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Abstract: Air quality issues caused by nitrogen dioxide (NO2) have become increasingly serious in
Chinese cities in recent years. As important urban green infrastructure, urban forests can mitigate
gaseous nitrogen pollution by absorbing NO2 through leaf gas exchange. This study investigated
spatiotemporal variations in the NO2 removal capacity of urban forests in Beijing city from 2014–2019,
based on the i-Tree Eco deposition model. The results show that the annual removal capacity of
administrative districts within Beijing city ranged from 14,910 to 17,747 tons, and the largest capacity
(2684 tons) was found in the Fangshan district. The annual removal rate of NO2 by urban forests
in administrative districts within Beijing was estimated at between 0.50–1.60 g/m2, reaching the
highest (1.47 g/m2) in the Mengtougou district. The annual average absorption of NO2 by urban
forests can account for 0.14–2.60% of annual total atmospheric NO2 and potentially reduce the NO2

concentration by 0.10–0.34 µg/m3 on average. The results of a principal component analysis suggest
that the distribution of urban forests in Beijing is not optimized to maximize their NO2 removal
capacity, being higher in suburban areas and lower in urban areas. This study provides insights into
botanical NO2 removal capacity in Beijing city to mitigate atmospheric N pollution, addressing the
key role of urban forests in improving human wellbeing.

Keywords: urban forests; air pollution; nitrogen dioxide; i-Tree eco; Beijing

1. Introduction

China’s rapid urbanization has been accompanied by severe air pollution, particularly
by nitrogen oxides (NOx), which have become a major concern [1,2]. At the same time, the
concentrations of typical air pollutants, including fine particulate matter (PM2.5) and sulfur
dioxide (SO2), have been significantly reduced [3–5]. In some large cities, such as Beijing,
the concentrations of NOx and ground-surface ozone still remain at high levels due to the
emission of traffic-related exhaust, thermal power generation, and regional atmospheric
pollutant transport [6]. Large amounts of NOx emissions may not only contribute to
the photochemical production of aerosol and excessive atmospheric nitrogen deposition
but may also induce the photochemical formation of ground-surface ozone [7,8]. Several
studies have demonstrated that long-term exposure to NOx and O3 may increase the risk
of respiratory and vascular disease in urban populations [9]. Therefore, exploring the
sustainable mitigation of air pollutants in the urban environment is an urgent issue.

Terrestrial ecosystems are the most important N pools on the earth’s surface. The
leaves of active plant organs are the main nitrogen sinks to store atmospheric nitrogen
deposition [10]. Green infrastructures in urban environments, especially urban forests and
green spaces, are widely recognized as providing ecological service functions to purify
air pollutants [11–13]. Therefore, using green infrastructure in cities can be considered a
cost-effective and nature-based approach to improve air quality. Previous studies have
measured the uptake capacity of vegetation for NO2 in indoor experiments based on a
dynamic gas chamber method [14,15]. However, the uptake of NO2 by urban forests in
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the urban environment is influenced by a combination of factors, including air pollutants
concentrations, meteorological conditions, and the physiological features of plants [16].
Therefore, indoor measurements are difficult to extrapolate to represent the air pollutant
uptake capacity of large-scale urban forests. Most studies have applied the UFORE model
(urban forest effects model), and its enhanced version, the i-Tree Eco deposition model, to
assess the air purification service supplied by urban forests [17–19]. The UFORE/i-Tree
Eco model considers the removal of air pollutants by urban forests as a foliar deposition
process of gaseous pollutants in multiple different boundary layers [19]. Several studies
have quantified the NO2 removal capacity of urban forests using the UFORE/i-Tree Eco
model [19–21]. Studies using the UFORE/i-Tree Eco model have mostly focused on com-
paring differences in the purification capacity of urban forests in different cities and at
different spatial scales. Most of these studies chose the growing season of trees in a year
as the study’s period. However, fewer studies focused both on the spatial and temporal
variability of the purification services of urban forests over a time series (Table S1).

Concentrations of NOx in Beijing, the capital city of China, remain at high levels
annually. Fuel combustion is the main source of gaseous nitrogen pollutants (mainly NOx)
emissions [6,22]. Yang, McBride, Zhou, and Sun [23] quantified air pollutant removal by
urban forests in urban districts in Beijing and provided a cost-benefit analysis. They found
that the species composition and canopy structure of trees in these urbanized areas are
not conducive to maximizing NO2 removal. The green cover in the city has increased
from 47.4% to 48.5% during the period of 2014–2019 [24]. It is crucial to reappraise the
potential NO2 removal by urban forests in Beijing after significant green planting and
tree replacement. The canopy growth of urban forests with artificial cultivation may
theoretically contribute to biological NO2 absorption [20]. However, few studies have
examined how the social, economic, and ecological condition of sub-regions may affect the
mitigation of NO2 pollution by urban forests.

