.604 0.885
C −259.3 + 10.49DT − 0.0039MAP 0.604 0.885

I + S −0.0514 − 0.9608DL + 4.4935RD +
0.0529SMD 0.831 0.889

I + C 3.1002 − 1.2071DL + 6.1207RD −
0.0025MAP 0.832 0.901

S + C −437.1 + 0.8300SMD − 1.009DH +
17.78DT − 0.0638MAP 0.603 0.882

I + S + C −0.8265 − 1.104DL + 6.611RD +
0.1167SMD + 3.118DT − 0.0012MAP 0.832 0.894

Note: I (only used individual variables), S (only used stand variables), C (only used climate variables), I + S (used
individual and stand variables), I + C (used individual and climate variables), S + C (used stand and climate
variables), I + S + C (used three levels variables). All the models were named with one of the seven combinations,
such as I, S, etc. The sum of squares of tree diameters greater than the estimated diameter (DL), ratio of subject tree
diameter to average square diameter of stand (RD), stand dominant height (DH), stand mean quadratic diameter
(SMD), mean of difference in temperature (DT), and mean annual precipitation (MAP). AUC: The value of the area
under the receiver operating curve; the thresholds used to determine the predicted values of developed models
were 1 or 0. If the predicted values of tree mortality were greater than or equal to the corresponding threshold, the
tree mortality would be equal to 1; otherwise it would be equal to 0.

4.2. Two-Level Mortality Model

As mentioned above, we only selected four alternatives (I, I + S, I + C, I + S + C) to
include the random effects at one level and two levels into the tree mortality models. We
chose the optimal threshold from the base models, the one-level model, and the two-level
model. Then, we used the optimal threshold to calculate the AUC value for each model.
For example, we chose a better threshold from the basic, one-level, and two-level models
using individual level variables, and then we applied this threshold to the three models to
calculate the AUC value.
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The parameter estimates, associated standard deviations, DIC, and AUC for Bayesian
fixed-effect (non-hierarchical), one-level, and two-level models are presented in Table 4.
The fixed-effect parameter estimates in the multilevel models were larger than those in
the fixed-effect models; therefore, ignoring the random effects underestimated most of the
fixed-effect parameters.

Table 4. Parameter estimates of tree survival models from fixed-effect (non-hierarchical: Base,
one-level, and two-level random effects) models using the Bayesian method.

Model Form
I S C Variance

Component Thres-Hold AUC DIC
Intercept DL RD SMD D T MAP Block Plot

I
base 1.703

***
−1.411

***
7.194

***
0.908

0.828 1498.87

One-level 1.409 ** −1.119
*** 5.214 *** 1.003 0.832 1479.14

Two-level 1.727 * −1.409
***

−1.119
*** 2.335 0.966 0.830 1445.76

I + S
base −0.051 −0.961

***
4.494

***
0.053

***
0.889

0.831 1598.87

One-level 0.175 −1.115
*** 4.782 *** 0.058

. 0.843 0.832 1472.02

Two-level −0.608 −1.055
*** 5.501 **** 0.092

* 1.368 0.577 0.830 1463.21

I + C
base 3.100

***
−1.207

***
6.121
***

−0.002
*

0.901
0.832 1580.79

One-level 3.617
**

−1.243
***

5.584
***

−0.003
. 1.126 0.830 1469.72

Two-level 6.844 −1.104
***

6.319
*** −0.008 2.472 0.832 0.826 1439.77

I + S + C
base −82.65

***
−1.104

***
6.611
***

0.117
***

3.118
***

0.012
***

0.894
0.832 1544.29

One-level −63.36 −1.224
***

6.178
***

0.102
. 2.424 −0.011

. 1.215 0.830 1455.61

Two-level −16.81
.

−0.944
***

6.36
***

0.1187
*

6.420
.

−0.026
* 3.879 0.626 0.834 1441.67

* Indicates the difference between parameter estimates and 0 using t-test. ‘***’: p < 0.0001, ‘**’: p < 0.001, and ‘*’:
p < 0.05, ‘.’: p < 0.10. The definitions of these parameters are the same as those in Table 3.

