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Abstract: Norway spruce, economically and ecologically one of the most important European forest
tree species, rapidly declines due to massive bark beetle outbreaks across many countries. As a
prerequisite of ecosystem stability facing climate changes of uncertain predictions, the reforestation
management promoting locally adapted resources of broad genetic diversity should be prioritized,
especially in nature conservation areas. In our case study carried out in the national park, Krkonoše
Mountains (the Giant Mountains, the Czech Republic), we demonstrated a tree breeding strategy
aiming at maximizing genetic diversity. More than four hundred unique Norway spruce accessions
were genotyped on 15 microsatellite loci (Ne = 5.764, I = 1.713 and He = 0.685). Two core collection
selection approaches were proposed to establish a new deployment population providing local
gene sources of high genetic diversity. Namely, the Core Hunter selection algorithm, with average
entry-to-nearest-entry distance (EN) optimization, was applied to identify the most diverse core
collection set with the highest genetic diversity parameters obtained for 57 selected individuals
(Ne = 6.507, I = 1.807, and He = 0.731). The latter core collection method proposed is innovative,
based on choosing appropriate genotypes from a clustered heatmap. For simplicity, we demonstrated
the principle of selection strategy on a reduced dataset. It is vital to promote panmixia of a newly
established production population from a core collection to complete the conservation breeding
effort. Thus, we demonstrated the utilization of the Optimum Neighborhood Algorithm (ONA)
deployment that outperformed other deployment algorithms, especially in the case of balanced clone
representation and uneven shapes of planting plots. We believe that the case study presented can be
generalized and considered as a guideline for analogical tree breeding intentions.

Keywords: core collection; deployment strategy; microsatellites; Picea abies (L.) Karst

1. Introduction

Norway spruce, one of the economically most important tree species in Central Eu-
rope, currently faces a significant decline, mainly due to bark beetle outbreaks [1–4]. As
a consequence, there is an increased demand for artificial reforestation, but forest repro-
ductive material used should be chosen appropriately, with caution. In the Krkonoše
Mountains, Norway spruce has significant importance from both economic and ecological
points of view. In the second half of the 20th century, local forest ecosystems were widely
exposed to intense human pressure and intensive air pollution. An effort has been made to
rescue the valuable indigenous populations, consisting of potentially stress-tolerant and
phenotypically superior individuals in the conservation breeding program [5,6].

Thus, the autochthonous gene pool that has undergone a long-term selection and
adaptation process should be prioritized, and it is desirable to convey the maximal propor-
tion of the genetic diversity into the next generations of forest. Maintaining a broad genetic
base will make the ecosystem more resilient to forthcoming climate change. Moreover, the
high-elevation Norway spruce ecotype has been proven genetically distinctive compared
to spruce of other ecotypic forms [7]. Historically, forest stands in higher elevated and less
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accessible areas were more difficult to exploit. Hence, the autochthonous populations have
been able to persist to the present. Nowadays, these areas are under an enhanced protection
regime, and the fundamental management is aimed here to preserve the autochthonous, or
at least a long-term, locally adapted gene pool [8].

A variety of advanced genotyping methods efficient in revealing the genetic architec-
ture of the studied population are available today. They all have in common the ability to
generate large amounts of data in a short time [9–13]. Despite that, microsatellite markers
(SSRs) for fundamental genetic diversity analysis are still an effective genotyping tool with
several undeniable advantages. Their codominance and elevated levels of polymorphism
make them particularly informative for individual identification and for investigating
genetic population structure [14–17]. Moreover, microsatellite genotyping protocols are
well established [18–24] and might be routinely applied in standard-equipped laboratories.

In response to threats arising from biotic and abiotic stresses often accelerated by
climate changes, international conservation and breeding programs proposed an estab-
lishment of gene banks conserving endangered genotypes. Commonly, it is not feasible
to maintain the entire gene pool, therefore, so-called core collections are established [25].
A core collection is defined as a subset of all accessions which represents the diversity
of the whole collection with a minimum redundancy [26]. Many various core collections
selection methods have been proposed, and each of them differs in defining the selection
criteria for a respective core collection establishment. Selection can be based on genotypic
or phenotypic data; some core collections methods consider a combination of both [27–29].
Molecular data are used for the estimation of allelic richness or pairwise genetic distances.
Parameters of phenotypic traits and allele scores are calculated using distance matrices,
and the accessions selection is carried out with allocation methods [30,31]. For example, the
M-method allows constructing cores with high allelic richness, maximizing the probability
to preserve all examined alleles [32].