In this study, we addressed the questions above using ground-based monitoring
datasets of daily NO2 recordings between 2014 and 2019, focusing on all administrative
districts (16 in total) in Beijing city. We first explored the spatial and temporal variations in
NO2 removal by urban forests in these districts during the period of 2014–2019, and then
examined the relationships between socioeconomic factors and regional NO2 removal by
urban forests, finally assessing the NO2 removal capacity in Beijing city by urban forests
and their potential to mitigate atmospheric N pollution. By combining the socio-economic
factors with the result of the i-Tree Eco deposition model, we can account for variations
in urban activities and the absorption capacity of urban forest in different socioeconomic
subregions [16]. This study attempts to provide information for city managers to optimize
urban forest planning to maximize their NO2 removal capacities.

2. Materials and Methods
2.1. Site Description

Beijing, with a total population of around 21 million, is located at the northwest of
the North China Plain (39◦56′ N, 116◦20′ E), covering an area of approximately 16,411 km2

and encompassing 16 administrative districts (Figure 1, Table S2) [25]. In recent years,
the annual concentration of NO2 in Beijing has increased and has reached concentrations
ranging from 22.0 to 66.9 µg/m3 [26]. This increase is mainly attributed to the growth of
NO2 emissions from transportation and domestic sources [27].
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Figure 1. Landscape of Beijing city and administrative districts.

There are around 55 species of trees planted in Beijing, and the main functional group
of urban trees are deciduous broadleaf species and evergreen coniferous species, such as
Populus tomentosa Carrière, Sophora japonica L., Fraxinus chinensis Roxb., Sabina chinensis L.,
and Pinus tabuliformis Carrière [28]. The green cover rate in Beijing has steadily increased
from 47.4% to 48.5% during the period of 2014–2019 [24]. There is a gradient pattern for
urban forests in Beijing, with significant differences in species and functional traits between
urban and suburban districts [28,29].

2.2. Data Sources

Three types of data are used in this study. (1) Environmental and meteorological
monitoring data. Hourly NO2 concentration data from 2014–2019 were obtained from 34 air
pollution monitoring stations. Most monitoring stations are located in the districts of central
Beijing, and a few are located in the suburban area of the city (Figure S1). Five-minute
meteorological data (wind speed, precipitation, and air temperature) from 2014–2019 were
obtained from the meteorological stations located in the Beijing city area. (2) Remote
sensing data. Leaf area index (LAI) data were acquired using the Landsat 8LAI remote
sensing product at a spatial resolution of 30 m for the year 2019. Monthly LAI images
from May to October (i.e., the common growing seasons for urban trees) in Beijing were
aggregated and yielded a map of the average LAI values for the year 2019. Annual LAI
for the period of 2014–2018 were estimated based on the ratio of regional green cover
rate each year to that of 2019. (3) A large number of socioeconomic factors were used to
examine the impact of urban development on NO2 removal by urban trees, including green
cover rate (Green), NO2 concentrations (NO2), particulate matter concentration (PM), fine
particulate matter concentration (PM2.5), SO2 concentration (SO2), environmental protection
expenditure (Exp-Envir, log transformed), per capita disposable income (PCDI), total retail
sales of consumer goods (TVSRC), gross domestic product (GDP), GDP of industry (GDPI),
GDP of construction (GDPB), car ownership (CARS), total electricity consumption (ELC),
total energy consumption (TEC), population (Pop), and population density (Pop-Den, log
transformed). The data for most factors were obtained from the Beijing Municipal Bureau
Statistics [25].
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2.3. i-Tree Eco Deposition Model

To estimate the amount of NO2 deposition on leaf canopy, we applied the spatial i-Tree
Eco deposition model. We input the spatial distribution of pollutant concentrations and
meteorological conditions, and then calculated NO2 deposition flux Fd combined with
hourly air pollutant concentrations as follows [19]:

Fd = Vd × C (1)

where Vd (m/s) is the deposition velocity of NO2 onto the leaves or within the vegetation
canopy and C is the hourly concentration of NO2. Deposition velocity was defined as the
inverse of the sum of the aerodynamic (Ra), quasi-laminar boundary layer (Rb), and canopy
resistance (Rc). The equation of the deposition velocity is shown below [30]:

Vd = 1/(Ra + Rb + Rc) (2)

The aerodynamic resistance (Ra) is a function of windspeed under neutral condi-
tions [31]:

Ra = u(z)/u2
∗ (3)

where u(z) is windspeed at height z and u* is friction velocity. Friction velocity data were
obtained from the previous study [32]. The quasi-laminar boundary layer resistance (Rb) is
introduced to describe the resistance between fluid and deposition surface; it can be written
as [33]:

Rb =
1

u∗

(
v
Dj

)2/3

(4)

where Dj is the diffusivity of air pollutants, v is the viscosity of air, and u* is friction velocity.
Canopy resistance Rc is introduced to describe the resistance effect of stomata gas exchange
(Rst), leaf cuticle resistance (Rcut), and leaf mesophyll resistance (Rm) and can be expressed
as [31,32]:

1/Rc = 1/(Rst + Rm) + 1/Rcu (5)

Stomatal resistance depends on various factors such as canopy stomatal conductance,
photosynthetically active radiation, air temperature, leaf water potential, etc. For simplicity
of the calculation, the average stomatal resistance for different forest types was obtained
from the published literature [14,15,32]. Leaf mesophyll resistance is related to the diffu-
sion rate of pollutant gas in the mesophyll layer, the resistance value of leaf mesophyll
for NO2 was set to 100 s/m [34]. The cuticle resistance of evergreen coniferous forest,
deciduous broadleaf forest, and mix forest was set to 5000 s/m, 7500 s/m, and 6250 m/s,
respectively [34]. Based on Equations (2)–(5), the hourly NO2 deposition velocity (Vd,
m/s) was calculated for deciduous forests, evergreen coniferous forests, and mix forests
(Table S3). For deciduous forests, the deposition velocity was set to 0 during the deciduous
season. Finally, the spatial distribution of hourly NO2 concentration was obtained from the
interpolation of concentration data from the monitoring stations, and the hourly deposition
flux per unit of leaf area calculated according to Equation (1) and Table S3. The annual
removal rate Qi and total NO2 absorption capacity for each district over the whole year
could be estimated from the hourly deposition flux and LAI of each district [35]:

Qi =
365

∑
j=1

Fij × LAIi × Tij (6)

Total NO2 absorption capacity = Qi × Si (7)

where Fij is the hourly pollution removal flux for district i in day j, LAIi is the average
LAI value for district i, and Tij is the sunlight hours for district i in day j. Si is the area
of district i.
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To estimate the improvement effect of NO2 removal by urban forests in Beijing, the
hourly contribution of forests to NO2 removal (∆Pi) and the hourly air quality improvement
(∆Ci) were calculated as follows [35]:

∆Pt(µg) =
total NO2 absorption capacityi

24× 365
(8)

∆Ci

(
µg/m3

)
=

∆Pt

BL× A
(9)

∆Pi(%) =
∆Pt

C× BL× A
(10)

∆Ci(%) =
∆Pt

∆Pt + C× BL× A
(11)

where ∆Pt (µg) is the hourly NO2 removal by urban forests, ∆Ci (µg/m3) is the change in the
NO2 concentration due to the absorption effect of urban forests in district i, and ∆Pi (%) is
the removal proportion of atmospheric NO2 by vegetation absorption. ∆Ci (%) is the annual
air quality improvement, C (µg/m3) is the measured annual concentration of NO2, A (m2)
is the area of the vegetation cover, and BL (m) is the annual mean boundary-layer height of
Beijing, which was acquired from Climate Data Store (https://cds.climate.copernicus.eu/),
with a temporal resolution of 1 month and a spatial resolution of 0.5◦ × 0.5◦.

2.4. NO2 Purification Deficit

The concept of ecological deficit has been widely applied to reflect the equilibrium of
supply and demand of ecosystem services in a region. An ecological deficit occurs when
the ecological capacity of a region is smaller than its ecological footprint [36,37]. To reflect
whether the NO2 emissions of 16 districts in Beijing exceed the removal capacity of urban
forests, we propose the NO2 purification deficit, which is calculated as follows:

NO2 Emissionsi = Total Emission × Cari

Cartotal
(12)

Di = NO2 Emissionsi − Total NO2 removali (13)

Total NO2 emissions in Beijing are estimated as the total amount of nitrogen oxide
emissions (since the nitric oxide is chemically instable) obtained from the Beijing Ecological-
Environmental Statistical Annual Reports (Beijing Municipal Ecology and Environment
Bureau, 2019). Traffic-related exhaust is the main NO2 source and represents eight times
the total amount from industrial, residential, and waste-treatment sources combined [27].
Therefore, we can calculate the approximate NO2 emission of each district based on the
regional proportions of motor vehicles. Di is the NO2 purification deficit of district i,
estimated as the difference between traffic NO2 emissions and NO2 removal by trees
in district i.

