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Abstract: This paper put forward a model for calculating the water requirements of plants, including
a transpiration model, stem water delivery model, and root water uptake model. The results showed
that the model had good accuracy. The relative error between simulated values and measured values
was 2.09–14.13%. The limiting effects of stem water delivery capacity and root water uptake capacity
on plant–water relations were analyzed. When the transpiration rate is large, even if there is enough
root water uptake capacity, the limited stem water delivery capacity may affect the plant–water
relationship. In order to understand the relationship between a plant and the thermal environment,
the effect of the thermal environment on a plant’s water requirements was analyzed, and the effect of
air temperature was obvious. Under the simulated condition, when the air temperature increased
from 0 ◦C to 40 ◦C, the water requirement of an apple tree increased from 0.0134 L/h to 33.8 L/h.

Keywords: plant water requirement; thermal environment; plant–water relation; stem water delivery

1. Introduction

Global warming has become an important issue affecting the sustainable development
of human society. Therefore, carbon neutralization has been contributing a lot to the
sustainable development of society. At present, plants’ carbon storage has become an
economic and effective method to reduce the content of carbon dioxide in the atmosphere.
Therefore, creating a suitable growth environment for plants, and making full use of land
resources have become very important problems to be solved in the development of plant
carbon storage technology [1,2].

Many factors can affect the growth environment of a plant, which include sunlight,
water, air temperature, humidity, and wind velocity [3]. When the canopy is affected by
environmental changes, transpiration pull will be generated in the plant, transmitting
water from the root system to the leaves through the stem. When a plant lacks water
directly or indirectly, it may lose vitality and wilt. Therefore, it is of great significance to
accurately model the plant’s water requirements to predict whether it will lose vitality [4].
The modelling of transpiration has been a popular research area for scholars. The current
studies on transpiration mainly focus on four levels: single leaf level, whole plant level,
stand level, and regional level. The modelling of single leaf transpiration and whole
plant transpiration are the basis for calculating the plants’ water requirement of stands or
regional vegetation [5]. Compared with the whole plant transpiration model, the single leaf
transpiration model can accurately predict the transpiration. Based on the aerodynamics
theory, Yuan [6] proposed a single leaf transpiration model that needed less environmental
data, and the model could also obtain precise results. However, due to the limitation
of the single leaf transpiration model, it may be difficult for it to be used to model the
transpiration of the whole plant. The plant adjusts the intensity of physiological activities
such as transpiration through stomatal movement [7], and the stomata could be affected by
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many factors. Research also showed that the stomata respond to both climate factors and
soil moisture changes [8], and the whole plant–water relationship could be affected by the
degree of stomatal movement. However, under severe thermal environmental conditions,
stomatal control would not be enough to effectively prevent the water loss of a plant [9].

As the channel for the water transport in a plant, the stem water delivery capacity
is affected by the anatomical features of the xylem and the physical properties of sap in
the plant [10,11]. At present, scholars have conducted much relevant research on sap
movement in plants [10,12], and many great results have been found. Because of the
invariable anatomical features of the xylem, there may exist a maximum value of the stem
water delivery rate. As one of the organs used by the plant to absorb water, the root can
be affected by transpiration, soil water potential, and root length density [13,14]. The root
water uptake model can be divided into a micro model and macro model [15], and the
micro model was proposed by Gardner first. However, due to the complex system of the
root, it has been difficult to describe its water uptake process.

Therefore, the plant water transport mechanism was studied in this paper; a plant
water requirement model was established, which included a transpiration model, stem
water delivery model, and root water uptake model. Our objective is to analyze the
limiting effect of the stem and the influence of the thermal environment on plants’ water
requirements. The results contribute to the ideas for the irrigation strategies of plants, the
rational distribution of water resources, and the efficient utilization of the limited land
resources. In some aspects, the model established in this paper could also promote the
development of plant carbon storage technology.

2. Methods

The physical model of plant’s water requirements is shown in Figure 1.
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Figure 1. The plant physical model.

The plant water requirement model is composed of transpiration model, stem water
delivery model, and root water uptake model. In this model, thermal environmental
factors are used as input parameters, including solar radiation, air temperature, air relative
humidity, and wind velocity.