The DIC values of the Bayesian one-level and two-level models were much smaller
than the base model, which indicates that both the one-level and two-level models are
superior to the base model. Compared to the base model, the two-level model showed
better-fit indexes (bigger AUC and smaller DIC). Compared to the different model by
using different level predictor variables, the Bayesian two-level model showed superior fit
indexes (smaller DIC and bigger AUC).

For the model constructed by the combination of predictor variables, for all forms of
the components, AUC values of all models were greater than 0.8; thus, all the models were
considered adequate in terms of their precisions.

In accordance with the base, one-level and two-level models of I (I + S, I + C, I + S + C),
tree mortality significantly negatively correlated with RD and SMD, but positively corre-
lated with DL. Two-level models showed the largest AUC and the smallest DIC.

4.3. Climate Effects on Tree Mortality

A summary of the parameter estimates obtained in the climate sensitive mortality
models is provided in Table 4. Two climatic variables DT and MAP were significantly
correlated with tree mortality. In the two-level models, DT had a negative effect on the
mortality of Chinese fir. While the climate effects, including DT and MAP on the tree
mortality were significant (Table 4), the effects were relatively small (Figure 3).
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5. Discussion

The Bayesian modeling method could adequately describe the phenomenon of varia-
tions at multiple clustering levels of data, such as the block or the sample plot level in the
tree mortality analysis. Compared to the traditional modeling method, such as the ordinary
least square regression and the maximum likelihood method, the Bayesian method has
independent prior distributions to build the models [58]. Both the traditional and Bayesian
methods have their own features in the modeling tree and stand characteristics. We did not
intend to compare the Bayesian models against the traditional methods in details, as the
latter modeling approach is not suitable for the hierarchical data structure. In particular,
when the Bayesian prior is uninformative, the results of these two methods would be
almost similar [59–61]. Thus, in this study, we chose the Bayesian modeling method, which
is considered the best.

Several researchers have also reported that tree-level, stand-level, and climatic vari-
ables such as DBH, stand basal area, and mean annual temperature significantly contribute
to tree mortality [10,23,62]. We also evaluated these variables; however, prediction precision
of the resulting model did not significantly improve. The insignificant contributions of
such variables to the mortality models may be due to the inherent collinearity among other
variables that are included into the final models. Due to the uncertainties and complexity in
the tree mortality process, we lacked an effective tool or method to determine a reasonable
combination of tree-level, stand-level, and climatic variables and their interactions with the
stand-specific conditions for predicting tree mortality.

A ratio of the diameter to the average square diameter of the stand (RD) had a negative
correlation with tree mortality and the sum of squares of tree diameters greater than the
estimated diameter (DL) had a positive correlation. With smaller RD and bigger DL, the
probability of tree mortality would be smaller. This may be due to smaller RD and bigger
DL in the same stand, indicating that the individual tree DBH is small. As the tree mortality
rate generally decreases with increasing tree size, mortality rates can be higher for the
juvenile trees, decrease with increasing tree size, and start to increase again with further
increase of tree size [63]. Similarly, the effect of SMD (stand quadratic mean diameter)
(size index) on tree mortality was negative (i.e., greater SMD, smaller stand mortality),
indicating that tree mortality is more likely in the forests with many small trees compared
to the forests with larger trees [64]. This finding is also consistent with the study [65], which
shows that the mortality rate of young trees decreases with the increase of tree size and
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begins to increase when the mature age is reached. According to the local data survey [66],
the mature age of Prince Rupprecht larch is 85 years. In this study, the data we collected
were from natural secondary forests intervened in by human activities in the 1970s and
all the trees almost did not reach mature age. In addition, Prince Rupprecht larch is a
light-loving tree species. If young trees grown under the main forest layer obtain less light
resource due tree crowding and intense competition, they would die easily.

Several existing studies show the climate warming-induced drought that might be
the main driver of a widespread increase of tree mortality [13,67–71]. Our study confirms
that DT and MAP, which were selected among the 16 bioclimatic predictor variables, have
significant influences on tree mortality. A significant positive correlation with DT suggests
that low mean temperature in the warmest month and high mean temperature in the
coldest month increases tree mortality. Lower mortality is related to higher DT, and higher
DT indicates a higher probability of the high temperature of the study area within the
growing season, and hence the lower mortality rate [51,72]. This is also consistent with
the findings from the Table 4 and Figure 3 that an increase in temperature increases the
probability of survival (i.e., positive trend in Figure 3, and positive coefficients in Table 4).

