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Abstract: This article deals with the effect of alternating lower (freezing) and higher (heating)
temperatures on the static bending characteristics of glued Norway spruce (Picea abies (L.) H. Karst.)
and European larch (Larix decidua Mill.) wood. Two types of wood, PUR (polyurethane), and EPI
(emulsion polymer isocyanate), were used for the experiment. The thermal loading of glued wood
was carried out at temperatures −15 ◦C/70 ◦C and −25 ◦C/70 ◦C. Static bending characteristics
were determined on glued wood samples and compared with the reference samples. Freezing causes
an increase in the bending properties of both glued spruce and larch wood. The highest in bending
strength was obtained for EPI-glued larch wood subjected to −25 ◦C/70 ◦C loading temperature,
which is by as much as 20% increase from the reference value. The maximum improvement in the
modulus of elasticity was achieved for EPI-glued larch with around 11% increase, although the
increased values of bending strength and modulus of elasticity were not significant. The different
densities, anatomical structures, and properties of spruce and larch wood can induce varying results
between the two wood species.

Keywords: Norway spruce; European larch; polyurethane; emulsion polymer isocyanate; bending
strength; freezing; thermal loading

1. Introduction

The demand for engineered wood products (EWP) is increasing rapidly due to numer-
ous potential benefits provided by wood. Wood possesses some prominent features such as
high strength to weight ratio, good fire resistance, and natural appearance, distinguishing
it from other materials such as concrete and steel [1]. Wooden elements with entirely
different chemical, mechanical and physical properties are connected using nails, screws,
and adhesives to create advanced engineered wood structures. It is important to note that
careful attention must be given to the many inherited traits of wood during the production
of wood products, particularly the anisotropic and biological features [2].

Adhesive is considered the most commonly used fastener globally by the wood indus-
try. The adhesive role can be explained by wetting a wooden surface appropriately and
hardening by water loss and chemical cure to provide sufficient strength [3]. The bond for-
mation is a consequence of adhesion (interaction at a molecular level between substrate and
adhesive) and cohesion (molecular interaction only among adhesive molecules). Adhesion
consists of several physical, mechanical, and chemical interactions between the substrate
and adhesive [4–6]. The quality of a wood adhesive (WA) bond is profound, and relates to
not only wood properties such as surface quality, porosity, surface chemistry, and extrac-
tives, but also adhesive properties as strength, viscosity, and cure rate. The efficiency of
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the WA bond is also affected by processing parameters (pressure, temperature, and several
other vital parameters) and mathematical models of bonding [7]. Even after considering all
the mentioned factors on the quality of a WA bond, the failure in the WA bond still occurs
as an adhesive failure, cohesive failure, or wood failure [8]. The successful formation of a
WA bond is related to its current strength and the ability of the WA bond to maintain the
current strength appropriately under climate conditions (durability). Equilibrium moisture
content (EMC) and temperatures during bonding assembly and after the formation of the
WA bond have a significant influence on a WA bond’s mechanical and physical properties.

Alternate shrinking and swelling due to differences in the moisture content of wood
and relative humidity of the surrounding environment cause stresses in a WA bond. Com-
parison of the hydrophobic behavior of wood and adhesive shows that the adhesive is
more hydrophobic. Therefore, the changes in the dimensions of the wood are far greater
in the conditions of changing the humidity. Thus, the swelling behavior of adhesive is
minor compared to wood. The variation in the size of wood and adhesive due to moisture
exchange leads to the formation of stress in a WA bond. The more the wood swells, the
greater the stress formed, leading to fracture in a WA bond [9]. Konnerth et al. [10] reported
that the elastic modulus and hardness of a WA bond were reduced when the WA bond was
submerged by water.

In recent years, in cold countries such as Russia, northern Europe, and Canada,
wooden construction such as bridges were being subjected to freezing temperatures of
−40 ◦C and −50 ◦C. Fluctuations in such lower levels of temperature affected the quality
of a WA bond. Extensive research has shown various influences of cold weather on wood
properties [11–13]. The modulus of elasticity, compression, and bending of wood were
significantly increased by decreasing temperatures. In other research, Szmutku et al. [14]
studied only the effect of freezing temperature on the mechanical properties of spruce wood.
They found that the mechanical properties of spruce wood were not changed at −10 ◦C.
In contrast, an insufficient mechanical property of spruce was observed at −1 ◦C. Yu and
Osman [15] investigated the effect of low and moderately high temperatures (−15 and
45 ◦C) on the tensile shear strength of particle board. Tabor [16] argued that the bonding
assembly under cold weather destroys the adhesive performance. This can be attributed to
the increased adhesive viscosity, which results in inappropriate adhesive wetting under a
cold climate.