2.1. Transpiration Model

The complex physiological functions of plants make it difficult to calculate transpi-
ration. In earlier studies, people chose to simplify the canopy description to solve this
problem. The single leaf transpiration model is simple in form, and the relation between
leaf activities and thermal environment can be described well. Therefore, it was possible
to obtain accurate results through the single leaf transpiration model and extend it to the
whole plant scale [16].
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The main transpiration organ is the stoma, from which water can be diffused to the
atmosphere by plant. The power of transpiration is the concentration difference between
the saturated vapor around the stomata and that in the ambient air. The resistances are
stomatal resistance and boundary layer resistance [6]. Therefore, the transpiration rate of
single leaf can be expressed as follows

q1 =
Clea f − Cair

rs + ra
(1)

where, Cleaf is leaf water vapor concentration, (kg/m3). Cair is air water vapor concentration,
(kg/m3). rs is stomatal resistance, (s/cm). ra is boundary layer resistance.

According to Goff formula, the partial pressure of saturated vapor is a single valued
function of temperature

ps = 1026 exp[52.67− 6790/(273 + T)− 5.03 ln(273 + T)] (2)

where, Ps is saturated vapor pressure, (hPa). T is temperature, (◦C).
Therefore, the numerator in Equation (1) can be written as

Clea f − Cair = 7.26× 10−6(ps,lea f − RH · ps,air) (3)

where, Ps,leaf is leaf vapor pressure, (hPa). RH is relative humidity, (%). Ps,air is air vapor
pressure, (hPa).

The temperature of leaf could be calculated from empirical formula [17]:

Tlea f = v0.04607LAI−0.03198w0.00768Tair − (1− RH) · v−0.55678LAI−0.39479Tair

+0.10827ϕu−1.01464LAI−0.33403w−0.09859Tair
−0.59998Rs

(4)

where, Tleaf is leaf temperature, (◦C). v is wind speed, (m/s). LAI is leaf area index. w is leaf
width, (m). Tair is air temperature, (◦C). ϕ is leaf coverage rate. Rs is solar radiation value,
(W/m2).

The resistance of boundary layer could be calculated by the following formula. When
the wind velocity is less than 0.1 m/s

ra = 840(
d∣∣∣Tlea f − Tair

∣∣∣ )
0.25

(5)

and when the wind velocity is larger than 0.1 m/s

ra = 220
d0.2

v0.8 (6)

It was found that the stomatal resistance model proposed by Jarvis [18] directly
described the effect of thermal environment on plant’s water requirements. In order to
reflect on the effect of thermal environment on plant, the Jarvis model was cited to calculate
the stomatal resistance in this paper. The stomatal conductance model proposed by Jarvis
is as follows

gs = gs,max · f1(PAR) f2(VPD) f3(T) (7)

where, gs is stomatal conductance value. gs,max is maximum stomatal conductance value.
VPD is water vapor pressure difference between leaf and air.

The response function of stomatal conductance to effective solar radiation is [19]

f1(PAR) = PAR/(a1 + PAR) (8)
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The response function of stomatal conductance to atmospheric vapor pressure deficits
is [20]

f2(VPD) = 1/(a2 + VPD) (9)

The method for calculating atmospheric vapor pressure deficits is as follows [21]

VPD = 0.611 exp(17.4 · Tair
239 + Tair

)− 0.611 exp(17.4 · Ts

239 + Ts
)− 0.067(Tair − Ts) (10)

The response of stomatal conductance to leaf temperature is as follows [22]

f3(T) = a3T3 (11)

Research showed [23] that the empirical parameters in the above equations played
important roles in modelling the plant water requirement. In addition, this is not an entirely
new finding; other studies [8,24] have provided additional validation that the stomata also
respond to factors other than those in the above equations.