Methods based on genetic distances between accessions possess the advantage of
using all different variables simultaneously [33]. The genetic distance optimization (GDOpt)
method was developed to select highly representative core subsets, in which each accession
optimally represents accessions not included in the core selection [34]. GenoCore [35] was
designed and customized for the high-density data sets. The algorithm selects the most
consistent, and most representative core collection from all samples, which is accomplished
by repeatedly incorporating a random accession and eliminating all others within a specific
sampling radius [36]. Core Hunter [37] was introduced as a method to optimize the variety
of different criteria of core collections for particular purposes, using flexible local search
algorithms. The program constructs specific core collections and can combine multiple
objectives to bring the different perspectives closer together. The latest version of Core
Hunter can sample fixed-size cores based on a precomputed distance matrix, molecular
marker data, phenotypic traits, or a combination of these [25].

In the past, the deployment schemes for seed orchards were created manually [38].
Nowadays, the modern technology and programming languages allow creation of highly
sophisticated designs suitable to different criteria for different seed orchards. For example,
MI design [39] minimizes the probability of crossing individuals with a close kinship.
R2SCR design [40] is suitable for creating spatially complex schemes. Optimum Neigh-
borhood Algorithm (ONA) design [41] maximizes panmixia, and due to its versatility, it is
used for creating optimal spatial schemes.

In the case study, we aimed (1) to reveal the genetic structure of the targeted Norway
spruce population from the Krkonoše Mountains; (2) to demonstrate strategies of core
collection selection using a sophisticated algorithm, (Core Hunter software) and propose an
alternative core collection selection approach based on identification in a clustered heatmap;
finally, (3) we recommend a deployment strategy applied on core collection to promote
panmixia in a new generation of trees.
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2. Materials and Methods
2.1. Origin of the Research Material

We targeted the presumably autochthonous Norway spruce population from the
national park, Krkonoše Mountains (50◦42′36.0” N 15◦39′00.0” E). Local Norway spruce
previously underwent natural selection processes as trees were exposed to intensive air
pollution during the 2nd half of the 20th century. From these surviving trees of high-
elevation ecotype [42], seeds from surviving superior trees across the Krkonoše Mountains
were collected and planted (1989–1993). The plant material was further vegetatively
propagated (by cuttings) and grown in clonal rows on several plots across the mountains.
These accessions (unique genotypes) were the subject of our research.

2.2. Sampling, DNA Extraction, and Genotyping

Vegetative buds were sampled in June 2018 (in total from 620 individuals) and stored at
−80 ◦C until further processing. Some clones were sampled in replicates for clonal identity
confirmation. For DNA extraction, approximately 60–80 mg of fresh needle tissue was
cut, frozen under liquid nitrogen, and grounded in the mixer mill MM400 (Retsch, Haan,
Germany) for 3 min at 30 Hz. The genomic DNA was extracted with the DNeasy® Plant
Mini Kit (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. DNA
concentration was measured using a NanoDropTM 2000 spectrophotometer (Thermo Fisher
Scientific, Madison, WI, USA) and then diluted and adjusted to a working concentration of
20 ng/µL.

SSR amplification was carried out in two multiplex polymerase chain reactions [43].
Multiplex I contained primer sequences paGB3 [22], SpAG2 [19], EATC1E03 [21],
WS00716.F13 [23], EATC1D02A [21], and Pt71936 [18]. Multiplex II consisted of
WS0073.H08, WS0092.A19, WS0023.B03, WS0019.F22 [23], Pa_28, Pa_33, Pa_56 [24],
PAAC23, and PAAC3 [20]. In total, 15 primer pairs in a dried form were supplied
by Thermo Fisher Scientific. Fluorescently labeled amplicons were analyzed on an
3500 genetic analyzer (Applied Biosystems, Waltham, MA, USA) and scored using the
software, Genemarker [44]. Allele binning was verified manually to minimize the level
of genotyping errors.

2.3. Data Processing

Prior to the evaluation, multiple genotypes (i.e., individuals with verified clonal
identification) and samples with a genotyping failure higher than 30% were excluded.
Thus, 408 unique genotypes were entered in the analysis.

