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Abstract: Larix gmelinii natural forests, which are of great ecological and economic importance, are
mainly distributed in northeast China. Sustainable management of these forests play a vital role in
ecological security in northeast China, especially in the context of climate change. Forest growth
models, which support forest management decision-making, are lacking for Larix gmelinii natural
forests, hampering the prescription of forest management strategies. In this study, we produced a
climate-sensitive, transition-matrix model (CM) for Larix gmelinii natural forests. For comparison,
a variable transition model without including climate change effects (NCM) and a fixed-parameter
model (FM) were also built. We examined the performance of the CM, NCM, and FM by conducting
short- (5 years) and long-term (100 years) simulations. The results showed that for short-term
prediction, no significant difference was observed among the three predictive models. However, the
long-term prediction ability of the CM under the three different RCPs was superior to that of the
FM and NCM. The number of trees and basal area were predicted to increase under climate change,
which might result in natural disasters, such as snow break, windthrow, and forest fire. Silvicultural
practices, such as reducing the intermediate thinning interval and the enrichment planting of slow-
growing trees, should be implemented to mitigate the deleterious effects of climate change.

Keywords: Larix gmelinii natural forests; ecological security; climate change; forest management
strategies; transition-matrix growth model

1. Introduction

Larix gmelinii natural forests are a typical vegetation community in the Xing’an Moun-
tains area in northeast China [1–3]. They cover an area of 40,421 ha with a stocking of
4,654,312 m3, representing 49% of the total forest area and 49% of stocking in the Xing’an
Mountains [4]. It is noteworthy that they are distributed in the southern edge of the
global northern coniferous forest range and hence play a vital role in ecological security for
northeast China [5,6]. Larix gmelinii is also of economic importance and is widely used for
furniture, construction, and shipbuilding because of its toughness [7,8].

Like other natural forests, Larix gmelinii natural forests have been suffering from
deforestation and degradation due to the old forest policy (1950–1997) in China, which
was designed to maximize timber production for economic development. Zhang [9]
documented that from 1950 to 1995 natural forests declined to 30% of the total forest area
in China and the unit-area stocking of natural forests decreased by 32%. In 1998, China
established Natural Forest Conservation Program (NFCP), articulating the new forest
policy, which focused on forest ecological services other than wood production [9,10]. In
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2017, China further banned all commercial logging in natural forests [11] and encouraged
scientific forest management strategies for forest restoration [12].

Formulating forest management strategies requires accurate prediction and compari-
son of forest growth and yield under different management scenarios [13,14]. Forest growth
models plays an important role in prescribing forest management strategies. For instance,
Sterba [15] employed the distance-independent individual tree growth model PROGNAUS
to determine the equilibrium curve for mixed-species forests in Austria. Lars, et al. [16]
used a single-tree growth model to investigate the possibility of transforming normal,
young Norway spruce forests to develop more heterogeneous stand structures, aiming
for multi-layered forests in the long run. Normally, forest growth models are categorized
into whole-stand models, size-class models, and individual-tree models according to the
relevant modeling units [17]. The whole stand model cannot capture variability regarding
individual tree size and species, resulting in incapability of predicting forest dynamics with
complex forest structures [18]. Tree size-class models and individual-tree models, which
employ a finer modeling resolution, i.e., diameter class and individual tree, respectively,
are used to assess more complex species compositions and structures [18,19].

Individual-tree models use an individual tree as the modeling unit and are thus capable
of a better mimicking of reality and integrating spatial heterogeneity [17,20]. However,
they are challenging to develop as they require large amounts of individual tree-level data,
which is especially the case for distance-dependent individual-tree models [14,17]. By
comparison, tree-size models are easier to develop and have shown robust performance in
modeling forest dynamics of unevenly aged, mixed-species forests [18,21].

As the largest terrestrial ecosystem type, forests play a significant role in combating
climate change by absorbing CO2. As much as 30% (2 petagrams of carbon per year; Pg C
year−C) of annual global anthropogenic CO2 emissions are sequestrated by the world’s
forests [22,23]. Climate change, in turn, can also influence forest productivity [24,25], tree
mortality [26–28], and tree recruitment [29,30], and hence plays a vital role in shaping
forest structure and species composition [31,32]. The aims of our present study were to
produce a climate-sensitive transition-matrix forest growth model (CM) by integrating
climate variables for Larix gmelinii natural forests. With the new CM, we simulated forest
dynamics under varying climate change scenarios. Based on the results of the simulations,
we propose some silvicultural practices that could be implemented to mitigate the negative
effects of climate change.

2. Materials and Methods
2.1. Study Area and Data

The study area is located in the state-owned forest region of the Greater Khingan Moun-
tains in the northeastern region of Inner Mongolia (119◦36′20”–125◦20′50” E,
46◦08′40”–53◦20′00” E) (Figure 1). It is ~696 km from north to south and 384 km east
to west. It is the largest state-owned forest region in China, with an average forest coverage
of 80.5%. The altitude ranges from 425 m to 1760 m. The annual average temperature is
−2–−4 ◦C with a maximum temperature of 37.5 ◦C and a minimum temperature of−52 ◦C.
The average annual rainfall is ~450 mm, 80% of which is concentrated from July to August.

The plots for Larix gmelinii natural forests used for model development were selected
from the eighth (2013) and ninth (2018) national forest inventory (NFI) in this region. The
sample plots had an area of 0.067 ha, layed out in a grid of 8 × 8 km (Figure 1). Plots
with evident disturbances, for instance, logging or artificial enrichment were excluded.
Finally, a total of 428 plots with 48,069 individual observations were selected. In each plot,
individual tree and plot variables were recorded. The individual-tree variables consisted
of tree number, species name, and diameter at breast height (DBH). The plot variables
included slope, aspect, slope position, elevation, average DBH, and canopy density.
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2.2. Methods
2.2.1. Data Pre-Analysis

In Larix gmelinii natural forests, other tree species include Betula platyphylla, Betula
costata, Quercus mongolica, Pinus sylvestris, and Salix spp. Larix gmelinii and Pinus sylvestris
are in the pine family. These tree species were categorized into 4 species classes, i.e., birch,
oak, pine, and softwoods for model development and detailed information about the
categorization are shown in Table 1. The descriptive statistics of plots and individual tree
characteristics were calculated and are provided in Tables 2 and 3.