The conversion relationship between stomatal resistance and stomatal conductance is
as follows

rs = 12.1875
P
T

gs (12)

where, P is atmospheric pressure, (hPa).
From Equations (1)–(12), leaf transpiration rate could be described by the following Equation

q1 =


7.26×10−6(ps,lea f−RH·ps,air)

840( d

|Tlea f −Tair|
)

0.25
+rs

v ≤ 1 m/s

7.26×10−6(ps,lea f−RH·ps,air)

220 d0.2
v0.8 +rs

v > 1 m/s
(13)

The relationship between leaf transpiration and whole plant transpiration could be
established by leaf area index [25]. Therefore, transpiration rate of the whole plant can be
written as follows

Q1 =
7.26× 10−6(ps,lea f − RH · ps,air)

rs + ra
· 3600 · LAI · S (14)

where, S is planting area, (m2).

2.2. Stem Water Delivery Model

As the channel connecting canopy and root, the stem plays an important role in the
process of plant water transport. The stem water delivery rate could be affected by conduit
density, diameter, filling degree, and internal characteristics [10]. According to Hagen
equation, under a steady condition of atmospheric pressure, the stem water delivery rate
could be directly proportional to the fourth power of the xylem catheter diameter [26].
Studies have shown that stem vessels could be integrated through stem diameter and
correction coefficient [9,26]. Therefore, the stem water delivery rate could be calculated by
the following formula [10]

Q2 =
πr4∆P

8ηL
(15)

where, r is duct radius, (m). η is dynamic viscosity of water, (Pa·s).
Equation ∆P/L represents the pressure gradient at both ends of xylem. The calculation

method is as follows
∆P
L

= Pair · S + ρliquid · L · S · g (16)

where, Pair is atmospheric pressure; S is xylem diameter; ρliquid is density of liquid in xylem;
L is xylem length; g is gravitational acceleration.
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Recent studies have shown that the stem water delivery capacity declines with the
increase in the transpiration rate [27]. Therefore, this phenomenon should be considered
when calculating the stem water delivery rate of plant.

2.3. Root Water Uptake Model

In the existing research, a complete set theory, which can calculate the root water
uptake rate by layer, has been established. However, the traditional root water uptake
models may focus on the changes in water uptake at different horizontal sections. When
the stem water delivery capacity meets the plant water requirement, it can be assumed
that the root water uptake rate is equal to the transpiration rate. Therefore, the root water
uptake rate can be expressed by formula (14)

Q3 =
7.26× 10−6(ps,lea f − RH · ps,air)

rs + ra
· 3600 · LAI · S (17)

Furthermore, in some growth periods of plant, transpiration rate and root water
uptake rate may not be equal. In order to illustrate the effect of thermal environment on
plant–water relation. The taproot sap movement model could be used to model the water
uptake rate of the root [28]

qr = a4Tair
α(b1RH2 + b2RH + b3)(c1v + c2) (18)

where, a4, b1, b2, b3, c1, c2 are empirical coefficients.
The plant water uptake capacity of the whole root system can be about 6 times that of

the main root [28], therefore the method of calculating the water uptake rate of the whole
root system can be expressed as follows

Q3 = K2 · a4Tair
α(b1RH2 + b2RH + b3)(c1v + c2) (19)

where, K2 is empirical coefficient.
In order to reflect the relationship between plant water requirement and thermal

environment, the root water uptake model was established based on thermal environmental
factors. However, factors affecting root water uptake are very complex, so it is essential to
modify the model with empirical parameters.

2.4. Plant Water Requirement Model

According to the analysis in Sections 2.1–2.3, when the root water status is sufficient
and the stem water delivery capacity can meet the water requirements of transpiration, the
plant water requirement can be expressed as follows

Q =
7.26× 10−6(ps,lea f − RH · ps,air)

rs + ra
· 3600 · k1 · LAI · S (20)

When the stem water delivery capacity meets the transpiration water requirement but
the root water status is insufficient, the plant may lose vitality and wither. At this time, the
plant water requirement can be expressed as follows

Q = k2 · a4Tair
α(b1RH2 + b2RH + b3)(c1v + c2) (21)

Furthermore, when the stem water delivery rate is far less than the water requirement
of transpiration, the plant may wither because of water shortage. At this time, the plant
water requirement could be much larger than its stem water delivery rate

