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Abstract: Background and Objectives: It is important to understand the temporal and spatial distribu-
tions of standing wood carbon storage in forests to maintain ecological balance and forest dynamics.
Such information can provide technical and data support for promoting ecological construction, for-
mulating different afforestation policies, and implementing forest management strategies. Long-term
series of Landsat 5 (Thematic Mapper, TM) and Landsat 8 (Operational Land Imager, OLI) remote
sensing images and digital elevation models (DEM), as well as multiphase survey data, provide new
opportunities for research on the temporal and spatial distributions of standing wood carbon storage
in forests. Methods: The extracted remote sensing factors, terrain factors, and forest stand factors were
analyzed with stepwise regression in relation to standing wood carbon storage to identify significant
influential factors, build a global ordinary least squares (OLS) model and a linear mixed model
(LMM), and construct a local geographically weighted regression (GWR), multiscale geographically
weighted regression model (MGWR), temporally weighted regression (TWR), and geographically and
temporally weighted regression (GTWR). Model evaluation indicators were used to calculate residual
Moran’s I values, and the optimal model was selected to explore the spatiotemporal dynamics of
standing wood carbon storage in the Liangshui Nature Reserve. Results: Remote sensing factors,
topographic factors (Slope), and stand factors (Age and DBH) were significantly correlated with
standing wood carbon storage, and the constructed global models exhibited fitting effects inferior
to those of the established local models. LMM is also used as a global model to add random effects
on the basis of OLS, and R2 is increased to 0.52 compared with OLS. The local models based on
geographically weighted regression, namely, GWR, MGWR, TWR, and GTWR, all have good per-
formance. Compared with OLS, the R2 is increased to 0.572, 0.589, 0.643, and 0.734, and the fitting
effect of GTWR is the best. GTWR can overcome spatial autocorrelation and temporal autocorrelation
problems, with a higher R2 (0.734) and a more ideal model residual than other models. This study
develops a model for carbon storage (CS) considering various influential factors in the Liangshui
area and provides a possible solution for the estimation of long-term carbon storage distribution.

Keywords: remote sensing; GWR; MGWR; TWR; GTWR; standing wood carbon storage

1. Introduction

Forests, as one of the most important components of the Earth’s biosphere, are plant
communities dominated by trees and composed of a variety of plants, animals, and mi-
croorganisms. Forest carbon storage is the amount of carbon stored in a forest and is related
to the quality of forest carbon and the total amount of material. As the largest carbon
pool in terrestrial ecosystems, forest ecosystems are both carbon sinks and carbon sources.
The carbon cycle process plays a vital role in climate change, atmospheric circulation, and
biodiversity [1]. In addition, the estimation of carbon storage is helpful for evaluating
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the bioenergy of some landscapes, promoting the coordinated development of ecologi-
cal components and monitoring the sustainability of forest resources [2]. Additionally,
climate change is an important issue facing humankind. To actively respond to climate
change, green and low-carbon development paths are being established, and sustainable
development is being promoted; notably, China has proposed measures to achieve carbon
neutrality by 2060 [3]. Studies of forest carbon storage can help achieve this goal and aid
countries around the world in coping with climate change. Therefore, research on the
dynamic temporal and spatial distributions of standing wood carbon storage can provide
technical and data support for promoting ecological construction, formulating different
afforestation policies, and effectively implementing forest management strategies [4].