Forests 2022, 13, 574 4 of 22

Table 1. The main tree species identified and their frequency in the sample plots.

Species Class Main Tree Species Species Frequency Species Class Frequency

Birch
Betula platyphylla 25.55%

26.36%Betula costata 0.82%

Softwood
Salix spp. 0.50%

5.13%other softwood 4.62%
Oak Quercus mongolica 3.60% 3.60%

Pine
Larix gmelinii 64.22%

64.91%Pinus sylvestris 0.69%

Table 2. Summary of plot data. Number of trees (N), quadratic mean DBH, basal area, size diversity,
and species diversity were derived from the first inventory. Tree recruitment was produced from
two inventories.

N (Trees ha−1) Quadratic Mean DBH Basal Area
Birch Oak Softwood Pine (cm) (m2 ha−1)

Mean 268.98 36.76 52.29 662.24 14.20 14.67
SD 266.30 147.91 144.01 438.11 4.24 7.20

Max 1260 1020 1365 3255 32.31 35.39
Min 0 0 0 15 7.50 0.07

Recruitment (Trees ha−1) Species Diversity Size Diversity
Birch Oak Softwood Pine

Mean 22.78 8.52 10.41 55.76 0.49 1.46
SD 48.14 44.16 58.64 90.33 0.35 0.37

Max 450 540 825 795 1.34 2.26
Min 0 0 0 0 0.00 0.00

Table 3. Summary of individual trees. The diameter was recorded in the first inventory. Tree mortality
rate and diameter increment were derived from the two inventories; n represents the total number
of observations.

Birch Oak Softwood Pine

Diameter (cm)
Mean 10.62 9.22 10.59 12.07

SD 5.18 5.29 5.20 7.37
Max 53.20 38.90 43.70 73.30
Min 5.00 5.00 5.00 5.00

n 7268 1002 1261 18,225
Diameter increment (cm)

Mean 0.61 0.52 0.97 0.75
SD 0.59 0.43 0.78 0.74

Max 5.00 3.50 5.90 9.60
Min −4.20 −2.50 −1.10 −4.10

n 7268 1002 1261 18,225
Mortality rate

Mean 0.05 0.04 0.15 0.04
SD 0.22 0.21 0.36 0.19

Max 1.00 1.00 1.00 1.00
Min 0.00 0.00 0.00 0.00

n 7675 1049 1492 18,896

2.2.2. Climate Variables

Two climate variables, i.e., mean annual temperature (MAT) and mean annual pre-
cipitation (MAP), are extensively used to examine the climate change effects on forest
ecosystems [14,33,34]. In this study, the MAT and MAP were calculated using the software,
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i.e., ClimateAP, which can provide local future and historical climate information for a
specific site in the Asia Pacific [35]. The maps for MAT and MAP were produced in the
state-owned forest region of the Greater Khingan Mountains (Figure 2).
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Figure 2. Mean annual temperature (a) and mean annual precipitation (b) in the state-owned forest
region of the Greater Khingan Mountains.

ClimateAP was further employed to predict monthly precipitation and temperature
between 2015 and 2100 to investigate the long-term effects of climate change on the forest
ecosystem. The future climate scenarios were produced by the general circulation model
(GCM), which was derived from the second generation Canadian Earth System Model
(CanESM2) [36,37].

The three representative concentration pathways (RCPs), i.e., RCP2.6, RCP4.5, and
RCP8.5, were used to represent the latest climate-change scenarios [38]. More detailed
information about RCPs is provided in previous studies [14,38,39].

Future MAT and MAP trends were generated and are shown in Figure 3. In general,
the future MAT increased under three RCPs from 2010 to 2100 (Figure 3a). Similarly, the
MAP under three RCPs also increased, although fluctuations are predicted (Figure 3b).
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2.2.3. Model Development

The transition matrix growth model can be described as follows:

yt+1 = Gt(yt − ht) + Rt + εt (1)

where yt = [yijt] represents a column vector denoting the number of trees alive in species
group i (i = 1, 2, 3, . . . , sp.) and diameter class j (j = 1, 2, 3, . . . , dc) at time t; yt is a space
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and time-dependent column vector influenced by forest dynamics and logging. ht = [hijt]
represents the amount of trees logged in species group i and diameter class j at time t,
and ht = 0 in case of no logging at time t; the growth matrix Gt describes how individual
trees grow or die between t and t + 1; Rt denotes the amount of trees recruited in the
smallest diameter class for each species group, between t and t + 1; εt denotes a vector of
random errors.

The G and R matrices are:

G =


G1

G2
. . .

Gm

 , Gi =


αi1
bi1 αi2

. . . . . .
bi,n−2 αi,n−1

bi,n−1 αin



R =


R1
R2
...

Rm

, Ri =


Ri
0
...
0


(2)

where αij is the probability of a tree in species group i and diameter class j being alive and
still in the original diameter class j in between t and t + 1; m and n represents the number
of species groups and diameter classes; bij denotes the probability of a tree staying alive
and growing into the next diameter class j + 1 in species group i and diameter class j.

Variable αij and variable bij are related by the following formula:

aij = 1− bij −mij (3)

where mij represents the probability of tree mortality in species group i and diameter class j
between t and t + 1.

Ri is defined as a time- and climate-dependent recruitment vector showing the number
of trees entering the smallest diameter class of each species, between t and t + 1. The
most important step for developing a transition matrix growth model is to define three
key variables, i.e., αij, bij, and mij. These three variables were estimated using forest stand
and site attributes. The bij probability could be derived through dividing the annual tree
diameter increment, gij, by the diameter class width. Because gij could be affected by stand
and site attributes, it could thus be expressed as a function of site and stand attributes; gij is
calculated as follows:

log(gij + 1) = γi1 + γi2·Dj + γi3·Dj
2 + γi4·B + γi5·H1 + γi6·H2 + γi7·MAT

+γi8·MAP + γi9·H + γi10·SLCos + µij
(4)

where Dj denotes diameter (cm); B is the basal area of a stand (m2·ha−1); H1 and H2
represent Shannon’s diversity indices; H1 indicates species diversity represented by the
Shannon–Wiener index; H2 denotes tree size diversity represented by the Shannon–Wiener
index; MAT denotes mean annual temperature (◦C); MAP represents mean annual precipi-
tation (mm); H represents Humus thickness; SLCos denots Slope × cos(Aspect) [40]; γs are
parameters; µij is the error. A generalized least squares (GLS) method was used to estimate
the parameters of the tree diameter increment model (Equation (4)).