Q =
πr4∆P

8ηL
(22)
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From the analysis made above, the closing degree of stomata have a direct impact
on plant water requirement. According to the stomatal conductance model shown in
Equation (7), air temperature could affect the stomatal conductance powerfully, and so-
lar radiation intensity is an important factor affecting air temperature. Therefore, it
could be effective to regulate the thermal environment to maintain the growth of plant.
The maximum solar radiation that the plant is able to withstand can be obtained from
Equations (7) and (20)

PAR
PAR + a1

=
k1 −Q2

k2
(23)

Among them,{
k1 = 7.26× 10−6(ps,lea f − RH · ps,air) · 3600 · LAI · S
k2 = gs,max · f2(VPD) f3(T)

(24)

3. Results and Discussion
3.1. Model Validation
3.1.1. Materials and Methods

In recent years, the thermal pulse generator has become a popular instrument to
measure the liquid velocity in the vessel of the xylem. Taking an apple tree as the calculation
object, the plant water requirement model was validated by comparing the simulated results
with the measured stem sap flow rate. Gong [28] made great measurements of the hourly
transpiration rate of apple tree. The results were measured from 31 July to 4 August in
2005 using a thermal pulse generator. Two thermal pulse probes were installed at different
heights on the east and west sides of the middle of the trunk, and the transpiration rate
was measured with a SF100 stem sap flow meter. The diameter of the experimental object
was 113 mm, the crown height was 2.35 m, and the width was 2.78 m. The environmental
data were measured by the automatic weather station of the experimental station. The
experiment was conducted in Northwest University of agriculture and forestry science
and technology.

The main environmental factor values are shown in Figures 2–5.
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The hourly variations in solar radiation intensity, air temperature, air relative humidity,
and wind velocity are described in Figures 2–5. From Figures 2–5, the variation range of
daytime solar radiation intensity was 57–925 W/m2, the variation range of air temperature
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was 17.9–36.8 ◦C, the variation range of air relative humidity was 51–79%, and the variation
range of wind velocity was 0.2–3.6 m/s.

3.1.2. Validation

The empirical parameters in the stomatal resistance model and taproot sap flow model
were fitted with measured environmental parameters. The fitting values are shown in
Table 1.

Table 1. Empirical parameters in stomatal resistance model and taproot sap flow model.

a1 a2 a3 a4 b1 b2 b3 c1 c2

88.55 8.98 0.0025 2.36475 0.025357 −2.89317 133.9857 0.00658 0.003744

The correlation coefficient of stomatal resistance model was R = 0.83, and the correlation coefficient of taproot sap
flow model was R = 0.88.

Based on the above measured data, the transpiration rate of the apple tree could be
calculated by Equations (19)–(21). The comparison between the simulated values and the
measured values is shown in Figure 6.
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Figure 6. Verification of transpiration rate model.

As shown in Figure 6, the water requirement of the apple tree on 2 August is at a
relatively low value, which may be due to the low temperature and low solar radiation
during this period, resulting in the increase in stomatal resistance and slowing down
of transpiration.

In order to validate the accuracy of the model, the absolute error and relative error of
the model were calculated. The absolute error range was 0.08–0.22 L/h, and the relative
error range was 2.09–14.13%. Furthermore, the correlation coefficient of the plant water
requirement model was R = 0.87. The results indicated that the simulated values of the
transpiration rate model were in good agreement with the measured values.

3.2. Discussion

From the analysis of the Section 2, it can be concluded that the thermal environmental
factors affecting plants’ water requirements are solar radiation, air temperature, air humid-
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ity, and wind velocity. In this section, the effect of these factors on plant–water relations,
leaf water status, sap movement of the plant, and stomatal activities are further discussed.

3.2.1. Effect of Solar Radiation

Assuming that the leaf diameter of an apple tree is 0.05 m, the stem diameter is 0.15 m,
and the height is 2 m. The stem water delivery rate can be calculated as 16.21 L/h from
Equation (15).