2.5. Statistical Analysis

Spatial heterogeneity of urban forest cover and of socioeconomic factors in the urban
area may lead to large differences in the amount of NO2 removal by urban forests in
different socioeconomic regions [16]. To explore the variations of annual NO2 absorption
under different gradients of socioeconomic factors, we built a multiple regression model
to capture the relationships between the amount of annual NO2 absorption and relevant
socioeconomic factors. We first built five competing models considering an increasing
number of explanatory factors, following Garcia-Palacios, Gross, Gaitan, and Maestre [38].
The modeling process is as follows: (i) a “green only” model (only includes forest cover and
NO2 concentrations); (ii) an “environmental” model (includes all environmental factors);
(iii) an “economic” model (the “environmental” model plus economic factors); (iv) an
“energy” model (the “economic” model plus energy consumption factors); and (v) a “full”

https://cds.climate.copernicus.eu/
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model (the “energy” model plus population factors, which includes all explanatory factors).
We first used a model selection procedure based on corrected Akaike’s information criterion
(AICc) and adjusted R2 and variance inflation factor (VIF) to select the best-fitting model.
For models i–v, factors with strong collinearity (VIF > 5) and factors that strongly influenced
the AICc were removed during model selection. For the best model, a model-averaging
procedure was performed based on the AICc and variance inflation factor (∆AICc < 5)
to determine the parameter coefficients for the best final set of explanatory factors. We
also evaluated the relative importance of explanatory factors in the final models. To
calculate the relative effectiveness of each factor, all the parameters were standardized
using Z-scores transformation before the analysis. The relative importance of four types
of explanatory factors was calculated as follows: (1) population factors, (2) environmental
factors, (3) economic factors, and (4) energy consumption. Assumptions of linear models
(residual normality and variance homogeneity) were tested before model building. Some
of the predictors were log-transformed to meet the linear assumptions of models. Then, we
conducted a principal component analysis (PCA) to further characterize the gradient of
NO2 absorption by forests in the 16 districts. All the statistical analyses were performed
using R 3.6.3 [39]. Model selection procedures were applied using the package ‘MuMIn’ [40].
We used the ‘vegan’ package to perform the PCA [41]. All the statistical graphs and maps
were produced using ‘ggplot2’ [42] and ‘tmap’ packages [43].

3. Results
3.1. NO2 Absorption Trends by Urban Forests during the Period of 2014–2019

The variances in NO2 absorptions by urban forests during the period of 2014–2019
based on the results of the i-Tree Eco deposition model are presented in Figure 2. The
absorption amounts of six urban districts showed a decreasing trend during the period of
2014–2019, with some fluctuations. For the Dongcheng district (DC), Xicheng District (XC),
and Chaoyang District (CY), the absorption of NO2 by urban forests reached its highest
value in 2015 in the following order: ZY = 501.9 tons (465.2–538.8 tons) > XC = 56.8 tons
(55.3–58.5 tons) > DC = 50.8 tons (49.5–52.1 tons). Urban forests in the other three central
urban districts reached their highest absorption values in 2016, in the following order:
Haidian (HD) = 543.0 tons (485.5–600.6 tons) > Fengtai (FT) = 359.8 tons (327.2–392.4 tons)
> Shijingshan (SJ) = 107.9 tons (100.9–114.8 tons). The absorption of NO2 by urban forests
was the lowest in 2019. The Haidian District (HD) had the highest absorption among the
six urban districts, with a total of 471.2 tons (441.4–501.0 tons) in 2019. The lowest NO2
absorption by urban forests among the six urban districts was the Dongcheng District
(DC), with 38.9 tons (38.4–39.4 tons) in 2019. There were no consistent trends of NO2
absorption by forests in the 10 districts located in the suburban area during the period of
2014–2019. An increasing trend of NO2 absorption was found in the Tongzhou District
(TZ, slope = 32.5, p = 0.26), Pinggu District (PG, slope = 13.6, p = 0.64), Miyun district (MY,
slope = 82.9, p < 0.01), Huairou District (HR, slope = 96.7, p < 0.05), Yanqing District (YQ,
slope = 99.6, p < 0.01), and Changping District (CP, slope = 6.8, p < 0.81). In contrast, for the
Shunyi District (SY, slope = −9.9, p = 0.73), Daxing District (DX, slope = −12.3, p = 0.67),
Mentougou District (MT, slope =−18.8, p = 0.51), and Fangshan District (FS, slope =−107.1,
p < 0.01), the total absorption amount of NO2 displayed a decreasing trend.
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Figure 2. Trend of NO2 absorption by urban forests in 16 districts of Beijing from 2014 to 2019. Mean
absorption values are represented by points, max/min absorption is represented by error bars. The
regression line was calculated based on the mean values. The 95% confidence interval of fitted mean
value is represented by the shaded area.