Frequency-based statistics such as a total number of alleles (k), observed (Ho) and
expected (He) heterozygosity, and the polymorphism information content (PIC) were de-
termined by the CERVUS 3.0 software [45]. GenAlEx (Genetic Analysis in Excel) [46,47]
was used to calculate a mean number of alleles (Na), an effective number of alleles (Ne)
and Shannon diversity index (I). The null-allele frequencies were determined using the
ML-NULLFREQ program [48]. Bruvo’s genetic distance [49] was calculated using R pack-
age, poppr [50]. Subsequently, the neighbor-joining dendrogram [51] and a heatmap were
created with R package, adegenet [52].

The Core Hunter 3 [25] was applied for core collection establishment. The optimal
clonal seed orchard layout was produced using Optimum Neighborhood Seed Orchard
Design (ONA) [41].

3. Results and Discussion
3.1. Frequency-Based Characteristics of Microsatellite Loci

GeneMarker software was used to analyze and detect the polymorphism at fifteen
microsatellite loci. In total, 228 allelic variants were revealed across all loci. The number
of alleles per locus significantly varied, with the maximum of 44 variants at locus PAAC3,
and the minimum number of 5 alleles at locus Pa_56. The mean number of alleles was 15.2
with a standard deviation of 11.346, and a standard error of 2.930 (Table 1).
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Table 1. Frequency-based statistics on analyzed loci.

Locus k Ho He PIC HW F(Null)

Pa_56 5 0.634 0.633 0.562 NS 0

Pa_28 7 0.574 0.633 0.587 NS 0.05

Pa_33 7 0.13 0.192 0.186 ND 0.092

PAAC3 44 0.532 0.904 0.895 *** 0.242

PAAC23 19 0.696 0.674 0.652 NS 0

WS0019.F22 11 0.458 0.521 0.482 * 0.046

WS0023.B03 21 0.542 0.913 0.906 *** 0.252

WS0073.H08 7 0.641 0.654 0.585 NS 0.012

WSA0092.A19 12 0.751 0.774 0.749 NS 0.017

paGB3 9 0.627 0.753 0.716 *** 0.069

SpAG2 17 0.682 0.911 0.903 *** 0.142

Pt71936 7 0.327 0.621 0.583 *** 0.264

EATC1D02A 20 0.418 0.805 0.787 *** 0.274

WS00716.F13 35 0.636 0.946 0.943 ND 0.192

EATC1E03 7 0.23 0.335 0.311 *** 0.155

Mean 15.200 0.525 0.685 0.656 – –

SD 11.346 0.180 0.215 0.221 – –

SE 2.930 0.046 0.056 0.057
k—number of alleles at each locus; Ho—observed heterozygosity; He—expected heterozygosity;
PIC—polymorphic information content; HW—deviations from Hardy-Weinberg equilibrium; level of signif-
icance: *** α = 0.001; * α = 0.05; NS—not significant; ND—not done; F(Null)—estimation of null allele frequency;
SD—standard deviation; SE—standard error.

The mean values of a polymorphic information content, PIC (Table 1), were esti-
mated to be 0.656. Moreover, 4 from the 15 loci showed a PIC higher than 0.85 (with
the highest value, 0.943, detected on WS00716.F13). The expected (He) and observed
(Ho) heterozygosity significantly corresponded to strongly polymorphic microsatellite
loci (Pa_56, PAAC23, WS019.F22, WS0072.H08, and WS0092.A19). The maximum value
of Ho was found in the loci WS0092.A19 (0.751), PAAC23 (0.696), SpAG2 (0.682), and
WS00716.F13 (0.636), unlike the minimum value of Ho that was found in loci Pa_33
(0.130) and EATC1E03 (0.230).

Many authors have aimed their research to select suitable polymorphic microsatellite
markers for the Norway spruce genotyping [53,54]. Our study used two multiplexes pre-
viously optimized on Czech Norway spruce populations [43]. Other Czech authors [55]
tested nine polymorphic loci assembled into three multiplexes. Frequency-based charac-
teristics generated from 427 individuals originating from 12 areas are comparable to the
data obtained in our study. The allelic interval in the PAAC23 locus varies between 266
and 314 bp, similar to our observed data within the same locus (269–315 bp). The results
for the WS00716.F13 locus differed most markedly, ranging from 180 to 288 bp in the study
cited above, while the amplification found by this study showed values in the range 210 to
245 bp.