Currently, an adhesive system for a wood bond is chosen not just for its strength,
adaptability on the wood surface, and curing condition, yet additionally for its durability.
Radovic and Rothkopf [17] showed the usability of one-component polyurethane (1C-PUR)
adhesives for wood construction by considering ten years of experience. The 1C-PUR
adhesive has a few benefits such as curing at room temperature, no emission of volatile
organic compounds (VOC), and no mixing required for this adhesive [18]. The bonding
strength of wood structure glued by 1C-PUR is high, and the behavior of the adhesive
under load is comparatively ductile [18,19]. EPI adhesive is used for bonding different
wood species and also for wood–metal bonding. Cold curing, no formaldehyde emission
in its formulation, and excellent water resistance, high adhesion strength, heat resistance,
and good moisture resistance are the greatest advantages of EPI adhesive [20,21].

Numerous literature and research exist on the effect of high temperature on the
mechanical performance of WA bonds [22–24]. At a higher temperature, the shear strength
of wood and also WA bond decreases [24]. However, there is little research on the effect
of cold temperatures on WA bond performance. Several studies investigated the effect
of cold weather conditions on bridge timber [25–27]. Wang et al. [28–30] reported the
tensile shear strength of Scots pinewood and bonded area with different adhesive systems
exposed to different temperatures from 20 to −60 ◦C. At this range of temperature, the block
shear strength of spruce glulam joints was also investigated. Nonetheless, the influence
of thermal loading has not been studied widely for bending characteristics and different
wood species.
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This paper analyzes the impact of two levels of freezing and heating temperatures
on the bending strength of glued specimens of larch and spruce species bonded with two
different adhesive systems: 1C-PUR and EPI. This paper firstly provides information on the
methodology, including specimen size, timber selection, and thermal loading conditions.
Secondly, the paper compares and discusses the bending characteristics for all investigated
types of conditions, considering the effect of thermal loading and adhesive types. All
experimental results are compared to control samples.

2. Materials and Methods
2.1. Test Sample Preparation

Two European softwood planks, namely Norway spruce (Picea abies (L.) H. Karst.)
and European larch planks (Larix decidua Mill.), were selected for this research. The planks
were collected from a commercial supplier. The planks were then kiln dried. Subsequently,
numerous defect-free lamellae with dimensions of 5 mm × 45 mm × 1500 mm were
sawn (Figure 1). All lamellae were air-conditioned in the humidity chamber HCP 108
(Memmert, Germany) under conditions (relative air humidity of 65% ± 5% and temperature
of 20 ◦C ± 2 ◦C) to achieve equilibrium moisture content of 12%.
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Figure 1. Wood lamellae for specimens.

Adhesive

For this experiment, two types of adhesives, i.e., two-component emulsion polymer
isocyanate (EPI), Kestokol WR 11 + hardener WR (Kiilto Oy, Finland), and moisture-curing
one-component polyurethane (1c-PUR) Kestopur 1030 (Kiilto Oy, Finland), were used. The
durability classes of both adhesives as per ČSN EN 204 [31] and ČSN EN 15425 [32] are D4
and I 70 GP 0.3, respectively. The properties of both adhesives are provided in Table 1.

Table 1. Properties of PUR and EPI adhesives.