The average annual absorption in the 16 districts of Beijing over the study period varied
greatly between suburban (10 districts) and urban areas (six districts), the average annual
absorption in urban areas being significantly lower than in suburban areas (Figure 3A,B).
The Haidian District had the highest average annual absorption (mean = 500.9 tons/year).
The Dongcheng District had the lowest absorption, with an average 45.3 tons/year over
the 6 years. The average annual absorption in the 10 suburban districts varied greatly
in the following order: The Fangshan District (FS, 2684 tons/year) > Mentougou dis-
trict (MT, 2136 tons/year) > Yanqing District (YQ, 1883 tons/year) > Huairou District
(HR, 1818 tons/year) > Changping District (CP, 1549 tons/year) > Miyun District (MY,
1510 tons/year) > Daxing District (DX, 1077 tons/year) > Shunyi District (SY, 949 tons/year)
> Pinggu District (PG, 855 tons/year) > Tongzhou District (TZ, 837 tons/year). There were
also large differences in the absorption per unit of green area in 16 districts (Figure 3C,D),
with the average absorption per unit of green area in the six urban districts being signif-
icantly higher than in the 10 suburban districts (urban districts = 1.08 ± 0.09 ton/km2,
suburban districts = 1.02 ± 0.24 ton/km2, and p < 0.01). For the suburban areas, the highest
NO2 absorption rate of 1.47 ton/km2 was found in the Mengtougou District (MT), while
the Miyun (MY) District had the lowest absorption rate with 0.67 ton/km2. The Shijing-
shan District had the highest absorption rate for urban districts, with 1.21 ton/km2. The
Chaoyang district (CY) had the lowest NO2 absorption rate (0.99 ton/km2). In general,
there was no consistent trend in the change in NO2 absorption in the 16 districts of Beijing
from 2014 to 2019. Annual absorption in the six urban districts showed a decreasing trend,
and among the 10 suburban districts, six districts showed an increasing trend in absorption,
while the annual total NO2 absorption in the other four districts was decreasing. From the
perspective of spatial distribution of NO2 absorption, a large imbalance was found between
the urban and suburban areas.
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Figure 3. Annual total NO2 absorption and absorption of NO2 per unit of green area in 16 districts
from 2014 to 2014. (A): annual total absorption in 10 suburban districts. (B): annual total absorption
in six urban districts. (C): absorption of NO2 per green area in 10 suburban districts and range.
(D): absorption of NO2 per unit of green area in six suburban districts and range. We tested the
differences of mean total absorption in subgraph (A) and subgraph (B). For simplicity of the figure,
only comparisons that are not significantly different are shown.

3.2. NO2 Absorption Gradient between Urban Districts and Suburban Districts

To explore the relationship between total annual NO2 absorption and other factors
in the 16 districts from 2014 to 2019, we selected 16 potential explanatory factors to build
the regression models (Table S4, Table S5). These explanatory factors can be divided into
four categories: environmental factors, economic factors, energy consumption factors,
and population factors. After applying the model selection procedure, the final models
included nine parameters. The coefficients of the parameters and their relative importance
are displayed in Figure 4. The adjusted R2 of the final model is 0.77, which explains a high
proportion of the variance of annual NO2 absorption. Among the four types of explanatory
factors, the population factors were responsible for 42% of explained variance, followed
by economic factors (28%), environmental factors (20%), and energy consumption factors
(10%). We observed that the coefficients of population density (Pop-Den, log-transformed),
PM concentration (PM), total retail sales of consumer goods (TVSRC), environmental
protection expenditure (Exp-Env, log-transformed), and total energy consumption (TEC)
were significant. The coefficient of population density was negative (−1.19, 95% confidence
interval: −1.42 ~ −0.95), indicating that urban forests in high population density areas
have a lower NO2 absorption capacity than urban forests in low population density areas.
This negative effect implies that urban areas with high population density may have
lower NO2 absorption due to lower green cover. We found positive coefficients for PM
concentrations (0.40, 95% confidence interval: 0.15–0.64), indicating a positive correlation
between PM concentration and NO2 absorption, which may be explained by the existence
of a positive correlation between PM concentration and NO2 concentration (Spearman
correlation = 0.84, p < 0.001). For the economic factors, the coefficient of environmental
protection expenditures was positive (0.16, 95% CI: 0.02–0.31), suggesting that in those
districts with higher environmental protection expenditures, urban forests tend to have
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a higher NO2 absorption capacity. We also found that the parameter of total energy
consumption (TEC) was positively correlated to annual absorption, which indicates that
an increase in energy consumption leads to an increase in NO2 emissions, and therefore,
stimulates the capture of more NO2 emissions by tree leaves.

Figure 4. Coefficients and relative effects of parameters of the multiple regression model (N = 96). Left
subgraph: relative importance of parameters and adjusted R2 of the model. Right subgraph: average
model coefficients based on the selection of AICc and max VIF. Mean coefficients and their 95%
confidence interval are shown by points and error bars. The marks of significance are: ***: p < 0.001,
**: p < 0.01, *: p < 0.05. Abbreviations: environmental factors: sulfur dioxide concentration (SO2), fine
particulate matter concentration (PM); economic factors: industrial production value (GDP-I), GDP of
construction, total retail sales of consumer goods (TVSRC), and per capita disposable income (PCDI);
environmental protection expenditure (log(Exp-Env), log-transformed); energy consumption factor:
total energy consumption (TEC); population factor: population density (POP-Den).