A tobit model [41] was used to estimate the trees recruited for species group i from t
to t + 1, since the trees recruited show a continuous, skewed, bounded, and non-normal pat-
tern, which is truncated to positive values and zeros [14,42]. The tobit model is as follows:

Ri = Ω
(

βixi
σi

)
βixi + σiω

(
βixi
σi

)
. (5)
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βixi = βi1 + βi2·Ni + βi3·B + βi4·H1 + βi5·H2 + βi6·MAT + βi7·MAP + βi8·H+
βi9·SLCos + vi

(6)

where Ni represents the amount of trees per unit area (ha) in species group i; Ω and ω
denote, respectively, the standard normal cumulative and density functions; σi is the stan-
dard deviation of the residuals vi acquired in estimating parameter β. The tobit recruitment
Equation parameters (7) were estimated with the maximum likelihood (ML) method.

A probit model was employed to indicate the probability of tree mortality per year, mij,
that is also expressed as a function of Dj, H1, H2, MAT, MAP, H and SLCos. The formula for
mij is:

mij =
Mij
T = 1

T Ω
(
δi1 + δi2·Dj + δi3·B + δi4·H1 + δi5·H2 + δi6·MAT + δi7·MAP+

δi8·H + δi9·SLCos + ξij
) (7)

where Mij is the probability of a tree in species i and diameter class j dying within T years;
δs denotes parameters; ξij represents the error. The parameters, δs, were estimated using
the ML method.

We selected the predictive variables based on three criteria, i.e., the expected biological
responses, the statistical significance, and parsimony, to avoid compromised type-I error
rates and other artifacts [14,43,44].

2.2.4. Model Validation and Comparison

Ten-fold cross-validation was conducted to investigate the predictive performance
of the CM. In ten-fold cross-validation, the data are first partitioned into 10 equally (or
nearly equally) sized folds. Next, 10 iterations of model development and validation
are performed such that within each iteration a different fold of the data is held out for
validation while the remaining 9 folds are used for model development. We calculated the
following cross-validated lack-of-fit statistics, i.e., R2, RMSE, and MAE, for validation. The
formulas are:

R2
CV =

1
k

k

∑
j=1

(R2
j ) =

1
k

k

∑
j=1

1−
∑

nj
i=1

(
Oij − Pij

)2

∑
nj
i=1

(
Oij −Oj

)2

 (8)

RMSECV =
1
k

k

∑
j=1

(RMSEj) =
1
k

k

∑
j=1


√√√√ 1

nj

nj

∑
i=1

(
Oij − Pij

)2

 (9)

MAECV =
1
k

k

∑
j=1

(MAEj) =
1
k

k

∑
j=1


√√√√ 1

nj

nj

∑
i=1

∣∣Oij − Pij
∣∣ (10)

where k is equal to 10; Oij is the ith observed value in the jth fold; Pij represents the ith
estimated value in the jth fold; Oj is the mean observed value in the jth fold; nj denotes the
number of observations in the jth fold; R2

j , RMSEj, and MAEj represent the R2, RMSE, and
MAE in the jth folder.

To examine the performance of CM, we also produced an NCM and a fixed-parameter
matric model (FM) using the same 428 sample plots. The FM is the original form of the
matrix model in forestry and assumes that forest dynamics are independent of site condition,
stand competition, and time-dependent climate variables [18,45]. Thus, the transition
probabilities of survivorship, growth, and mortality are assumed to be constant over
time [14]. The detailed information about NCM (Tables A1–A3) and FM (Tables A4 and A5)
are shown in Appendix A. We first compared the goodness-of-fit of the 3 models based on
the Akaike information criterion (AIC) and Bayesian information criterion (BIC). Second,
we also performed the same cross-validation technique for NCM and FM to compare the
predictive performance of the 3 models. The same lack-of-fit statistics, i.e., R2

cv, RMSECV,
and MAECV, were also produced.
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2.2.5. Model Application

We first investigated the predictive difference among CM, NCM, and FM for short-
term prediction with a 5-year interval for the 428 sample plots. Furthermore, the long-term
prediction was also conducted by these 3 models using NFI plots with plot numbers 1179,
3774, 1326, and 1692. Plots 1179 and 3774 had similar MAPs (523.0 and 521.0 mm) between
2013 and 2018, but they differed in MAT (−1.4 and 4 ◦C). Plots 1326 and 1692 had the same
MAT (−3.8 ◦C) between 2013 and 2018, but they differed in MAP (461.0 and 553.2 mm).
The diameter distribution of the 4 NFI plots represented by species group are shown in
Figure 4. The forest dynamic over 100 years was projected. Specifically, the long-term
prediction of CM was performed under three climate change scenarios (RCP2.6, RCP4.5,
and RCP8.5), to explore how different climate scenarios affect forest dynamics.
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diameter class.

All analyses were conducted using R version 3.6.2 statistical software (R Foundation
for Statistical Computing, Vienna, Austria) [46].

3. Results
3.1. Parameters Estimation

The estimated parameters of tree diameter increment model (Equation (4)) and the
lack-of-fit statistics are provided in Table 4. The diameter increment for all species exhibited
a significant declining trend with BA and DBH2, but an increasing trend with DBH (p < 0.01,
Table 4). Except for oak and softwood, the diameter increment was positively correlated
with H1 and H2 (p < 0.01). It was noteworthy that climate change variables, i.e., MAT and
MAP, showed a positive relationship with diameter increment (p < 0.01), suggesting MAT
and MAP play a vital role in facilitating forest growth. The diameter increment indicated a
positive correlation with ST for oak and pine, whereas a negative relationship was detected
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for birch. A positive relationship was observed between HT and diameter increment for all
species (p < 0.01), with the exception of birch. SLcosASP indicated a negative correlation
with diameter increment for birch and pine (p < 0.01), but a significant positive correlation
with softwood (p < 0.05).

Table 4. The estimated parameters with the lack-of-fit statistics for the tree diameter increment model.
The dependent variable, diameter increment, was measured in centimeter every five years.