The carbon storage of standing wood in forests is calculated based on field survey
data. The ground survey method is highly credible, but it is cumbersome and can cause
certain damage to the forest. Moreover, traditional surveys are not ideal for dynamically
monitoring forest carbon storage over a large area [5]. In particular, large-scale surveys
of natural forests in the Liangshui Nature Reserve are bound to cause damage to the
local ecology. Remote sensing and sample data have been combined for the explicit
estimation of carbon storage in forests [6]. Diverse types of remote sensing data, such
as optical sensor data, light detection and ranging data (lidar) and radio detection and
ranging data (radar), each of which has different advantages and disadvantages, can be
used in carbon storage estimates [7,8]. With continuous improvements to remote sensing
data in terms of temporal, spatial, and spectral resolutions, such data can be used in
carbon balance assessments in terrestrial and forest ecosystems. Using remote sensing to
monitor forest dynamics has developed from single-band estimation to vegetation index
estimation to microwave technology, and many scientific researchers have made efforts [9].
K. Narmada [10] used the NDVI (standardized difference vegetation index) to estimate
the amount of carbon sequestered in the mangroves that grew in the Mutupet region from
2000 to 2017. Experiments have verified the reliability of high-resolution aerial remote
sensing data and yielded good results. Near-red spectroscopy experiments were also
performed in this study to estimate the mangrove carbon reserves grown in this area.
Inspired by this study, other remote sensing factors, including NDVI, such as the ratio
acquisition index (RVI) and difference acquisition index (DVI), were selected for research
to determine if they can be applied to the study of forest standing wood carbon storage,
and it was found that they also have good results. Then, the red and near red spectra were
further studied. It was found that the texture characteristics of the two spectra were also
related to the standing wood carbon storage.

In this study, regression models were used to estimate the carbon storage in standing
trees in forests. The most common model is the traditional global model fitted by the
ordinary least squares (OLS) model [11]. The linear mixed model (LMM) is an extension of
the ordinary least squares model. The OLS approach is applicable to entire regions, and it
is a fixed-effect model based on the dependent variable. In contrast, the LMM considers
random effects, so the fitting estimation is better than that of the least squares approach [12].
Both the OLS and LMM methods are established based on the basic assumption that the
distribution of carbon stocks is random, without taking into account the spatial nonstation-
arity of the research variables. Lianjun Zhang [13] used OLS, LMM, generalized additive
model (GAM), and GWR to study the correlation between stand variables, pointed out
that there is a very important relationship between tree growth and environmental impact,
and studied the changes in competition among trees. This study has verified that spatial
correlations among samples are often associated with geographic proximity. GWR skillfully
considers the spatial characteristics of the data in regression analysis [14], and tests have
shown that the GWR estimation effect is better than that of the OLS model. On the basis of
GWR, a multiscale geographically weighted regression model (MGWR) is proposed; this
model relaxes the assumption that all the processes to be modeled are of the same spatial
scale, as assumed in GWR, and the fitting effect is better than that of GWR [15].
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Although GWR estimations are considerably better than those of OLS, there are still
certain shortcomings of GWR methods. GWR models can only model cross-sectional
data [16] without considering the temporal influence. Geographically and temporally
weighted regression (GTWR) is performed in time and space in this study to predict
and analyze forest carbon storage in the Liangshui Reserve. GTWR can simultaneously
consider spatial and temporal nonstationarity. At present, the GTWR model is widely
used in ecology and economics, and the first application of GTWR was by A. Stewart
Fotheringham [17]. To consider local impacts in space and time, GTWR was developed
and used to analyze the changes in housing prices in London from 1980 to 1998. The fitting
effect was found to be better than that of GWR, highlighting the importance of time and
latitude in modeling [18]. Hone-Jay Chu [19] used GTWR and random sample consistency
(RANSAC) models to solve the AOD-PM2.5 estimation problem through effective sampling
and fitting, and the proposed method effectively produced the relationship between the
observed PM2.5 and AOD data. It is also proved that GTWR has certain advantages
in overcoming the influence of spatiotemporal heterogeneity. Wei [16] used GTWR to
investigate the relationship between PM2.5 and standard air pollutants (SO2, NO2, PM10,
CO, and O3) in Heilongjiang Province, China, from 2015 to 2018, and compared the model
with other basic models; they found that temporal and spatial heterogeneity influenced the
distribution of data, and the GTWR fitting effect was better than that of other basic models
such as OLS. Inspired by such work, we will investigate whether the distribution of forest
standing tree carbon stocks is affected by spatial and temporal heterogeneity, and that the
distribution of forest standing trees carbon storage also has a high degree of spatial and
temporal heterogeneity, which has a great impact on the fitting and prediction of the model.
How to overcome this impact has become the focus of research.