We conducted a principal component analysis (PCA) to further characterize the gra-
dient of NO2 absorption by forests in the 16 districts. Table S6 presents the top three
principal components (PC) in terms of explained variance. The proportion of variance
explained by the three principal components is 50.4%, 16.4%, and 14.9%, respectively. The
cumulative variance proportion of the first two components is 66.8%, indicating that the
variance of the data is mainly explained by the first two PCA components. The economic
factors and energy consumption factors have high scores on the first principal component,
which suggests that the first components mainly explain the variation of economic level
and energy consumption in different districts. The second principal component has high
scores for population factors and environmental factors, indicating that the variation of
population and environmental factors in 16 districts are responsible for this component.
The biplot (Figure 5) displays the ranking of annual NO2 uptake and explanatory factors in
the two principal components. From the perspective of correlations between explanatory
factors and annual absorption amount, the correlation between annual NO2 absorption
(Absorb_NO2) and SO2 concentration and PM concentration and environmental protection
expenditure is positive. However, the correlations between annual absorption amount and
population density (Pop-Den), TVSRC, GDP, and car ownership are negative. From the
perspective of results ranking, there is a clear clustering pattern between suburban districts
(red points) and urban districts (blue points). The suburban districts with a high absorption
amount are mostly clustered in the ranking axis area with low population density and
lower per capita income, while the urban districts are mostly clustered in the ranking axis



Forests 2022, 13, 369 10 of 17

area with lower absorption amount, high population density, and high per capita income.
Using the results of the PCA analysis, we further demonstrated the uneven distribution
pattern of total NO2 absorption by urban forests in the 16 districts of Beijing. In the urban
area with high population density, urban forests provide much lower NO2 absorption
capacity than forests in suburban areas with lower population density.

Figure 5. Biplot of PCA analysis. Annual NO2 absorptions by urban forests of 16 districts are
represented by points. Explanatory factor and absorption amount are represented by black and red
arrows. The dashed circle is the equilibrium contribution circle, which is used to reflect the average
contribution of all explanatory factors on the two principal component axes. Clustering results are
represented by the light blue and light red 95% confidence circles.

3.3. Contribution of NO2 Absorption by Urban Vegetation to N Pollution Mitigation

Figure 6 shows the proportion of atmospheric NO2 removed by urban forests in the
16 districts according to boundary-layer height data. The boundary-layer height in Beijing
varied widely between 2014 and 2019, with a maximum of 950 meters and a minimum of
220 meters. Average annual boundary-layer height ranged from 541 to 560 m. In general,
annual absorption of NO2 by urban forests in each district accounts for 0.14–2.60% of the
total atmospheric NO2 of the year. The average proportion of NO2 removed by urban
forests in the six urban districts was 0.46%, while the average proportion of NO2 removed
by forests in the 10 suburban districts was 0.57%. The difference of removal proportion
between urban and suburban districts was significant (Wilcoxon signed-rank test, p < 0.001).
The Mengtougou District (MT) had the highest average annual NO2 removal proportion of
0.79% (range: 0.32–2.6%), while the Tongzhou District (TZ) had the lowest annual removal
proportion of 0.38% (range: 0.14–1.29%). We found an increasing trend in the NO2 removal
proportion in each district, the mean rate of increase in urban districts was 0.02%, while in
suburban districts it was 0.05%. The increasing trend of NO2 removal proportion in the six
urban districts was significantly lower than in the 10 suburban districts (p < 0.001). The
increasing rate of removal proportion in the Huairou District (HR) was highest among the
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16 districts, reaching 0.09% per year, while the Dongcheng District (DC) had the lowest rate
of increase (0.01% per year), and the trend was not significant (p > 0.05).

Figure 6. Annual removal proportion of atmospheric NO2 in the 16 districts of Beijing. The boxplots
represent the range of removal proportion. Annual average removal proportions are represented by
dots. Linear regressions were performed on the annual average removal proportion and year.

From the perspective of nitrogen neutrality, NO2 emissions in the six urban districts
are substantially higher than the amounts of NO2 absorbed by urban forests (Figure 7).
The supply of NO2 absorption services provided by urban forests is largely insufficient
compared with the emissions. In contrast, the supply of NO2 absorption services in
suburban forests is generally higher than in urban areas, and in some districts, the amount of
NO2 absorbed is higher than emissions. There is a huge difference between absorption and
emission of NO2 in Beijing, and total emissions are greater than absorption in most districts.
The purification deficit between absorption and emission of NO2 in the Chaoyang District
(CY) was the largest among the 16 districts, with an average emission of 22,939 tons and
average absorption of 460 tons in the period of 2014–2019, yielding a deficit of 22,479 tons.
The Mentougou District (MT) and the Yanqing District were the only two districts where
NO2 absorption exceeded NO2 emissions. For the Mentougou District, average annual
emission was 1511 tons, and the average annual absorption was 2136 tons, exceeding
emissions by 625 tons. For the Yanqing District, the average annual absorption was
1883 tons, and emission was 1447 tons, with absorption exceeding emissions by 436 tons.
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Figure 7. Annual NO2 absorption, deficit, and emission in 16 districts. (Green bars: average annual
NO2 absorption. Red bars: annual NO2 emission. Blue bar: purification deficit).