Adhesive
Type

Viscosity
(mPa·s)

Density
(g/cm3)

Working Time
(min)

Minimum Pressing
Time (min)

Wood Moisture
Content (%)

Kestokol WR 11
(EPI)

3500
(5000 with hardener) 1.15 7–12 20 6–15

Kestopur 1030
(PUR) 7000 1.2 max. 30 90 6–20
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2.2. Methods
2.2.1. Gluing

The adhesive was applied in a thin and delicate layer at 200 g/m2 on the specimen’s
surface with the help of a toothed spatula. A total of three glued layers were formed in
each specimen. Then, the specimens were cold-pressed in an industrial press GS 6/90
(SCM GROUP S.p.A., Italy) under 1 MPa at an ideal temperature of 20 ◦C. The pressing
time was 40 min for EPI and 120 min for PUR adhesives, respectively (Figure 1). After
the completion of the cold-pressing, the specimens with EPI adhesives were kept at room
temperature for another seven days for curing. Afterward, the glued specimens were cut to
a required bending test sample with dimensions 15 mm × 20 mm × 300 mm) (Figure 2).
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Figure 2. Glued wood samples.

Following this process, all samples were air-conditioned in the humidity chamber HCP
108 (Memmert, Germany) under specific conditions (relative air humidity of 65% ± 5%,
and temperature of 20 ◦C ± 2 ◦C) to achieve equilibrium moisture content of 12%. A total of
240 conditioned samples were divided into twelve groups (Table 2) for both wood species
(20 samples per single group) according to thermal loading temperature and adhesive type.

2.2.2. Thermal Loading

The moisture content and density of the wood samples under thermal loading (freezing
–heating temperature) were measured based on the standard ČSN EN 321 [33]. The primary
step in this process was to set the temperature of the laboratory freezer (MediLine LGT 3725,
Liebherr GmbH, Germany) to the required temperature of −15 ◦C or −25 ◦C. After reaching
the required temperature, the test pieces were placed in the freezer for 12 h. After freezing,
the samples were gauged and estimated. After measurement, the frozen samples were
subjected to heating in a thermal chamber (SolidLine ED-S 115, Binder GmbH, Germany) at
70 ± 2 ◦C for 12 h. After heating, the samples were again weighed and measured (Table 2).

2.2.3. Physical Properties

The impact of the thermal loading on the wood samples was identified by measuring
the moisture content and density of the samples. The moisture content and density of
the samples were measured subsequently for each loading process (freezing and heating)
according to ISO 13061-1 [34] and ISO 13061-2 [35], respectively. Drying to oven-dry
state was also carried out according to ISO 13061-1 [34]. The mean value density for
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spruce and larch wood at moisture content of 12% was reported: 458.15 and 698.75 kg/m3,
respectively (Table 2). These reported results are approximately in line with the reported
mean value density of the same species at 12% moisture content, which are about 515.6 and
652.1 kg/m3 [36].

Table 2. Average density and moisture content of glued spruce and larch wood.

Wood
Species

Adhesive
Type

Thermal
Loading

Moisture Content (%) Density (kg/m3)

Initial After
Freezing

After
Heating Initial After

Freezing
After

Heating

Spruce

PUR

Reference 11.7 - - 465.9 - -

−15 ◦C/70 ◦C 11.7 11.9 3.5 460.9 460.4 448.5

−25 ◦C/70 ◦C 11.9 13.5 3.6 463.5 467.3 448.5

EPI

Reference 12.3 - - 450.4 - -

−15 ◦C/70 ◦C 12.4 12.6 4.7 446.0 446.2 434.4

−25 ◦C/70 ◦C 12.4 13.7 4.8 445.4 447.4 431.2

Larch

PUR

Reference 11.6 - - 713.1 - -

−15 ◦C/70 ◦C 11.8 11.9 6.4 705.3 706.7 689.0

−25 ◦C/70 ◦C 12.1 12.7 6.7 705.9 712.5 689.1

EPI

Reference 11.7 - - 684.4 - -

−15 ◦C/70 ◦C 12.15 12.3 6.8 666.7 667.2 651.8

−25 ◦C/70 ◦C 12.4 13.1 6.8 690.1 692.6 672.1

2.2.4. Static Bending

The static bending test was carried out on a 3-point bending principle according to
ČSN EN 310 [37] (Figure 3) using the universal testing machine TIRA test 2850 S E5 (TIRA,
Germany) with TIRA software. The constant loading speed was set to 6 ± 0.5 mm/min such
that the time required to reach failure was between 60 and 90 s. The computer connected to
the machine directly recorded the maximum loading force.
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The bending strength f m was calculated using Equation (1),

fm =
3Fmax l1

2 bt2 (1)

where
fm is the bending strength (MOR) at failure (MPa);
Fmax is the applied maximum loading force (N);
l1 is the distance between the centers of the supports (mm);
b is the width of the test sample (mm);
t is the thickness of the test sample (mm).
The modulus of elasticity Em was calculated using Equation (2),