In this study, we evaluated the fitting effect of different models on forest standing
tree carbon storage. Specific objectives include (1) screening the predictors significantly
related to the carbon storage of standing trees; (2) determining the relationship between
forest standing tree carbon stocks and predictors; (3) comparing the fitting effect of the
global model (OLS and LMM) and the local model (GWR, MGWR, TWR and GTWR), and
conducting spatial autocorrelation analysis; (4) the space analysis and error analysis of
the optimal model are carried out. The innovation of this paper is that the time and space
factors are introduced into the model fitting, which further improves the fitting effect. The
purpose of this study is to use readily available stand data and remote sensing data to
predict standing wood carbon storage and improve the efficiency of forest management.

2. Materials and Methods
2.1. Study Area and Research Process

The Heilongjiang Liangshui National Nature Reserve is located in Dailing town,
Daqingshan County, southeast of Yichun city. The geographical coordinates are 128◦53′20”
East longitude and 47◦10′50” North latitude. The total area of the reserve is 12,133 ha: the
buffer area is 5739 ha, and the core area is 6394 ha [20]. The specific geographical location
and distribution range are shown in Figure 1.

The forest vegetation includes artificially planted red pine, larch, mixed coniferous,
broad-leaved, and spruce trees. The natural trees include Korean pine, fir, birch, spruce,
mixed coniferous, broad-leaved, soft broad-leaved mixed, hard broad-leaved, and other
tree types. The area is rich in natural resources and complex and diverse vegetation
community types. It is a representative temperate primitive Korean pine coniferous and
broad-leaved mixed forest area in China and Northeast Asia. The complex ecological
environment conditions have created very favorable conditions for the survival and re-
production of wild animals and plants. After years of construction and management, the
reserve has become a natural base for the protection and research of the ecosystem and
biodiversity of Korean pine coniferous and broad-leaved mixed forest in China [21]. The
reserve includes 5 species of national secondary key protected wild plants: Pinus koraiensis
Siebold & Zucc., Fraxinus mandschurica Rupr., Phellodendron amurense Rupr., Tilia amurensis
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Rupr., and Glycine soja Siebold & Zucc.; additionally, there is one endemic species: Saliix
daikiingensis Chouet King [22].

Figure 1. The geographical location of the study area: China, Heilongjiang Province, Liangshui
National Nature Reserve.

The main content of the research is shown in Figure 2, which can be divided into
two parts: data processing and model fitting. First, the collected remote sensing data
are preprocessed, the prediction factors required for the experiment are extracted, and
the ground survey data and empirical models are used to calculate carbon storage. The
significant factors related to carbon storage are screened out through stepwise regression;
then, in the model fitting part, the carbon storage and the screened significant factors are
modeled, the fitting effect of the global model and the local model is evaluated, and the
intuitive distribution map of carbon storage observation data and model fitting results
obtained by interpolation in ArcGIS 10.7 (ESRI, Redlands, CA, USA) [8,14] with the inverse
distance weighting method (IDW). The spatial autocorrelation is analyzed by comparing
the residual Moran’s I and Z-score of different models under different bandwidths. Finally,
the space analysis and error analysis of the optimal model are carried out.