4. Discussion
4.1. Spatial Distribution Pattern of NO2 Absorption by Urban Forests in 16 Districts

The uneven distribution pattern of NO2 absorption between urban areas and sub-
urban areas may be influenced by the large differences in population density, building
density, forest cover, and the quality of urban forests between the different districts in
Beijing [23,28,29]. According to the deposition flux model (Equation (1)) and the total
absorption amount model (Equation (6)), it can be inferred that the total absorption of NO2
by urban forests has a positive linear relationship with atmospheric NO2 concentration
and the effective leaf area of urban forests, while the absorption per unit of green cover is
mainly related to the local air pollutant concentration. In general, higher pollution concen-
trations, green land cover, and LAI lead to more pollutants absorbed by the vegetation,
and this positive relationship has been found in many studies related to urban forests’
effects on air pollution removal [13,35,44]. The six urban districts are located in the central
area of Beijing, which has a high population density and high fragmentation of urban
forests that are mainly located in urban parks [45,46]. According to Yang, McBride, Zhou,
and Sun [23], the vegetation in the green area of six urban districts is mostly pruned to
maintain aesthetics, and overall effective leaf area is low despite some urban parks forming
a large greenbelt. In contrast, the 10 districts located on the outskirts of the city are less
densely populated and less densely built up, and the suburban area represented by the
Mengtougou District, Miyun District, and Daxing District have large areas of forests [47].
These green areas are dominated by secondary forests with good growth conditions. The
LAI of these forests is higher than in forests in urban areas [48]. The large difference in
total leaf area between urban forests in urban and suburban areas is probably an impor-
tant explanation for the differences in total absorption amount among different districts.
According to the multiple regression analysis, the explanatory factor that most explains
the urban–suburban differences in NO2 absorption are population (42%) > economy (28%)
> environment (20%) > energy consumption (10%) (Figure 3). A PCA analysis suggested
that the characteristics of NO2 absorption patterns of the 16 districts can be described
by two principal components axes, respectively, economic–energy gradient variation and
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population-density–environmental gradient variation. On these two principal component
axes, the six urban districts are mainly clustered in the areas with high population density
and high per capita income but low NO2 purification capacity, while the 10 suburban dis-
tricts are clustered in the areas with lower population density and lower per capital income
but higher NO2 purification capacity (Figure 4). The gradient variation of purification
capacity and population density reflects the imbalance in the distribution of air pollutant
purification services supplied by urban forests in Beijing. A similar spatial pattern of air
purification services characterized by “low center–high periphery” features was observed
in studies conducted in centralized development cities [11,16,49].

4.2. Contribution of Urban Forests to Air Quality Improvement

The total NO2 absorption capacity of urban forests in the 16 districts of Beijing from
2014 to 2019 is 14,910–17,747 tons, including 1338–1607 tons in the six urban districts and
13,438–16,235 tons in the 10 suburban districts. Our calculation of pollution removal in
six urban districts in 2019 indicates the total absorption of NO2 to be 1338 tons, which
is comparable to the 1304 tons of NO2 absorption found in a previous study conducted
with a stable isotopic method in the same region [50]. Our results indicate that the annual
NO2 removal rate by urban forests in Beijing city is 0.5–1.6 g/m2 for an annual NO2
concentration within 22.0–66.9 µg/m3 in the 2014–2019 period. Our results compare well
with the NO2 removal rate of 0.5–2.8 g/m3 by urban forests in Chile, with an annual NO2
concentration of 48–190 µg/m3 [16]. The average annual absorption of NO2 by urban
forests in each district can neutralize 0.14–2.60% of the atmospheric NO2 load, which can
theoretically improve the air quality by 0.14–2.53% on average based on equation 11. The
concentration of atmospheric NO2 can be reduced by 0.10–0.34 µg/m3 due to the absorption
by forests, which compares well with several studies conducted in urban areas [19,21].
The contribution of urban forests to atmospheric NO2 mitigation under the current forest
configuration is, however, not sufficient, and additional measures are currently applied in
Beijing to control N pollution. These measures include the control of private car ownership,
which significantly decreased domestic emission intensity per capita in the past decade [51].
Our findings address the potential NO2 removal by trees in terms of atmospheric pollution
mitigation, highlighting the role of urban forests as an important green infrastructure
providing air purification services. Our results indicate that the urban forests in Beijing
absorbed 9.90–15.80% of total NO2 emissions during the period of 2014–2019, contributing
to “nitrogen neutralization”, which is similar to the concept of “carbon neutralization”
relying on plant CO2 absorption. However, the effects of “nitrogen neutralization” are
unbalanced between urban and suburban districts, with an overall neutralization ratio
in the six urban districts ranging from 1.00 to 1.70%, compared with 11.20 to 14.00% in
the suburban districts. This unbalanced pattern suggests that the current configuration of
urban forests in Beijing may not be optimally configured for “nitrogen neutralization”.