Unsurprisingly, the frequency-based characteristics differ significantly among stud-
ies when compared datasets are mutually unbalanced in their size or sampling design.
For example, our data for observed and expected heterozygosity for the primer Pa_28
(Ho = 0.574; He = 0.633) considerably varied from results (Ho = 0.681; He = 0.700) in the
primary study [24]. Observed (Ho) and expected (He) heterozygosity for the primer Pa_56
equaled 0.634 and 0.633 in comparison to the results of 0.625 and 0.655 presented in the
original study [24]. Unlike the previous numbers that differed only by hundredths, our
values of Ho = 0.130 and He = 0.192 for Pa_33 primer were significantly different from
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the data observed in the original study [24]: He = 0.957 and He = 0.637. Additionally, our
research revealed seven allelic variants, whereas the authors of the original research [24]
detected nine different alleles. A wider geographical sampling range can explain the detec-
tion of a higher number of alleles in the case of [33]. The original values of Ho = 0.470 and
He = 0.570 in primer WS0019.F22 [23], and Ho = 0.652 and He = 0.764 in primer paGB3 [22],
differed minimally from the results obtained in this study: Ho = 0.458 and He = 0.521
for the WS0019.F22, and Ho = 0.627 and He = 0.753 for the paGB3. In primary studies
on loci EATC1E03 [21] and SpAG2 [29], there was no information about the observed
heterozygosity. Nonetheless, a comparison of expected heterozygosity showed a higher
value (0.911) at SpAG2 primer in our study than the number 0.893 obtained in the original
study [19]. These findings correspond with this locus being more polymorphic (17 allelic
variants) in our study.

Regarding the genetic diversity parameters, the number of effective alleles (Ne) for our
full dataset (408 accessions) was estimated at 5.555 (SE 1.265), and the Shannon diversity
index I = 1.683 (SE 0.207). There is a lack of information on such genetic diversity parameters
in other studies, as they usually deal with more than one population, thus preferring to
present F-statistics parameters.

3.2. Selection of Core Collection

Ideally, the genetic diversity of the entire gene pool is conveyed to future gen-
erations. In effect, the conservation and tree breeding effort, such as establishing a
deployment population, required an apriori-defined number of individuals that are
accommodated in the gene resources management. Therefore, the decisions on which
accessions should be prioritized and maintained (so-called core collection) must be
made [26]. Along with genotype diversity, phenotypic appearance might also be the
selection criterion [27].

In our study, the selection of the core collection was entirely subordinate to genetic
diversity data revealed by microsatellite genotyping. Although the initial selection of
trees into the breeding program relied primarily on phenotypic traits (trees survival),
their current generation, established by grafting the original one, possesses similar
morphological characteristics. In other words, the common breeding issue of opti-
mizing the balance between genetic diversity retained and genetic gain, regarding a
particular trait [56], was not followed, but we entirely prioritized the genetic variability
of selected accessions.

3.2.1. The Scenario of a Rigorous Selection of the CORE Collection

The precise core collection selection was conducted with Core Hunter 3 [25] under the
average entry-to-nearest-entry distance (EN) optimization objective. The algorithm maxi-
mizes the average genetic distance between each selected individual and the closest other
selected one. Pairwise distances between individuals are computed based on Modified
Rogers distance [37]. In order to capture changes in frequency-based characteristics when a
particular number of individuals is selected to the core collection, we ran various scenarios,
starting with a selection of ten individuals and gradually increasing up to the entire number
of accessions available (408 genotypes). For all scenarios, there were frequency-based statis-
tics (Table 2, Core Hunter Selection). For comparison, we also estimated those statistics for
the core collections of the corresponding size, chosen from the dataset randomly (Table 2,
Random Selection).
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Table 2. Frequency-based statistics.