2.2. Data Sources
2.2.1. Ground Survey Data

The ground survey data are from the sample plot data obtained in the Forest Man-
agement Inventory in 1989, 1999, 2009, and 2019, including data from 63 sample plots
in 1989, 65 sample plots in 1999, 121 sample plots in 2009, and 129 sample plots in 2019.
All monitoring plots are evenly distributed in the study area, the plot area is 0.06 ha, and
the shape is round or square. During the survey in 1989 and 1999, the locations of the
monitored sample plots were the same, and the number of sample plots was basically
the same. In the survey in 2009, the number and location of sample plots different from
those in 1989 and 1999 were selected. The number and location of sample plots in 2019 are
different from those in 1989, 1999, and 2009. Figure 3 shows the distribution of sample
sites in different years. In 1989 and 1999, due to the limitations of manpower, material
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resources, and natural conditions, there were fewer sample sites, but it was still guaranteed
that each forest class had at least 1–2 monitoring sites. This also ensures the reliability of
the experimental design; the number of monitoring plots nearly doubled in 2009 and 2019,
and they were regularly distributed in the study area.

Figure 2. Research flow chart: Data processing and model fitting process, which includes two parts:
data processing and model fitting.

Figure 3. (a–d) are the location distributions of the specific plots in 1989, 1999, 2009, and 2019, respectively.

The ground survey data included the geographic location and topographic character-
istics of each plot, and records included the number of species, number of trees, diameter
at breast height, dominant wood diameter at breast height, and height of all standing trees
in the plot. Forest stand factors were calculated per hectare and included storage volume
(m3/ha) and carbon storage (Mg/ha). Carbon storage (Mg/ha) was calculated based on
the aboveground biomass in the study area using the continuous function method for
the biomass conversion coefficient of the main stand types [23]. The calculated biomass
was multiplied by the carbon content coefficient to obtain carbon storage [24]. The carbon
storage conversion coefficients of different tree species in the study area are shown in
Table 1:
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Table 1. Carbon storage conversion coefficients of different tree species in the study area.

Species
Betula

platyphylla
Suk.

Ulmus pumila L.
Tilia

amurensis
Rupr.

Quercus
mongolica
Fisch. ex

Ledeb

Picea asperata
Mast.

Larix gmelinii
(Rupr.)
Kuzen.

Pinus
koraiensis

Sieb. et Zucc.

Conversion
coefficients 0.4656 0.4331 0.4373 0.453 0.4805 0.4674 0.4809

2.2.2. Remote Sensing Data

The data sources in this paper are Landsat 5 TM data in Liangshui Nature Reserve
in 1989, 1999, and 2009 and Landsat 8 OLI data in 2019 [25]. All image resolutions are
30 m. The band characteristics of Landsat 5 TM and Landsat 8 OLI sensors are basically
the same, and there is a high degree of consistency in spectral resolution. There is a high
degree of consistency in the spectral resolution of these products [26]. In this study, four
images with serial number 117,027 at four different points in time were assessed to find the
image least influenced by cloud cover. To improve the use quality of remote sensing images,
the image was first preprocessed using ENVI 5.3 (Exelis VIS Company, Tysons Corner,
VI, USA) [27] to conduct radiometric calibration, atmospheric correction, and geometric
correction to eliminate the influence of sunlight and atmosphere on the data; then, the
original waveband, vegetation index, and other remote sensing factors were extracted. The
indices and corresponding formulas are shown in Table 2.

Table 2. Vegetation indices and formulas (Landsat 8 OLI).

Vegetation Index Formula

Blue B2
Green B3
Red B4

Near Infrared B5
Ratio Vegetation Index (RVI) B5/B4

Difference Vegetation Index (DVI) B5− B4
Weighted Difference Vegetation Index (WDVI) B5− 0.5× B4

Infrared Percentage Vegetation Index (IPVI) B5/(B5 + B4)
Perpendicular Vegetation Index (PVI) sin(45◦)× B5− cos(45◦)× B4

Normalized Difference Vegetation Index (NDVI) (B5− B4)/(B5 + B4)
Transformed Normalized Difference Vegetation Index (TNDVI) [(B5− B4)/(B5 + B4) + 0.5]1/2

Soil-Adjusted Vegetation Index (SAVI) 1.5× (B5− B4)/8× (B5 + B4 + 0.5)
Modified Soil-Adjusted Vegetation Index (MSAVI) (2−NDVI×WDVI)× (B5− B4)/