4.3. Uncertainties and Limitations

In this study, local data for environmental factors (NO2 concentrations and meteoro-
logical conditions) and ecological factors (LAI and deposition velocity) were adopted to
ensure the accuracies of the i-Tree Eco deposition model in Beijing. The model estimations
compared well with field measurements from a previous study [50]. However, some lim-
itations are still inevitable due to the inherent uncertainties of the i-Tree Eco deposition
model and the lack of time series for spatial data. The LAI of the 16 districts before 2019
was estimated based on the LAI product (30 m × 30 m) in 2019 combined with annual
forest coverage data. More high-resolution and uniform LAI products should be adopted
to improve the spatial resolution of plant NO2 absorption in future studies. Another factor
of uncertainty is the spatial heterogeneity of deposition velocity, which is influenced by
local meteorological conditions and forest types [52,53]. This affects the accuracies of the
i-Tree Eco model based on the multi-layer deposition model framework [34]. In our study,
we calculated the annual average deposition velocity for different forest types based on the
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proportion of coniferous and broadleaf forests, which may cause uncertainties in the spatial
heterogeneity of deposition velocity at fine scales. The spatial distribution of vegetation
types based on more field surveys should be considered in future studies to improve the
accuracy of deposition velocity.

Besides, the spatial interpolation method was used to obtain the spatial distribution of
NO2 concentration in the 16 districts of Beijing due to fewer monitoring stations located
in the suburban areas than those in urban areas, which may result in higher estimated
NO2 concentration in the suburban districts, and therefore overestimation of NO2 uptake
capacity of suburban forests. Furthermore, more scenarios analysis combined with benefit
analysis of different forest planting should be included in future studies.

4.4. Suggestions for Urban Forests Management

In this study, we estimated the potential NO2 absorption by urban forests in Beijing
during the period of 2014–2019 based on the i-Tree Eco deposition model, and some results
from this study could serve as reference for urban green space planning and air pollution
mitigation towards an “N-friendly society” for Beijing, from an “N source” stage to an “N
neutrality stage” [22]. To achieve this goal, we propose the following:

1. There is a significant imbalance in the distribution of NO2 purification services by
urban forests in Beijing. Although it is difficult to increase the area of urban forests
in the central area of the city, the purification capacity of vegetation in urban forests
can be improved by more natural management approaches, including reducing tree
canopy pruning to increase the total leaf area of urban forests, and increasing the per-
centage of tree species with stronger NO2 absorption used for roadside tree planting
in urban areas, such as S. japonica [54]. The forest cover should be maintained in urban
areas and expanded in suburban areas to contribute to Beijing’s capacity to achieve
“carbon sequestration”, as well as advancing “nitrogen sequestration” [55,56].

2. Urban forests can absorb atmospheric NO2 and have a significant “nitrogen emission
neutralization” effect. We found that urban forests can absorb 9.9–15.8% of total NOx
emissions, and in some districts, the absorption amount of NO2 is higher than the
total emissions. Plants can absorb NO2 into their nitrogen pool to reduce the chance
of NO2 photolysis [8], thus reducing the potential of ozone precursor production [57],
which are the emerging main air pollutants in most Chinese cities [58]. This suggests
that near-ground ozone pollution can be addressed by enhancing NO2 reduction and
improving the “nitrogen emission neutralization” effect of urban forests.

5. Conclusions

The NO2 absorption capacity of urban forests in the 16 districts of Beijing was assessed
using the i-Tree Eco model. The total absorption of NO2 by urban forests in the 16 districts
was 14,910–17,747 tons in 2014–2019, and the removal rate per unit of green area was
0.5–1.6 g/m2. The spatial pattern of NO2 absorption is characterized by an imbalance of
low absorption in urban centers and high absorption in suburban areas. The annual average
absorption of NO2 by urban forests in each district can account for 0.14–2.60% of annual
total atmospheric NO2 (∆Pi(%)), which can improve the air quality by 0.14–2.53% (∆Ci(%))
and reduce the NO2 concentration by 0.10–0.34 µg/m3 (∆Ci(µg/m3)) on average. Urban
forests have a positive impact on reducing NO2 concentrations, and the neutralization
effect of NOx emissions should not be ignored. Based on our estimation, 9.90–15.80% of
NO2 emissions can be absorbed by the forests in the 16 districts of Beijing. The overall neu-
tralization ratio in the six urban districts ranged from 1.0 to 1.7%, while that of 10 suburban
districts reached from 11.20 to 14.00%. The results of our study can provide suggestions for
future urban forests planning and can also provide ideas for urban NO2 mitigation based
on a nature-based solution (NbS).
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