Assuming that the air relative humidity is 50%, the wind velocity is 1 m/s, and the air
temperatures are 10 ◦C, 20 ◦C, 30 ◦C, and 40 ◦C, when the solar radiation intensity changes
in the range of 100–1000 W/m2, the plant’s water requirements can be obtained as shown
in Figure 7.
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As shown in Figure 7, the plant’s water requirements increased with the increase in
solar radiation. When the solar radiation increased from 100 W/m2 to 1000 W/m2, and
the variation range of air temperature was 10 ◦C–40 ◦C, the plant’s water requirements
increased from 0.35 L/h to 14.08 L/h. Furthermore, when the air temperature was 40 ◦C,
the stem water delivery capacity could not meet the water requirement. At this point,
stomatal regulation may not improve the plant’s vitality effectively.

According to Wang’s theory, the stem water delivery capacity is affected by the
physiological characteristics of xylem and the hydrodynamic viscosity of irrigation water.
Xylem’s physiological characteristics such as vessel diameter, vessel number, and vessel
size can affect the plant’s sap movement, and the sap movement can affect plant–water
relations [12]. Therefore, when temperature is high enough, even if the water status of the
root is sufficient, the plant’s water requirements may not be met due to the limiting effect
of the stem.

3.2.2. Effect of Air Temperature

Assuming that the relative humidity of air is 50%, the wind velocity is 1 m/s, and
the solar radiations are 100 W/m2, 300 W/m2, 500 W/m2, and 1000 W/m2, when the air
temperature changes in the range of 2–40 ◦C, the plant’s water requirement can be obtained
as shown in Figure 8.
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As shown in Figure 8, the plant’s water requirement exponentially increased with the
increase in air temperature. Therefore, when the environment conditions are serious, the
ability of stomata to regulate leaf water status may be insufficient. The reason could be that
under high temperature stress, the regulation ability of stomata could reach the limit. A
study showed that heat or drought affects the water conserving capacity of leaves [7]. It can
also be seen from Figures 7 and 8 that heat or drought affects the plant’s water requirement.

It can also be seen from Figure 8 that when the temperature rose to a certain value,
the stem water delivery capacity could not meet the water requirements of the plant.
Furthermore, the corresponding temperature value of this point decreased with the increase
in solar radiation.

3.2.3. Effect of Relative Humidity

Assuming that the air temperature is 25 ◦C, the wind velocity is 1 m/s, and the solar
radiations are 100 W/m2, 300 W/m2, 500 W/m2, and 1000 W/m2. When the air relative
humidity changes in the range of 30–70%, the plant’s water requirements can be obtained
as shown in Figure 9.
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As shown in Figure 9, the plant’s water requirements decreased with the increase
in relative humidity. The reason could be that with the increase in air relative humidity,
the vapor in the air around the plant decreased, resulting in the increase in the boundary
resistance. In addition, with the increase in relative humidity, the water requirements of
the plant decreased. It can also be seen from the figure that when the air relative humidity
increased from 30% to 70%, the variation range of the plant’s water requirements under
different solar radiation intensities were quite different. Furthermore, with the increase in
radiation value, the variation range of the plant’s water requirements increased.

3.2.4. Effect of Wind Velocity

Assuming that the effective solar radiation is 500 W/m2, the relative humidity is 50%,
and the air temperatures are 10 ◦C, 20 ◦C, 30 ◦C, and 40 ◦C, when the wind velocity changes
in the range of 0.2–3 m/s, the plant’s water requirements can be obtained as shown in
Figure 10.
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As shown in Figure 10, when the wind velocity changed in the range of 0.2–3 m/s,
the plant water requirement increased with the increase in wind velocity, and the trend
was not obvious. The reason could be that the increase in wind velocity led to the decrease
in boundary layer resistance, and the plant’s water requirements increased. It can also be
seen from the figure that when the air temperature was 10 ◦C and 20 ◦C, the change in the
plant’s water requirements relative to wind velocity first increased and then decreased.