Em =
l3
1 (F2− F1)

4 bt3 (a2 − a1)
(2)

where
Em is the modulus of elasticity (MOE) (MPa);
l1 is the distance between the centres of the supports (mm);
b is the width of the test sample (mm);
t is the thickness of the test sample (mm);
F2–F1 is the increment of load on the straight-line portion of the load-deflection curve

(F1 shall be approximately 10% and F2 shall be approximately 40% of the maximum
load) (N), and a2–a1 is the increment of deflection at the mid-length of the test sample
(corresponding to F2–F1).

2.2.5. Statistical Analysis

All values obtained for static bending (MOR and MOE) were converted to 12% mois-
ture content according to standards ISO 13061-3 [38] and 13061-4 [39]. Subsequently, the
final values were evaluated with Statistica 13 (TIBCO Software Inc., Palo Alto, Santa Clara,
CA, USA) software by analysis of variance (ANOVA). Statistical analysis was based on 95%
confidence intervals of the means using Fischer’s F-test. Relationships between variables
were studied by using Spearman’s rank correlation, which can evaluate relationships be-
tween two variables. A regression model with a coefficient of determination was used to
determine the dependence of bending strength (MOR) and modulus of elasticity (MOE) on
thermal loading for spruce and larch wood glued with individual adhesives.

3. Results and Discussion
3.1. Effect of Thermal Loading on Moisture Content and Wood Density

The results pertaining to the effect of freezing and subsequent heating on the moisture
content and wood density are presented in Table 2. It can be deduced that freezing did not
cause any significant change either in the density or moisture content of the wood. This
result is consistent with studies by previous researchers published in the literature [40].

This result is expected since wood is stable against thermal expansion/contraction
especially between −51 and 130 ◦C, since the coefficients of thermal expansion/contraction
of wood are independent of temperature in this range [41].

The low preliminary moisture content in the wood, which was approximately 12%,
represents no free water in the cell lumen, while all the moisture existed only in the cell
wall and in the form of bound water. If wood is subjected to very low temperature for
longer duration, bound water freezes only to a small amount [42]. Bound water freezes
slowly and, even at extremely low temperatures on the Earth, part of it remains in a liquid
state inside the wood [41]. Since there was no moisture loss or volume change, the density
remained almost stable even after subjected to freezing. Nevertheless, the variations in
the density after heating are clear because weight loss occurred in the wood due to loss
of moisture.
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Wood moisture plays an important role in the freezing process. Because free water
freezes more easily in wood, the rate of ice expansion in wood is directly related to the
higher moisture content of the wood, resulting in rupture of the cell wall. In the present
study, freezing had no effect on bending properties because the moisture content of the
wood was low, approximately 12% during freezing. All moisture in the cell wall was limited
in the form of water. In addition, if the wood were exposed to very low temperatures for a
longer period of time, limited water freezing occurs only slightly [42].

3.2. Effect of Thermal Loading on Mechanical Properties

In order to determine a generalized effect of thermal loading on the bending strength
of wood, the data from both types of wood were combined and are shown in Figure 4.
Thermal loading (altering temperature) could not cause any detrimental impact on the
bending strength. Rather, it could positively affect bending strength in both species, though
the degree of the improved bending properties varied depending on the wood species. In
spruce wood, the increase in the bending parameter due to thermal loading ranged between
22% and 31% from the reference values, and maximum increased value was obtained in
EPI glued specimens subjected to −15 ◦C/70 ◦C loading temperature.
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Figure 4. The effect of thermal loading on the bending strength.

The effect of thermal loading on the bending parameters in larch wood was similar
to that obtained in spruce wood. Thermal loading also caused an increase in the bending
characteristics in larch wood ranging between 11% and 20% from the reference values, and
the maximum increase was achieved in EPI glued specimens subjected to −25 ◦C/70 ◦C
loading temperature. The effect of the two thermal loads studied is comparable. Although
there was an increase in the bending strength due to thermal loading in both wood species,
the enhancement was marginal. These results are in agreement with studies reported by
others for the increase in bending strength when the temperature is lowered [11,13,43–47].