Core Hunter Selection (EN) Random Selection

N Na Ne I Na Ne I

10 6.643 4.652 1.572 5.714 3.597 1.358

20 8.714 5.492 1.680 7.571 sd4.771 1.518

30 9.786 5.843 1.736 8.714 5.031 1.591

40 10.643 6.097 1.769 9.143 4.757 1.590

47 11.286 6.134 1.786 10.000 5.623 1.681

50 11.429 6.345 1.793 10.500 4.858 1.632

52 11.429 6.373 1.789 9.929 4.803 1.574

54 11.286 6.347 1.786 10.214 5.345 1.631

55 11.286 6.409 1.786 10.429 5.008 1.618

56 11.357 6.500 1.793 11.000 5.684 1.676

57 11.429 6.507 1.807 10.571 5.241 1.651

58 11.286 6.351 1.783 10.357 4.921 1.589

59 11.429 6.424 1.788 10.286 5.427 1.647

60 11.429 6.401 1.788 11.214 5.423 1.657

65 11.571 6.346 1.782 10.786 5.329 1.625

70 12.286 6.388 1.795 11.071 5.107 1.642

71 12.286 6.450 1.806 11.429 5.328 1.644

100 12.786 6.365 1.801 12.214 5.432 1.694

150 13.929 6.272 1.773 12.786 5.418 1.671

200 14.571 6.244 1.760 13.286 5.765 1.700

250 15.000 5.997 1.746 14.000 5.810 1.716

300 15.500 5.985 1.740 14.786 5.787 1.711

408 15.857 5.764 1.713 15.857 5.764 1.713
N—sample size; Na—number of different alleles; Ne—number of effective alleles; I—Shannon diversity index.

The values of genetic diversity indices (number of effective alleles and Shannon
diversity index) are not successive under random selection scenarios. Additionally, none
reached values as high as those selected by Core Hunter (Table 2). Thus, the Core Hunter
selection algorithm proved the efficiency of selecting the core collection with maximized
genetic diversity for all core collection sizes, compared to a random selection of individuals
(Figure 1a,b). Indices counted for individuals selected by the Core Hunter algorithm
showed lower variability within the range of values, and the maximal peak for both the
number of effective alleles (Ne) and the Shannon diversity index (I) was estimated for the
size of the core collection, N = 57.

Although the ideal scenario would be to include all accessions into the new de-
ployment population, from the operational point of view, the size of the core collection
is usually restricted, mainly due to the size of the planting plot available. As our strat-
egy is genetic diversity maximization, we opted for a subset of 57 accessions, which
reported the highest Ne (6.507, SE 1.429) and I (1.807, SE 0.204) values. Our results
slightly vary from other core collection studies. For example, a study introducing a
new algorithm for Core Hunter II [57] was carried out on 275 sample individuals with
the value of Ne (2.937) and I (4.399). These findings correspond closely with the results
of Ne (2.734) and I (4.467): a similar study [58] for a selection of a core collection from
521 individuals.
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3.2.2. A Relaxed Scenario of Core Collection Selection

Bruvo’s genetic distance algorithm [49], preferred for microsatellite data, was applied
to generate the dendrogram. This approach considered mutation processes, providing more
precise outputs than other methods [59]. Individuals in the dendrogram were connected
step-by-step according to the degree of their mutual kinship, and formed clusters of related
individuals (Supplementary Figure S1). As a less organizationally demanding method
that provides a wide range for operational adjustment, we suggested a group-based core
collection selection approach. Firstly, the dendrogram is dissected into an appropriate
number of clonal groups in concordance with the number of essential clades. Subsequently,
to prevent a significant reduction of genetic diversity within a selected collection, we
suggest choosing individuals equally from each group.

We demonstrated the strategy on a reduced dataset from the original one for simplicity.
For example, suppose there are 20 clonal groups, and the task is to select 20 individuals
for the core collection. In that case, from each group, one individual will be chosen. If the
requirement is, for example, 30 individuals, then from 10 clonal groups, one individual will
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be selected, and from the other 10 groups, two individuals will be chosen, etc. The selection
of a particular genotype within each group is optional to some extent, but the status of
genetic diversity among accessions should be inspected using a heatmap. We demonstrated
this approach on the subset of 50 genotypes when aimed to select 15 individuals for the
core collection. The mutual level of genetic diversity between individuals from adjacent
groups of genotypes, as well as within the group, is checked based on the color shade, and
individuals with the lower level (more pronounced color) are prioritized (Figure 2). It is
worth emphasizing that each white dot in Figure 2 represents two accessions. Accessions are
usually targeted twice (or more times), depending on the number of dendrogram clusters
defined and the number of individuals aiming to be gathered into the core collection.
In other words, the number of dots in the heatmap does not represent the size of the
core collection.
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Using this selection scenario, the core collection of 15 selected accessions indicated the
following parameters of genetic diversity: I = 1.567 (SE 0.177) and Ne = 5.011 (SE 0.876). In
opposition, the random selection of 15 individuals (based on bootstrapping, N = 20) from
this dataset reported I = 1.455 (SE 0.009) and Ne = 4.344 (SE 0.059). Nevertheless, it needs to
be recognized that the core collection selection based on Core Hunter algorithm promotes
diversity more effectively: I = 2.134 (SE 0.112) and Ne = 7.383 (SE 0.847).