8× (B5 + B4 + 1−NDVI×WDVI)
Modified Soil-Adjusted Vegetation Index 2 (MSAVI2) 0.5× (2× (B5 + 1))− sqrt[(2× B5 + 1)

×(2× B5 + 1)− 8× (B5− B4)]
Atmospheric Ratio Vegetation Index (ARVI) [B5− (2× B4− B2)]/[B5 + (2× B4− B2)]

B2, B3, B4, and B5 are the multispectral bands of remote sensing images.

The texture feature of remote sensing images is mainly a visual feature that reflects the
homogeneous phenomenon in the image. It reflects the slowly changing or periodically changing
surface structure and arrangement properties of the object surface [28].
ENVI 5.3 software was used to calculate the texture features of the original bands. B2, B3,
B4, and B5 are the original bands. The texture features include Mean, Variance, Homogeneity,
Contract, Dissimilarity, Entropy, Second moment, and Correlation. B3-Mean can be expressed
as Mean in B3. Similarly, B4-Mean is Mean in B4 and B4-Entropy is Entropy in B4.

Terrain factors were extracted with a digital elevation model (DEM). DEM is a digital
simulation of terrain surfaces or a digital representation of terrain surface morphology
created with limited terrain elevation information [29]. ArcGIS 10.7 was used to process the
DEM over four years, and terrain factors such as elevation (m) and slope (◦) were extracted.

To study the relationships among forest stand factors, topographic factors, remote
sensing factors, and carbon storage in the study area, SAS software was used; seven
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significant factors were identified: Slope, Age, DBH, RVI, B3-Mean, B4-Mean, and B4-
Entropy. Figure 4 shows the spatial distribution of variables in different years.

Figure 4. (a) The spatial distribution of variables in different years in latitude. In the solid wireframe is
the spatial distribution map of independent variables obtained through stepwise regression screening,
and in the red dotted wireframe is the spatial distribution map of the actual measured and calculated
carbon storage. (b) The spatial distribution of variables in different years in longitude. In the same
way, in the solid wireframe is the spatial distribution map of independent variables obtained through
stepwise regression screening, and in the red dotted wireframe is the spatial distribution map of the
actual measured and calculated carbon storage.

2.3. Methods
2.3.1. Global OLS Model and LMM

OLS regression has been widely used in various studies [30,31]. This experiment uses
OLS regression as a benchmark, and the formula is as follows:

Y = βX + ε (1)

where β is a model coefficient estimated from the data and ε is the model residual, which
obeys an N(0, σ2) distribution.

The linear mixed model is extended to the least squares model [32], and the resulting
manifestation is as follows:

Y = βX + Zy + ε (2)

where Y is the vector of the dependent variable, X is the fixed-effect parameter matrix,
which is the model coefficient vector of unknown fixed effects, Z is the undetermined
random effect matrix, y is the unknown random-effect coefficient vector, and ε is the
random error.
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The OLS regression assumptions are applied from a regional perspective, making it
a fixed-effect model for the dependent variable; in contrast, the LMM considers random
effects [33], resulting in a better fitting effect.

2.3.2. Spatial Local Models (GWR, MGWR, TWR and GTWR)

The geographically weighted regression model is based on an expansion of the ordi-
nary global regression model. The spatial influence is considered in model construction
in the form of distance weighting [34]. The basic form of the geographically weighted
regression model is as follows:

Yi= β0(u i, vi)+
p

∑
k=1

βk(u i, vi)xik+εi, i = 1, 2 · · · , n (3)

where Yi is the status index of the dependent variable; (u i, vi) are the coordinates of the
first sampling point (such as latitude and longitude, or projected coordinates); βk(u i, vi) is
the k-th regression parameter at the i-th sampling point, which is a function of geographic
location; εi is the error term, where εi~N(0, σ2); and p is the total number of parameters to
be estimated.