Birch Oak Softwood Pine

Intercept −4.40 × 10−1 *** −3.98 × 10−1 −2.17 × 100 *** −3.36 × 10−1 ***
DBH 5.05 × 10−2 *** 3.56 × 10−2 *** 1.02 × 10−1 *** 6.84 × 10−2 ***
DBH2 −1.06 × 10−3 *** −1.05 × 10−3 *** −1.92 × 10−3 *** −1.24 × 10−3 ***

BA −3.08 × 10−2 *** −2.27 × 10−2 *** −4.44 × 10−2 *** −4.72 × 10−2 ***
H1 1.97 × 10−1 *** −3.14 × 10−2 1.25 × 10−2 5.82 × 10−1 ***
H2 8.39 × 10−2 *** −1.12 × 10−1 −7.65 × 10−2 7.63 × 10−2 ***
Dg 2.67 × 10−2 *** 6.39 × 10−2 *** 1.45 × 10−2 5.97 × 10−3 **

SLcosASP a −3.41 × 10−3 *** 6.61 × 10−4 8.41 × 10−3 ** −1.13 × 10−2 ***
ST −1.56 × 10−3 ** 4.23 × 10−3 ** 1.48 × 10−3 5.63 × 10−3 ***
HT −1.22 × 10−3 1.43 × 10−2 ** −1.95 × 10−2 ** 8.70 × 10−3 ***

MAT 4.71 × 10−2 *** 9.85 × 10−2 *** −1.31 × 10−2 3.63 × 10−2 ***
MAP −1.60 × 10−3 *** 1.08 × 10−3 6.59 × 10−3 *** 1.50 × 10−3 ***
R2 b 0.14 0.13 0.19 0.19
AIC 12,080.58 1099.87 2751.99 38,786.64
BIC 12,170.16 1163.70 2818.80 38,888.18

logLik c −6027.29 −536.94 −1362.99 −19,380.32
df d 7256 990 1249 18213

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01. a SLcosASP = Slope × cos (Aspect). b R2: Nagelkerke’s
pseudo r-squared. c logLik: log-likelihood value. d df: degrees of freedom in model fitting.

In Table 5, the estimated parameters and lack-of-fit statistics of the recruitment model
(Equation (7)) are provided. For all species groups, we observed that the recruitment shows
an increasing trend with N (p < 0.01, Table 5), but decreasing correlation with BA (p < 0.01,
Table 5). Tree recruitment had a positive relationship with H1 and H2 for all species groups,
with the exception of oak (p < 0.01; p < 0.05 p < 0.1). MAT showed a negative influence on
recruitment for birch (p < 0.05) and a positive effect on oak (p < 0.01) but showed no effect
for softwood and pine (p > 0.1). A positive relationship between MAP and tree recruitment
was observed for oak, whereas a significant negative relationship was detected for pine.
For birch and softwood, there was no significant relationship between tree recruitment and
MAP (p > 0.1). ST and HT exhibited no significant effects on tree recruitment (p > 0.1).

The estimated parameters of the tree mortality model (Equation (9)) are shown in
Table 6. For birch and softwood, DBH exhited a negative correlation with mortality, while a
positive relationship was detected for pine. DBH2 was positively correlated with mortality
for birch but showed a significant negative relationship with pine (p < 0.01). Except for
softwood, BA significantly affected mortality, i.e., a positive effect on birch and oak, and a
negative effect on pine (p < 0.01). H1 exhibited a negative effect on tree mortality for birch
and no significant effects were observed for other species groups. H2 had a negative corre-
lation with birch and oak but a positive correlation with softwood and pine (p < 0.01). For
birch and pine groups, HT exhibited a significant positive relationship (p < 0.01; p < 0.05).
MAT showed a significant positive correlation with mortality for softwood, birch, and
pine, but a significant negative relationship was detected for oak. MAP was found to be
positively affect mortality for pine and birch (p < 0.01), but for the softwood group no
significant relationship was observed between MAP and mortality (p > 0.1).
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Table 5. The estimated parameters with the lack-of-fit statistics for the recruitment model. The
dependent variable, recruitment, was derived in units of trees per hectare every five years.

Birch Oak Softwood Pine

Intercept −1.85 × 102 ** −1.17 × 103 *** −4.83 × 102 4.20 × 102 ***
N 6.19 × 10−2 *** 4.25 × 10−1 *** 3.37 × 10−1 *** 6.31 × 10−2 ***

BA −5.17 × 100 *** −6.12 × 100 * −1.48 × 101 *** −6.09 × 100 ***
H1 9.16 × 101 *** 3.47 × 101 2.39 × 102 *** 5.49 × 101 **
H2 3.59 × 101 * 1.18 × 102 1.22 × 102 * 2.37 × 101

Dg 1.84 × 100 9.06 × 100 * 5.16 × 100 −7.36 × 100 ***
SLcosASP −6.02 × 10−1 3.70 × 100 4.35 × 100 * −1.14 × 100

ST 1.36 × 10−1 −1.24 × 100 2.25 × 100 −3.27 × 10−1

HT 2.51 × 100 6.90 × 100 1.74 × 100 −5.03 × 10−1

MAT −1.44 × 101 ** 6.79 × 101 *** 7.43 × 100 4.62 × 100

MAP 1.02 × 10−1 1.72 × 100 ** −2.56 × 10−2 −5.99 × 10−1 ***
logSigma a 4.37 × 100 *** 4.92 × 100 *** 5.26 × 100 *** 4.63 × 100 ***

R2 0.15 0.36 0.16 0.26
AIC 2482.96 498.88 889.73 3712.39
BIC 2531.67 547.58 938.44 3761.10

logLik −1229.48 −237.44 −432.87 −1844.20
n b 191,428 33,428 54,428 290,428

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01. a log sigma: log of the standard deviation of residuals. b n:
number of plots with recruitment, the total number of plots.

Table 6. The estimated parameters with the lack-of-fit statistics for mortality equations. If a tree died
between the two inventories, the dependent variable, mortality, equals one if a tree died between the
two inventories, if not, it equals zero.