The effect of thermal loading on the modulus of elasticity is shown in Figure 5. From
the trend shown, it can be seen that altering temperature causes a positive effect on the
modulus of elasticity in both species. For spruce wood, the increase in the modulus of
elasticity due to thermal loading ranged between 9% and 13%, and the maximum enhanced
value was in EPI glued specimens subjected to −25 ◦C/70 ◦C thermal loading.
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Thermal loading for larch wood also caused an increase in the modulus of elasticity
ranging between 9% and 11%, and the maximum enhancement was achieved in EPI glued
specimens. However, there was a slight increase in the modulus of elasticity resulting from
thermal loading in both wood species; it can be deduced that the increased values were
not significant.

According to previous results, mechanical properties increase at negative tempera-
tures [12,48]. Studies on frozen and unfrozen Swedish pine (Pinus sylvestris) show a higher
MOE value (14.2 GPa) at −20 ◦C than at +20 ◦C (11.6 GPa) [11]. This is probably due to the
dependence between strength properties and negative temperature [49]. The compressive
strength of ice increases exponentially with increasing minus temperature. The slight
increase in the values for mechanical properties due to freezing has been associated with
compressive forces against the cell wall of the wood due to water expansion [50]. This
phenomenon is enhanced by a faster freezing rate [14].

The overall results of the study are shown in Figures 6 and 7. From Figure 6, which
shows the effect of wood type, adhesive type, and temperature load on bending strength,
it can be summarized that there was a slight increase in the bending strength parameters
due to thermal loading in glued spruce and larch wood. Larch wood showed the highest
mean value of bending strength of the reference wood for the adhesives PUR and EPI, 118.6
and 112.3 MPa, respectively. The highest mean bending strength after thermal loading was
found for glued larch wood with EPI adhesive, followed by glued larch wood with PUR;
glued spruce wood with EPI adhesive showed the lowest average values (88 and 94.9 MPa).
The average bending properties of spruce wood glued with PUR and exposed to thermal
loading are slightly higher than those of spruce wood glued with EPI. Moreover, the mean
value of bending strength for glued larch wood shows that there is no significant difference
between the results for EPI and PUR adhesives. The values of bending strength for larch
wood are significantly higher than that of spruce (p < 0.05). This can be attributed to the
higher density of larch wood compared to spruce.
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The overall results of the effect of wood type, adhesive type, and temperature loading
on the elastic modulus are shown in Figure 7.

The mean elastic modulus of glued larch wood showed the highest reference value
(13,585.0 and 12,718.9 MPa), but the lowest modulus of elasticity was found for the ref-
erence value of glued spruce wood (10,874 MPa). EPI glued larch wood showed the
highest modulus of elasticity (14,877.5 and 14,833.4 MPa) after thermal loading. However,
the lowest average elastic moduli were found for EPI glued spruce wood (12,084.8 and
12,308.8 MPa). The average elastic moduli of both glued wood species were slightly higher
than the reference values.

From the graphs presented, it can be stated briefly that glued larch wood specimens
have a moderately higher modulus of elasticity compared to spruce. Nevertheless, there is
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a slight increase in the elastic modulus at both thermal loadings (between 9% and 13%),
and a marginal nonsignificant difference between two different thermal loads. This result
is consistent with studies by previous researchers who found an increase in the elastic
modulus due to a decrease in temperature [11,13,47,51].

3.3. Statistical Analysis

The statistical analysis of the influence of factors and their combinations on bending
strength is presented in Table 3, indicating the level of significance (p < 0.05). It was found
that all parameters, including wood species, thermal load, and adhesive types on the
bending strength, showed significant influence.

Table 3. Statistical evaluation of bending strength fm.

Factors Sum of Squares Degrees of
Freedom Variance Fisher’s

F-Test
Significance

Level p

Intercept 2,832,331.7 1 2,832,331.7 8927.860 0.000000
Wood species 81,356.7 1 81,356.7 256.447 0.000000

Thermal loading 19,715.1 2 9857.6 31.072 0.000000
Adhesive type 2092.4 1 2092.4 6.595 0.010863

Wood species * Thermal
loading * Adhesive type 375.9 2 187.9 0.592 0.553826

Error 72,332.2 228 317.2

Lines highlighted in blue show statistical significance, p < 0.05.