In this model, the regression parameters for each sample site are different and can be
determined by using the spatial distance weight function method [35]; the basic form is
as follows:

β̂ = (X
TWi X)−1XTWi Y) (4)

Wi= diag(W i0, Wi1, Wi2, . . . , Win) (5)

where Wi is the diagonal matrix of spatial weights for point i, X is the independent variable
matrix, Y is the dependent variable matrix, and the superscript T represents matrix transpose.

To solve the parameter estimation problem of GWR, the spatial weight matrix must be
appropriately defined; that is, the spatial weight function must be appropriately selected.
Generally, the widely used Gaussian function is used [36], and its basic form is:

Wij= exp(−(d ij /b)2
)

(6)

where b is bandwidth and is a nonnegative attenuation parameter used to express the
functional relationship between weight and distance. If the bandwidth is too small or
too large, the fitting accuracy will be affected. Therefore, in the process of model fitting,
the bandwidth should be continuously assessed to determine the best bandwidth. Some
commonly used bandwidth determination methods include cross-validation (CV), the
Akaike criterion (AIC) method and the Bayesian information criterion (BIC) method. In this
study, the commonly used quadratic kernel function and the modified Akaike information
criterion (AICc) are used to determine the optimal bandwidth [37].

Compared with the traditional GWR, MGWR includes three important improvements.
First, the spatial smoothing level of each variable differs [38]. Second, the specific band-
width of each variable can be used as an indicator of the spatial scale of each spatial
process [15]. Third, the multi-bandwidth method produces a more realistic and useful
spatial process model than does the traditional method.

The formula for the MGWR model is as follows:

Yi= β0(u i, vi)+
k

∑
j=1

βbwj(u i, vi)Xij+εi (7)

where (u i, vi) are the center coordinates of location i; Yi is the carbon storage at i, bwj
represents the bandwidth associated with the regression coefficient of the fourth variable;
βbwj(u i, vi

)
is the regression coefficient of variable j at i; and β0(u i, vi) and εi are the

intercept and error terms of the model, respectively.
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Similar to those in the classic GWR model, each regression coefficient in the MGWR
model is based on the kernel function and bandwidth selection criteria obtained by local
regression [39]. The largest difference between the MGWR model and the classic GWR
model lies in the heterogeneity of bandwidth. This improvement is achieved by redefining
GWR as a generalized additive model (GAM) [40]. For GAM, a backward fitting algorithm
can be used to combine the various smoothing terms. The algorithm first needs to initialize
all the smoothing terms. In this study, the classic GWR estimation approach is used to obtain
the initial estimate [14,15]. Then, the difference between the true value and the predicted
value obtained based on the initial estimate can be calculated as the initialization residual.

ε̂ = Y−
k

∑
j=1

f̂j(f j= βbwjXj) (8)

Next, the residual ε̂ is combined with the first additive term f1 and the first independent
variable X1 to perform classic GWR and find the optimal bandwidth 1 and a list of new
parameter estimates f1 and ε̂ to update the previous estimates. In the second step, the
residual, the second additive term f2 and the second independent variable X2 are used
to perform a second round of GWR and update the parameter estimates for the second
variables f2 and ε̂. This process is repeated until the k-th step calculation is completed for
the last independent variable Xk. The above steps form a complete loop process and are
repeated until the estimate converges to the selected criterion.