Birch Oak Softwood Pine

Intercept −3.38 × 100 *** 4.01 × 100 −4.69 × 10−1 −3.36 × 10−1 ***
DBH −1.01 × 10−1 *** 6.25 × 10−2 −1.04 × 10−1 *** 6.84 × 10−2 ***
DBH2 2.60 × 10−3 *** −1.42 × 10−3 1.85 × 10−3 * −1.24 × 10−3 ***

BA 2.44 × 10−2 *** 5.93 × 10−2 *** 6.12 × 10−3 −4.72 × 10−2 ***
H1 −3.38 × 10−1 ** 5.97 × 10−1 −3.19 × 10−1 5.82 × 10−1

H2 −2.65 × 10−2 −1.60 × 100 *** 6.27 × 10−1 *** 7.63 × 10−2 ***
Dg 1.64 × 10−2 9.35 × 10−2 5.14 × 10−3 5.97 × 10−3 ***

SLcosASP −1.09 × 10−2 *** −1.07 × 10−2 −2.99 × 10−2 *** −1.13 × 10−2 **
ST 2.92 × 10−3 −4.36 × 10−3 1.46 × 10−3 5.63 × 10−3

HT 2.71 × 10−2 *** −5.00 × 10−2 −2.77 × 10−2 8.70 × 10−3 **
MAT 1.84 × 10−3 *** −2.82 × 10−1 * 1.30 × 10−1 ** 3.63 × 10−2 *
MAP 4.51 × 10−3 *** −1.34 × 10−2 ** −6.38 × 10−4 1.50 × 10−3 ***

R2 0.06 0.11 0.09 0.05
AIC 3037.78 371.71 1234.35 5574.77
BIC 3121.13 431.18 1298.04 5668.93

logLik −1506.89 −173.86 −605.17 −2775.39
df 7663 1037 1480 18,884

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01.

3.2. Model Validation and Comparison

In order to examine how climate affects predicting forest growth, we also produced the
NCM and FM. The estimates of the parameters of FM and NCM are shown in Appendix A.
These three predictive models were compared in terms of goodness-of-fit, measured with
AIC and BIC (Table 7). We found that CM exhibited more robust performance than NCM
in projecting diameter increment. However, in predicting recruitment and mortality, no
pronounced difference between CM and NCM was found.
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Table 7. Model comparison in terms of goodness-of-fit represented by AIC and BIC.

Model
Birch Oak Pine Softwood

AIC BIC AIC BIC AIC BIC AIC BIC

Diameter increment
CM 12,080.58 12,170.16 1099.87 1163.70 2751.99 2818.80 38,786.64 38,888.18

NCM 12,131.66 12,207.47 1110.04 1164.04 2807.75 2864.29 38,840.45 38,926.36
Recruitment

CM 2482.96 2531.67 498.88 547.58 889.73 938.44 3712.39 3761.10
NCM 2485.09 2525.68 511.45 552.04 885.86 926.45 3716.77 3757.36

Mortality
CM 3037.78 3121.13 371.71 431.18 1234.35 1298.04 5574.77 5668.93

NCM 3066.90 3136.35 375.41 424.96 1235.89 1288.96 5589.91 5668.38

Using a ten-fold cross-validation, we further examined the predictive capability of the
three models (CM, NCM, and FM) for every species group. The cross-validated lack-of-fit
statistics, i.e., R2, RMSE, and MAE, are provided in Table 8. Although these cross-validated
lack-of-fit statistics exhibited slight differences in varying species groups, generally almost
no difference was observed for these three models.

Table 8. Results of ten-fold cross-validation.

Species Model R2 RMSE MAE

Birch
CM 0.8982 0.1945 0.0646

NCM 0.8977 0.1948 0.0647
FM 0.9041 0.1887 0.0613

Oak
CM 0.7277 0.0603 0.0077

NCM 0.7661 0.0603 0.0078
FM 0.7831 0.0733 0.0115

Softwood
CM 0.7803 0.1241 0.0225

NCM 0.7744 0.1263 0.0225
FM 0.7937 0.1156 0.0231

Pine
CM 0.8811 0.4972 0.2139

NCM 0.8809 0.4975 0.2138
FM 0.8940 0.4659 0.1993

All
CM 0.9032 0.5606 0.2568

NCM 0.9028 0.5617 0.2564
FM 0.9047 0.5565 0.2505

3.3. Model Application (Short-Term Prediction)

The short-term prediction for the basal area with a 5-year interval was performed using
the three growth models (Figure 5). The RMSE calculated for evaluating the performance
of the three models is also shown in Figure 5. The predicted basal area produced by
these three growth models were all within 95% of confidence intervals of the observed
values. Additionally, the three models exhibited no pronounced difference in predictive
performance for short-term projection among different species groups.

3.4. Model Application (Long-Term Prediction)

The three predictive models were used to make long-term projections over 100 years
with the NFI plots, i.e., 1179, 3774, 1326, and 1692. It was noteworthy that the long-
term prediction of the CM was conducted under different climate change scenarios. The
predicted number of trees (N) produced by the three models showed significant variation
(Figure 6). Because the FM was not dependent of forest stand condition and climate
conditions, the prediction of N exhibited a linear increasing pattern. The prediction of N
by the NCM indicated a decreasing pattern. For plots 3374, 1326, and 1692, before 2060
a decreasing trend is observed for the N as predicted by the CM under three different
RCPs. However, after 2060, RCP8.5 increases, whereas RCP4.5 increases slightly and
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RCP2.6 has an almost stable pattern. For plot 1179, N produced by the CM under these
three climate change scenarios shows a pronounced increasing pattern over 100 years and
RCP8.5 increases fastest.

We also observed the predicted basal area (B) by the FM exhibiting a linear increasing
pattern (Figure 7). By contrast, the predicted B by the NCM shows a slight increasing
pattern and then approached a steady state. In general, B predicted by the CM exhibits a
distinct increasing pattern under RCP8.5, while a small increasing pattern is predicted for
RCP 4.5 and RCP2.5.
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Figure 6. Long-term prediction of tree numbers by the climate-sensitive model (CM) under 3 different
RCPs, the variable transition model which did not expect climate change (NCM), and the fixed-
parameter model (FM), using NFI plot numbers 1179, 3774, 1326, and 1692. The value of the MAT
is the mean annual temperature between 2013 and 2018 and MAP represents the mean annual
precipitation of the same period.
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Figure 7. Long-term prediction of the basal area by the climate-sensitive model (CM) under three
RCPs, the variable transition model which did not expect climate change (NCM), and the fixed-
parameter model (FM), using NFI plots 1179, 3774, 1326, and 1692. The value of the MAT is the mean
annual temperature between 2013 and 2018 and MAP represents the mean annual precipitation of
the same period.
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The predicted species diversity (H1) by the FM was in a relatively stable state over
time, while a slightly decreasing trend is observed for H1 predicted by the NCM (Figure 8).
In terms of the predicted H1 by CM under three different climate scenarios, RCP8.5 first
shows an increasing trend but then exhibits a distinct decreasing trend. By comparison,
RCP4.5 and RCP2.6 show a small increasing pattern over 100 years except for plot 1179.
There was only a slight difference between RCP4.5 and RCP2.6.
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Figure 8. Long-term prediction of species diversity by the climate-sensitive model (CM) under
three RCPs, the variable transition model which did not expect climate change (NCM), and the
fixed-parameter model (FM), using NFI plots 1179, 3774, 1326, and 1692. The value of the MAT is the
mean annual temperature between 2013 and 2018 and MAP represents the mean annual precipitation
of the same period.