The statistical analysis of the influence of the factors and their combinations on the
elastic modulus is given in Table 4. Indicating the level of significance (p < 0.05), it was
found that the parameters including wood type and thermal load on the elastic modulus
show a significant effect (p < 0.05). However, there was no significant effect of adhesive
type on the elastic modulus (p ≥ 0.500).

Table 4. Statistical evaluation of modulus of elasticity Em.

Factors Sum of Squares Degrees of
Freedom Variance Fisher’s

F-Test
Significance

Level p

Intercept 40,622,406,566.6 1.0 40,622,406,566.6 7,993,662 0.000000
Wood species 258,918,681.3 1.0 258,918,681.3 50.950 0.000000

Thermal loading 88,320,270.7 2.0 44,160,135.3 8.690 0.000231
Adhesive type 1,689,452.4 1.0 1,689,452.4 0.332 0.564789

Wood species * Thermal
loading * Adhesive type 466,634.0 2.0 233,317.0 0.046 0.955135

Error 1,158,656,473.5 228.0 5,081,826.6

Lines highlighted in blue show statistical significance, p < 0.05.

Table 5 shows Spearman’s correlation, which expresses the general interdependence
between factor groups, bending strength, and modulus of elasticity.

According to the table, the highest correlation was found between bending strength
and modulus of elasticity (0.809). There is also a significant correlation between wood
species and bending strength (0.684) and modulus of elasticity (0.420), with higher sig-
nificance for bending strength. However, there was a low general correlation between
thermal loading and bending properties, but the correlation is not significant (0.294 and
0.221). Foundation also showed no significant correlation between wood adhesives and
bending properties.
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Table 5. Spearman’s correlation between factor groups, bending strength, and modulus of elasticity.

Factors Wood
Species

Thermal
Loading

Adhesive
Type Bending Strength fm

Modulus of
Elasticity Em

Wood species 1.000 0.000 0.000 0.684 0.420

Thermal loading 0.000 1.000 0.000 0.294 0.221

Adhesive type 0.000 0.000 1.000 −0.118 −0.005

Bending strength fm 0.684 0.294 −0.118 1.000 0.809

Modulus of elasticity Em 0.420 0.221 −0.005 0.809 1.000

However, when a regression model is used to determine the dependence of bending
strength and modulus of elasticity on thermal loading for wood glued with a specific
adhesive (PUR or EPI) and made of a specific wood species (spruce or larch), an increas-
ing trend of both bending characteristics and a coefficient of determination can be seen
(Figures 8 and 9).
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4. Conclusions

In this study, the bending properties of PUR and EPI glued spruce and larch wood were
investigated under thermal loads (freezing and heating) of −15 ◦C/70 ◦C and −25/70 ◦C.

Freezing and heating (thermal loading) does not lead to any detrimental effect on the
bending strength and modulus of elasticity of glued spruce and larch wood. In contrast, it
causes a slight increase in the bending characteristics of both glued spruce and larch wood.
EPI-glued larch wood exhibited the highest increase in bending strength and modulus of
elasticity, while EPI glued spruce wood had the least bending strength and modulus of
elasticity. Since there is a correlation between wood species and bending properties, the
results can be attributed to the different densities, anatomical structures, and properties
of spruce and larch wood. There is a significant dependence of bending strength and
modulus of elasticity on thermal loading for wood glued with a certain type of adhesive
and made with a specific wood species. Thermal loading causes a slight increase in bending
properties, while between the two freezing temperatures investigated in this study, the
lower freezing temperature (−25 ◦C) showed a slightly better result, although the difference
was not statistically significant.

The results obtained can be of great importance for using wood products that are peri-
odically exposed in a climate characterized by extreme temperatures. This study presents
the results of one thermal cycle (12 h exposure to freezing followed by 12 h exposure to
heating), although wood products are subjected to such extreme temperatures for longer du-
rations in service conditions. Thus, it is remarkable to mention that increasing the number
of cycles could help to better correlate natural conditions with the experimental results.
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