Unquestionably, the selection approach based on a sophisticated software algo-
rithm provided the most effective core collection selection. On the other hand, the
alternative method that relies on selection from kinship groups might be readily ap-
plicable in operational conditions, e.g., when the breeder is not able to propagate
particular genotypes, often due to the high mortality rate of individual grafts and
a need for an operative change of selected clones. We proved that the method of
group-based selection effectively eliminates the risk of considerable genetic diversity
narrowing in the selected subset of individuals.

3.3. Deployment Schemes

Before the development of modern technology, the deployment schemes for seed
orchards were created manually [38]. Their main disadvantages comprise the lower
accuracy and sophistication. These deficiencies were eliminated within the years of
computer technologies development that have provided us with more sophisticated
designs using various programming languages. COOL design [60] is suitable for irreg-
ularly shaped seed orchards, whereas MI design [39] uses optimization of distances of
individual ramets to minimize the probability of crossing related individuals. For the
seed orchards in need of spatially complex schemes, R2SCR design [40] with the use
of random clonal rows is very suitable. Most of the designs mentioned above focus
primarily on minimizing mutual crossing within ramets of the same clone using a
suitable spatial distribution of clones. Yang et al. [61] also consider a genetic distance
between clones to be one of the most important factors affecting the minimization of
possible inbreeding.

Optimum Neighborhood Algorithm (ONA) design [41] has appeared to be opti-
mal. The algorithm has fulfilled the requirements of the research, and besides, it has
taken into account the requirement of maximizing panmictic crossing. Versatility is
another advantage of ONA—it can be used to optimize both the distribution of clones
for different shapes of seed orchards, as well as different proportions of clones and
their ramets.

From the operational point of view, the size of the core collection was restricted by
the area available for seed orchard establishment. With 4 × 4 m spacing, the 0.58 ha plot
can accommodate 307 individuals. The requirement for the number of replicates (ramets)
is the equal representation of ramets per clone. Optimum Neighborhood Seed Orchard
Design [45] was used for creating the deployment schemes of proposed seed orchards with
the quasi-equal number of ramets per clone, six (clones nr. 1–22) and five (clones nr. 23–57),
respectively. The final seed orchard layout (Figure 3) is an output of 1000 iterations and
maximizes panmixia by minimizing the variance in the number of direct neighbors among
all clones (σ2

min = 0.275).
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4. Conclusions

Although various studies aimed to identify provenances of potentially best perfor-
mance under predicted climate shifts (assisted migration), the keystone for resilient and
resistant forest ecosystems is that the broad genetic diversity is maintained. The wide
genetic variation forms a buffer for natural selection under somewhat uncertain trends in
climate change. Moreover, especially in nature conservation areas such as national parks, au-
tochthonous genetic resources are prioritized and even enforced by legislative regulations.

Following this logic, we presented the conservation breeding program of Norway
spruce in the national park, Krkonoše, based on microsatellite genotyping. The highly
informative SSR data enabled the estimation of the genetic diversity parameters of the
entire targeted population, as well as various subpopulations theoretically assembled
during different evaluation scenarios. Besides confirming the high efficiency of the selection
algorithm implemented in Core Hunter software, we also proposed the innovative approach
of core collection identification based on a heatmap selection within groups determined
by dendrogram clusters. Although this approach, by its very nature, did not identify just
one unique core collection subset with the highest genetic diversity indexes, it provides
above-average, diverse collections preventing a significant loss of diversity.

It is essential to point out that an optimal deployment strategy must follow a core
collection selection if a newly established production population is supposed to produce
seeds of desired genetic diversity. We believe that procedures applied in our case study
could be generalized and utilized in other conservation programs with analogical tree
breeding objectives.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13030489/s1. Figure S1: Dendrogram based on Bruvo’s genetic
distance. The red horizontal line defined the clonal clusters; individuals in green circles are examples
of such clusters.
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Available online: https://www.vulhm.cz/zachrana-genofondu-krkonosskeho-smrku/ (accessed on 5 April 2021).
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