The tree size diversity (H2) predicted by FM and NCM, in general, shows a steady
increasing trend for over 100 years (Figure 9). By contrast, the predicted H2 by the CM
under 3 different climate change scenarios first indicates an increasing pattern, and a
decreasing pattern is generally observed after 2070, especially for plots 1179, 3774, and
1692. Additionally, for plots 3774, 1326, and 1692, the predicted H2 under PCP8.5 has the
highest value before 2070, after which RCP 2.6 increases to the highest value.
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RCPs, the variable transition model which did not expect climate change (NCM), and the fixed-
parameter model (FM), using NFI plots 1179, 3774, 1326, and 1692. The value of the MAT is the mean
annual temperature between 2013 and 2018 and MAP represents the mean annual precipitation of
the same period.

4. Discussion

In the study, we produced a climate-sensitive, transition-matrix model for unevenly
aged, Larix gmelinii mixed-species forests. Our transition-matrix model contained three
sub-models, i.e., a tree diameter increment model, mortality model, and recruitment model,
all of which were statistically robust, indicating the capability of projecting forest dynamics
for these complex mixed-species forests.

We observed that tree species diversity (H1) had a positive relationship with recruit-
ment (birch, softwood, and pine) and tree growth (birch and pine), indicating that high
species diversity could improve tree growth and recruitment. Similar results have been
reported in other studies [47–50]. Sapijanskas, Paquette, Potvin, Kunert and Loreau [50] at-
tributed the positive effects of species diversity to the enhancement of light capture through
crown plasticity and spatial and temporal niche differences in mixed-species forests. Tree
species diversity (H1) had a negative correlation with tree mortality, especially for the birch
group. Similar results have been documented by Hisano et al. [51], who found species-rich
boreal forests suffered less mortality than species-poor forests under the environmental
change of the past half-century and argued that improving tree diversity could help reduce
the climate and environmental change vulnerability of boreal forests.

Tree size diversity (H2) also had a positive relationship on tree diameter increment
(pine and birch group) and tree recruitment (birch and softwood group), indicating that
enhancing tree size diversity could also promote tree growth and recruitment. A similar
result has been documented in other studies [52,53]. For example, Dănescu, Albrecht and
Bauhus [53] suggested that structural and species diversity acted as direct and indepen-
dent drivers of stand productivity, with structural diversity (tree size diversity) being a
slightly better predictor. The positive effects might be explained by niche complementarity
theory. The higher tree size diversity indicates that trees differing in size could more
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efficiently occupy the growth space, which results in a complex spatial and vertical struc-
ture that could facilitate the utilization of natural resources, such as soil nutrients, water,
and sunlight [54,55]. The effective allocation of natural resources can thus lead to high
productivity, carbon sequestration, and tree recruitment [52,54]. Forest managers should
implement silvicultural practices to increase tree size diversity and thus enhance the carbon
sequestration capacity. The efficacy of this silvicultural practice has been demonstrated
by several researchers. For example, Ruan, et al. [56] showed that the carbon sequestra-
tion ability was significantly increased after a pure monoculture was transformed into an
uneven-aged mixed-species forest with high size diversity.

MAT showed a significant positive effect on tree diameter increment for all tree species
groups except softwood. Similar results have been found in other studies [57–60]. For
example, Raich, Russell, Kitayama, Parton and Vitousek [57] found that tree growth and
below-ground carbon allocation increased with MAT in evergreen broad-leaved tropical
forests. The significant positive effect can be explained by the fact that our study was
conducted in a cold region, and temperature is a factor limiting forest growth. Similar
findings have been observed in other cold regions. For example, in the Alaska boreal
region, Liang et al. [42] and Mann et al. [61] found that MAP and mean annual growing
season temperature (GST) can positively affect tree diameter growth. Furthermore, we
also observed that MAT had positive effects on tree mortality. These significant positive
effects have been extensively explained by temperature-induced drought stress [14,62,63].
Although Williams, Allen, Macalady, Griffin, Woodhouse, Meko, Swetnam, Rauscher,
Seager and Grissino-Mayer [63] argued that temperature was a potent driver of regional
forest drought stress and tree mortality on the assumption of future decreases in water
availability (no change or a decrease in precipitation) and increases in temperature. Because
water is not a limiting factor in our study area, the positive effects of MAT on tree mortality
might be attributed to an indirect relationship, wherein increases in MAT result in higher
stand density; competition for light, water, and nutrients; and thus, increased mortality.

MAP had a positive relationship with tree diameter increment for the softwood and
pine groups; such a positive correlation has been documented before. By contrast, a negative
correlation between diameter increment and MAP was detected for birch, suggesting that
precipitation was not a limiting factor for this species group. We observed that mortality
had a positive correlation with MAP for birch and pine; the same pattern was reported by
Du, Chen, Zeng and Meng [14]. The positive effect of MAP on tree mortality could also
be explained by an indirect relationship, wherein stand density increases due to greater
diameter increments driven by increasing MAP results in more intense competition and
thus higher mortality.

For prediction of 5-year intervals, the three models, i.e., FM, NCM, and CM, exhibited
no pronounced differences in predictive performance for the focal species groups. We,
therefore, recommended the FM, which has a simple structure and is easier to develop,
to conduct short-term predictions. However, we found that the predicted long-term tree
density and basal area by the FM showed a simple linear pattern, which may not be the true
case (Figures 6 and 7). Although NCM could generate more robust long-term predictions
compared with FM, it might not be effective for long-term prediction because it neglected
the long-term effects of climate variables on forest growth [58,64,65], recruitment [66–68],
and mortality [64,69,70].