3.2.5. Effect of Multiple Parameters

According to the analysis of Figures 7–10, the changes in solar radiation and air
temperature had significant effects on the plant’s water requirements. Assuming that the
absolute moisture content is constant, and the wind velocity is 1 m/s, in order to further
illustrate the effect of the thermal environment on plants’ water requirements, the variation
trend of the water requirement with temperature and solar radiation under the conditions
of a cold season (5–20 ◦C) and hot season (20–40 ◦C) were simulated as shown in Figure 11.
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As shown in Figure 11, the plant’s water requirements increased with the increase in
solar radiation and air temperature, and the change in air temperature had a more significant
effect on the water requirement. Furthermore, it can be obtained from Equations (15) and (16)
that, under a simulated condition, the stem’s water delivery rate of the apple tree was
16.21 L/h, which cannot meet the apple tree’s water requirements under all meteorological
conditions as shown in Figure 11. This phenomenon showed that under severe thermal
conditions, stomatal activities could not fully regulate the water transport process of a plant,
and the thermal environmental factors have significant effects on plant–water relations.
Therefore, regulation of the thermal environment may play a positive role in maintaining
the vitality of plants.

These findings could provide a theoretical basis for the regulation strategy of the
agricultural environment. When stomatal regulation cannot regulate the plant–water
relationship effectively, or the stem water delivery capacity is insufficient, the effect of
appropriate regulation of the air temperature may be positive. In previous studies, scholars
have deeply analyzed the response mechanism of plants to environmental factors [29,30].
Based on these great findings, the plant water requirement model was established in this
paper, the stem water delivery model was optimized, and the root water uptake model
was summarized based on the thermal environment. In order to reflect the relationship
between the thermal environment and plants’ water requirements, the stomatal model
and root water uptake model were established based on thermal environment factors.
However, the factors affecting stomatal movement and root water uptake are very complex;
the empirical parameters are essential to modify these models. Furthermore, it can be
found from the discussion above that severe thermal environments may lead to the loss
of plant vitality, and the limiting effect of the stem may be an important reason for this
phenomenon. Therefore, compared with previous studies, the model established in this
paper can describe the plant’s water transport process macroscopically, and may reflect the
effect of the thermal environment on plants’ water requirements in some other aspects.

4. Application and Analysis

In this section, the summer meteorological data of Lintong and Turpan were used as
environmental parameters to describe the variation in the apple tree’s water requirements,
and the irrigation strategies and cooling effects of plants were analyzed.
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4.1. The Characteristics of the Study Plots

Lintong is located in the east of Guanzhong Plain, China. The annual average air
temperature in Lintong was 13.5 ◦C. During the year, the highest air temperature was
36.8 ◦C, and the lowest air temperature was −0.9 ◦C. In summer, the air temperature is
high and the solar radiation resources are abundant. In winter, the air temperature is low,
the solar radiation resources are relatively scarce, and frozen soil sometimes occurs.

Turpan is located in the central part of Xinjiang Uygur Autonomous Region, China.
The climate of Turpan is a continental warm temperate desert climate, with sufficient
sunshine and abundant solar energy resources. The annual sunshine hours reached 3200 h,
and the annual average air temperature was 13.9 ◦C, of which the air temperature was
higher than 35 ◦C for more than 100 days. During the year, the highest air temperature
reached 49.6 ◦C, and the lowest air temperature was −28.7 ◦C.

4.2. Analysis on Irrigation Strategy and Thermal Environment Regulation Ability of Plant

The environmental data were obtained from the website of China Meteorological
Administration. The data of solar radiation intensity and air temperature in Lintong and
Turpan are shown in Figure 12:
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Figure 12. Air temperature and solar radiation intensity of the Lintong and Turpan.

As shown in Figure 12, in Lintong, the air temperature varied from 14.73 ◦C to 35.20 ◦C,
and the solar radiation varied from 113 W/m2 to 1274 W/m2. The air temperature of
Turpan varied from 17.45 ◦C to 39.05 ◦C, and the solar radiation varied from 172 W/m2 to
1018 W/m2. According to the environment data, the daily water requirement of an apple
tree can be obtained as shown in Figure 13.
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Figure 13. Variation in water requirement of apple tree in Lintong and Turpan.