Temperature affects tree growth and mortality by changing photosynthesis, respiration,
cell division and elongation, chlorophyll synthesis, enzyme activity, water absorption, and
transpiration [73]. Generally speaking, when the available water is not limited during
the growing season, the increase of temperature difference physiologically reduces the
probability of tree mortality. In this study, the temperature difference between day and
night in the state-owned Guandi Mountain Larch forest and the state-owned Boqiang larch
forest within the growing season of the Prince Rupprecht larch is small, and this means
that the Prince Rupprecht larch grows in the environment of extreme high temperature
for a long time, and the long-term extreme high temperature may increase the forest
mortality. The main reasons for this may be that: (1) Increasing water shortage of trees and
increasing drought pressure may directly or indirectly lead to tree mortality; (2) promotion
of growth and reproduction of insects and pathogens attacking trees; (3) Prince Rupprecht
larch trees situated close pores to prevent hydraulic failure (i.e., water column cavitation),
which may lead to carbon starvation because high respiratory costs lead to depletion of
carbon reserves [72]. The effect of drought caused by climate change on tree mortality
is consistent with the recent drought in the withering event of the subtropical monsoon
evergreen broad-leaved forest in southern China. In temperate forests in the western United
States, a positive correlation was observed between the short-term change of forest loss
and drought caused by climate change [19].

The significant positive correlations between the MAP and tree mortality (Table 4,
Figure 3) may be due to the co-effects of temperature and precipitation on tree mortality [72].
In northern China, overall, the temperature of the wettest quarter is quite high, and there
is the greatest amount of precipitation during the year [74]. However, Prince Rupprecht
larch is a typically drought-resistant species in northern China [66]. Therefore, too much
precipitation and too high temperature could inhibit physiological processes of the Prince
Rupprecht larch and growth [75]. In addition, a large amount of precipitation also causes
excessive nutrient loss by flooding [76]. These are the reasons that higher mortality is
related to a greater MAP.

Compared to the mortality models built with the tree-level predictor variables, the
improved method with the model built with the tree-level predictor variables could show
better performance. With the smallest DIC and the biggest AUC, the Bayesian two-level
model (I + S + C) was the best for predicting tree mortality of larch. This is similar to the
results with the random intercept term included in the multilevel tree mortality models,
which largely improved the fit index compared to the fixed-effect model [77]. Moreover,
to effectively account for spatial correlations of our data, we preferred using the Bayesian
modeling method. All three forms of the model (base, one-level, and two-level models),
which were constructed using the Bayesian modeling approach, showed the excellent
statistical indicators (AUC > 0.8). The influence of climate factors on the tree mortality are
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shown to be significant through modeling, and resulting mortality models can effectively
assess the forest mortality under climate change.

6. Conclusions

We built the tree mortality models with the inclusion of tree-level, stand-level, and
climatic predictor variables using the Bayesian modeling approach for Prince Rupprecht
larch in northern China. The main conclusions are:

(1) The best model included the predictor variables at three levels: Individual tree- and
stand-, and environmental (climate)-levels in the Bayesian logistic models.

(2) The Bayesian two-level model, which includes tree-level, stand-level, and climatic predic-
tor variables, outperformed all the other forms of the models, describing larger variations
of tree mortality and accounting for multiple sources of the unobserved heterogeneities.

(3) Tree mortality significantly positively correlated with the sum of squares of tree
diameters larger than the estimated diameter, and mean annual precipitation, but
negatively correlated to the ratio of the diameter to the average square diameter of
stand, the stand arithmetic mean diameter, and the mean of difference in temperature.

(4) Presented mortality models will have significant implications for identifying different
factors affecting tree mortality and precise prediction of the mortality.

(5) With the mortality data collected from a wider distribution of the tree species of
interest and advanced modeling techniques, the prediction performance of the tree
mortality models may be improved, which we aim for in the future.
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