For long-term prediction, the predicted number of trees by the NCM suggests a
decreasing trend, which could be explained by competition-induced self-thinning. The
predicted basal area by the NCM showed a slightly increasing pattern and then reached
a steady condition. The predicted patterns for the number of trees and basal area are in
general consistent with the pattern in natural forest succession reported by Liang [44]. By
contrast, the predicted number of trees by the CM under three different climate change
scenarios, in general, indicated a pronounced increasing pattern, though plot 1326 showed
a decreasing pattern before 2070 (Figure 6). A similar increasing pattern was also detected
for the basal area under the three different RCPs (Figure 7). Similar results have been
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documented by many authors [14,71]. For example, Ruiz-Benito, Madrigal-Gonzalez,
Ratcliffe, Coomes, Kändler, Lehtonen, Wirth and Zavala [71] reported that climatic warming
caused an increase in stand average basal area, though this increase was offset by water
availability. The predicted change in the steady state of natural stands suggests that
increases in emissions can result in significant increases in stand density and basal area,
which could preclude a steady state. Increases in stand density might reduce the economic
value of forests and result in natural disasters, such as snow break, windthrow, and
forest canopy fires. For example, high stand density can result in a large slenderness
coefficient, which might increase the probability of windthrow or snow break [72,73].
Therefore, silvicultural practices should be implemented to mitigate the deleterious effects
of climate change. For example, intermediate thinning intervals could be reduced or
thinning intensity might be increased to manipulate stand density so that forests would be
resistant to windthrow, snow break, or canopy fire.

Fast-growing short-rotation trees accumulate more carbon in the leaves, stems, and
roots and thus have higher net annual carbon sequestration rates than slow-growing trees.
However, forests with slow-growing long-rotation trees have larger carbon stocks over the
long term. Kaul, et al. [74] estimated the carbon sequestration potential of slow-growing
sal (Shorea robusta Gaertn. f.), fast-growing Eucalyptus (Eucalyptus tereticornis Sm.), fast-
growing poplar (Populus deltoides Marsh), and moderate-growing teak (Tectona grandis Linn.
f.) forests in India and found that the living biomass of slow-growing long-rotation sal
forests had the largest carbon stock; the opposite pattern was observed for net annual
carbon sequestration rates. Sugden [75] showed that slow-growing trees sequester more
carbon and argued that higher levels of carbon accumulation are achieved in communities
of slow-growing species, indicating that slow-growing trees should be used for enrichment
planting. The effects of increasing atmospheric CO2 concentrations between the different
GCMs (RCP2.6, RCP4.5, and RCP8.5) on MAT and MAP were similar to the patterns in
emission intensity; for example, MAT under PRC 8.5 (high emission intensity) exhibited
the sharpest increase, followed by RCP4.5 (intermediate emission intensity) and RCP2.6
(low peak-and-decay emission intensity) (Figure 3). This finding suggests that atmospheric
CO2 concentrations are positively correlated with MAT and MAP. The pattern of variation
in the predicted number of trees, basal area, species diversity, and size diversity was similar
to that in emissions, suggesting that emissions contributed to changes in these variables.
For example, the sharpest increase in the predicted number of trees was observed under
RCP8.5, followed by RCP4.5 and RCP2.6 (Figure 6).

For long-term prediction, the predicted species diversity by the NCM, in general,
showed almost no variation in time series, though a slightly decreasing trend was detected
for plot 1179. By contrast, the species diversity predicted by the CM under these three cli-
mate change scenarios first shows an increasing pattern and then decreases, suggesting that
species diversity could be negatively influenced by climate change. Many authors [76–79]
have reported the results. For instance, Thuiller, et al. [80] projected late 21st-century
distributions for 1350 European plants species under seven climate change scenarios and
found that more than half of European plant species could be vulnerable or threatened by
2080. Moreover, we observed that the predicted patterns of species diversity shared similar
tendencies as emissions. The long-term predicted size diversity by the CM under three
RCPs shared the same trend with the predicted species diversity, indicating climate change
(increasing CO2) can reduce tree size diversity and the decreasing trend is dependent on
emissions.

5. Conclusions

In this study, a climate-sensitive, transition-matrix growth model was developed
to forecast the dynamics of Larix gmelinii mixed-species natural forests under different
climate scenarios in China. For purpose of comparison, we also produced a conventional
fixed-parameter transition matrix model, as well as a variable-transition model that did
not consider climate change. No differences were observed among the three predictive
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models in their short-term prediction ability (5 years in this study). However, the long-term
prediction ability of the CM under the three different RCPs was superior to that of the FM
and NCM. The long-term predictions of the CM indicated that increases in emissions could
lead to significant increases in stand density and basal area, which might result in natural
disasters, such as snow break, windthrow, and forest fire. Silvicultural practices, such as
reducing the intermediate thinning interval and the enrichment planting of slow-growing
trees, should be implemented to mitigate the negative effects of climate change.
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Appendix A

Table A1. The estimated parameters with lack-of-fit statistics for the tree diameter increment model
of NCM. The dependent variable, diameter increment, was measured in centimeters per five years.

Birch Oak Softwood Pine

Intercept 9.48 × 10−2 ** 9.32 × 10−2 3.10 × 10−1 * 2.05 × 10−1 ***
DBH 5.03 × 10−2 *** 3.27 × 10−2 *** 9.87 × 10−2 *** 6.93 × 10−2 ***
DBH2 −1.05 × 10−3 *** −9.50 × 10−4 *** −1.94 × 10−3 *** −1.26 × 10−3 ***

BA −3.08 × 10−2 *** −2.04 × 10−2 *** −4.40 × 10−2 *** −4.69 × 10−2 ***
H1 2.91 × 10−1 *** −8.17 × 10−3 4.08 × 10−1 *** 6.29 × 10−1 ***
H2 8.55 × 10−2 *** −1.32 × 10−1 −3.81 × 10−2 7.76 × 10−2 ***
Dg 2.79 × 10−2 *** 5.72 × 10−2 *** 2.54 × 10−2 ** 7.37 × 10−3 ***

SLcosASP a −2.40 × 10−3 ** 3.49 × 10−3 3.95 × 10−3 −1.04 × 10−2 ***
ST −1.45 × 10−3 ** 3.74 × 10−3 ** 2.74 × 10−3 5.70 × 10−3 ***
HT 1.44 × 10−3 1.34 × 10−2 * −5.12 × 10−3 1.06 × 10−2 ***
R2 b 0.13 0.11 0.15 0.19
AIC 12,131.66 1110.04 2807.75 38,840.45
BIC 12,207.47 1164.04 2864.29 38,926.36

logLik c −6054.832 −544.02 −1392.88 −19,409.22
df d 7258 992 1251 18,215

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01. a SLCos = Slope × cos (Aspect). b R2: Nagelkerke’s pseudo
r-squared. c logLik: log-likelihood value. d df: Degrees of freedom in model fitting.