As shown in Figure 13, the daily variation in the apple tree’s water requirements was
similar to that of the air temperature and solar radiation. In Lintong, the maximum value
of water requirement was 21.9 L/h, and its overall trend was relatively gentle. In Turpan,
the value was 62.38 L/h, and the plant water requirement changed greatly. It can also be
seen from Figure 10 that in Lintong, the plant’s water requirements on 17 July and 7 August
were greater than the stem water delivery rate. In Turpan, the stem water delivery capacity
could not meet the water requirements under most conditions.

The average value of the plant’s water requirements can be calculated in a month.
The calculation day with the water requirement closest to the average value was defined
as the typical day. After accumulating the hourly water requirement, the total plant
water requirement could be multiplied by the calculation days of each month. In Lintong,
according to Figure 13, the average daily water requirement in summer was 10.12 L/h,
7.19 L/h, and 2.56 L/h, respectively, and the typical days were 15 July, 17 August, and
16 September. In Turpan, the average daily water requirement was 34.34 L/h, 27.92 L/h,
and 13.41 L/h, respectively, and the typical days were 7 July, 21 August, and 15 September.
The hourly water requirements of an apple tree in Lintong and Turpan on a typical day are
shown in Figure 14:
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Figure 14. Variation in hourly water requirements of apple tree in Lintong and Turpan.

As shown in Figure 14, in Lintong, the apple tree’s water requirements on a typical day
showed a single peak change law of first rising and then falling, in which the peak value of
10.72 L/h was on 17 August. Furthermore, the daily plant water requirement on 17 August
was higher than those on the other days. The reason could be that the temperature and
radiation on 17 August were higher than those on the other days. In Turpan, the water
requirement of an apple tree showed a similar trend with Lintong, and the difference was
that the diurnal variation range of water requirement in Turpan was larger than that in
Lintong. The reason may be that the diurnal temperature difference and solar radiation
changed greatly.

It can be assumed that the plant’s water requirement was constant at night since the
change in thermal environment was not obvious. Through calculation, the nighttime water
requirements of the plant in Lintong were 0.024 L/h, 0.015 L/h, and 0.022 L/h, respectively,
and in Turpan they were 0.019 L/h, 0.028 L/h, and 0.032 L/h. Therefore, the monthly plant
water requirements of the plant for the two places can be calculated as shown in Figure 15.
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According to historical data, the monthly rainfall in Lintong was about 20 L in sum-
mer, and that in Turpan was about 7 L, which is far from meeting the simulated water
requirement of the apple tree. Therefore, the theoretical irrigation amounts required in
Lintong were about 820 L, 1960 L, and 250 L per month, and those in Turpan were about
8860 L, 7800 L, and 3960 L per month, respectively.

There have been studies that showed that plants can regulate the surrounding thermal
environment because of transpiration. The cooling effect of plants can be calculated by the
following equation

Q = mH2O × l × 4.18 (25)

where mH2O is the mass of water consumed by plant transpiration, (kg); l is the evaporation
heat consumption coefficient of water, and the calculation formula of the evaporation heat
consumption coefficient of water is as follows

l = 597− 0.57 · Tair (26)

The theoretical cooling capacity of plant transpiration on its surrounding environment is

∆T = Q/ρC (27)

among them, ρC is the volume specific heat capacity of air.
After calculation, the monthly average values of the plant cooling effect in Lintong

were 1.75 ◦C, 2.55 ◦C, and 1.27 ◦C, respectively, and the values in Turpan were 9.62 ◦C,
7.79 ◦C, and 4.38 ◦C. It can be seen that plants have a good cooling effect on the environment.
Moreover, when a plant is under severe thermal conditions, the cooling effect could be
more powerful.

5. Conclusions

Formulating a scientific irrigation strategy is an important step to realizing the ra-
tional distribution of water resources, especially in the era of an increasing scarcity of
water resources. The effect of the thermal environment on plants’ water mechanisms and
requirements was studied. Results showed that the anatomical features of xylem and
the physical properties of sap may affect the plant–water relationship, and plants can
lose vitality because of severe thermal environments. Therefore, the stem water delivery
capacity and the impact of the thermal environment on plants should be considered when
formulating an irrigation strategy. These findings contribute to the formulation of a plant
irrigation strategy, especially in hot or arid areas.
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