Table A2. The estimated parameters with the lack-of-fit statistics for the recruitment model of NCM.
The dependent variable, recruitment, was derived in units of trees per hectare every five years.

Birch Oak Softwood Pine

Intercept −9.73 × 101 *** −5.73 × 102 *** −5.22 × 102 *** 1.27 × 102 ***
N 7.27 × 10−2 *** 5.76 × 10−1 *** 3.40 × 10−1 *** 7.18 × 10−2 ***

BA −5.46 × 100 *** −6.88 × 100 ** −1.49 × 101 *** −6.48 × 100 ***
H1 8.05 × 101 *** 1.38 × 102 ** 2.45 × 102 *** 5.19 × 101 **
H2 3.85 × 101 ** 6.54 × 101 1.21 × 102 * 2.49 × 101



Forests 2022, 13, 574 19 of 22

Table A2. Cont.

Birch Oak Softwood Pine

Dg 2.17 × 100 1.15 × 101 ** 5.22 × 100 −7.47 × 100 ***
SLcosASP −8.36 × 10−1 5.40 × 100 ** 4.43 × 100 * −1.19 × 100

ST 4.34 × 10−2 −7.50 × 10−1 2.35 × 100 * −2.77 × 10−1

HT 1.96 × 100 1.27 × 101 ** 2.05 × 100 −3.20 × 10−1

logSigma a 4.37 × 100 *** 4.92 × 100 *** 5.26 × 100 *** 4.64 × 100 ***
R2 0.14 0.32 0.16 0.24

AIC 2485.09 511.45 885.86 3716.77
BIC 2525.68 552.04 926.45 3757.36

logLik −1232.55 −245.73 −432.93 −1848.39
N b 191,428 33,428 54,428 290,428

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01. a log sigma: log of the standard deviation of residuals. b n:
number of plots with recruitment, the total number of plots.

Table A3. The estimated parameters with the lack-of-fit statistics for the mortality equations of the
NCM. The dependent variable, mortality, equals one if a tree died between the two inventories, if not,
it equals zero.

Birch Oak Softwood Pine

Intercept −1.83 × 100 *** −2.90 × 100 *** −1.29 × 100 *** −2.35 × 100 ***
DBH −1.01 × 10−1 *** 7.14 × 10−2 −9.12 × 10−2 *** −5.60 × 10−2 ***
DBH2 2.60 × 10−3 *** −1.84 × 10−3 1.47 × 10−3 8.71 × 10−4 ***

BA 2.47 × 10−2 *** 4.79 × 10−2 ** 3.09 × 10−3 1.70 × 10−2 ***
H1 −7.77 × 10−2 3.11 × 10−1 −2.42 × 10−1 −1.90 × 10−2

H2 −2.85 × 10−2 −1.62 × 100 *** 6.78 × 10−1 *** 2.13 × 10−1 ***
Dg 1.97 × 10−2 * 1.63 × 10−1 *** 6.81 × 10−3 2.73 × 10−2 ***

SLcosASP −9.20 × 10−3 ** −2.26 × 10−2 * −2.74 × 10−2 *** −7.14 × 10−3 **
ST 3.44 × 10−3 −3.35 × 10−4 2.56 × 10−3 −1.89 × 10−4

HT 3.48 × 10−2 *** −3.42 × 10−2 −2.09 × 10−2 1.43 × 10−2 **
R2 0.05 0.09 0.08 0.05

AIC 3066.90 375.41 1235.89 5589.91
BIC 3136.35 424.96 1288.96 5668.38

logLik −1523.45 −177.70 −607.94 −2784.96
df 7665 1039 1482 18886

Level of significance: * p < 0.10; ** p < 0.05; *** p < 0.01.

Table A4. Transition probabilities of each species group in each diameter class.

Diameter
Class(cm)

Birch Oak
a b m a b m

7.5 0.83946715 0.09663581 0.06389704 0.92377261 0.04005168 0.03617571
12.5 0.86653485 0.10133465 0.03213050 0.90506329 0.03164557 0.06329114
17.5 0.86588542 0.10156250 0.03255208 0.87500000 0.03571429 0.08928571
22.5 0.86220472 0.09448819 0.04330709 0.89655172 0.03448276 0.06896552
27.5 0.82812500 0.09375000 0.07812500 0.84210526 0.05263158 0.10526316
≥32.5 0.71232877 0.10958904 0.17808219 0.92307692 0.07692308 0.00000000

Softwood Pine
a b m a b m

7.5 0.71477663 0.10194731 0.18327606 0.85912263 0.09760718 0.04327019
12.5 0.72606383 0.15159574 0.12234043 0.82835124 0.14222326 0.02942550
17.5 0.69426752 0.18471338 0.12101911 0.82041933 0.16362808 0.01595260
22.5 0.75000000 0.18333333 0.06666667 0.82210243 0.14375562 0.03414196
27.5 0.80000000 0.10000000 0.10000000 0.79073482 0.18051118 0.02875399
≥32.5 0.83333333 0.16666667 0.00000000 0.86943164 0.09370200 0.03072197

a = the probability that a tree stays alive and is in the same diameter class over five years. b = the probability that
a tree stays alive and grows into the next diameter class. m = the probability that a tree died.
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Table A5. Recruitment of trees for each species group in the first inventory.

Species Group Recruitment (Trees ha−1) Recruitment Proportion

Birch 22.78037383 23.37%
Oak 8.51635514 8.74%

Softwood 10.4088785 10.68%
Pine 55.75934579 57.21%

All species 97.46495326 100.00%
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