The GTWR model includes a temporal dimension, so the coefficients of the local
regression equation are a function of geographic location and time scale; this approach
enhances analyses of the spatiotemporal characteristics of the regression relationship [18].
The model formula is as follows:

Yi= β0(u i, vi, ti)+
p

∑
k=1

βk(u i, vi , )xik+εi, i = 1, 2 · · · , n (9)

where (u i, vi, ti) are the space-time three-dimensional coordinates of the i-th sample point,
n is the number of sample points, εi is the random error associated with the first sample
point, εi~N(0, σ2), the random errors at sample points i and j are independent of each
other, and the covariance is 0. The added parameter represents the observation time of the
variable, and βk(u i, vi, ti) is the regression coefficient of the first independent variable for
the first sample point [41], which can be expressed as:

β̂(u i, vi, ti) = (X TW(u i, vi, ti)X)−1XTW(u i, vi, ti)Y) (10)

In this study, the Gaussian kernel function is used as the space-time weight function
of the GTWR model, and the space-time distance is defined as follows:

dST
ij =

√
λ

[
(u i − uj

)2
+(v i − vj

)2
]
+µ(t i − tj

)2
(11)

where λ and µ are scale factors of spatial and temporal distance, respectively. According
to the above definition, and referring to the form of the Gaussian kernel function, the
space-time weight function can be obtained as follows:

w = (u i, vi, ti) = exp(−
dST

ij

h2 ) = exp

−
λ

[
(u i − uj

)2
+(v i − vj

)2
]
+µ(t i − tj

)2

h2

 (12)

where h is the bandwidth function, and the optimal bandwidth is determined by the
AICc. When the scale factor µ is 0, only the spatial distance and spatial heterogeneity are
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considered in the GWR model; when the scale factor λ is 0, only the temporal distance
and temporal nonstationarity are considered, and a temporally weighted regression (TWR)
model is established.

2.3.3. Model Evaluation

This article uses five statistics to evaluate the effect of model fitting: the residual sum
of squares (RSS), root mean square error (RMSE), AICc value, correlation coefficient (R2),
and adjusted correlation coefficient (R2

a). Moran’s I and Z-score were used to evaluate the
spatial autocorrelation of the residuals of each model. The sum of each squared residual
is called the residual sum of squares (RSS), which represents the effect of random error.
The smaller the RRS of a set of data is, the better the fit. The corresponding expression is
as follows:

RSS =
n

∑
i=1

(y i − ŷi)
2 (13)

where yi and ŷi are the observed and predicted values of the dependent variable and n is
the sample size.

The root mean square error (RMSE) is used as the statistic for independence tests. The
RMSE is also used to measure the deviation between an estimated value and the true value.
The lower the RMSE is, the better the fitting ability of the model. The RMSE is expressed
as follows:

RMSE =

√
∑n

i=1(y i − ŷi)

n
(14)

where yi and ŷi are the observed and predicted values of the dependent variable and n is
the sample size.

AICc is one of the most commonly used goodness-of-fit standards in model compari-
son. The smaller the AICc is, the better the model performance. The corresponding formula
is as follows:

AICc = ln
RSS

n
+

n + k
n− k− 2

(15)

where n is the sample size, k is the number of parameters in the fitted model, and RSS is the
residual sum of squares.

The correlation coefficient (R2) represents the goodness of fit of a model, or the per-
centage of the total change in the observations explained by the model. The larger R2 is,
the better the model fitting result. R2 tends to exaggerate the explained percentage because
it is not reduced by adding more predictors [42]. The adjusted coefficient of determination
(R2

a) overcomes this shortcoming by dividing the RSS and SST by their related degrees of
freedom, and the corresponding formulas are as follows:

R2= 1−RSS
SST

(16)

R2
a= 1 − (1 − R 2) × n− 1

n− k− 1
(17)

where RSS is the residual sum of squares, SST is the total sum of squares, n is the number
of samples, and k is the number of parameters in the fitted model.

Moran’s I is typically used to investigate the spatial autocorrelation of model residuals
among regression models [43]. When the model residuals tend to be similar, Moran’s
I is positive; when the model residuals tend to be different, Moran’s I is negative; and
when the model residuals are arranged randomly and independently in space, Moran’s I is
approximately 0. This index can be expressed as:

I =
n
S0
×

∑n
i=1 ∑n

i=1 wij(c i − c)
(
cj − c)

∑n
i=1 (c i − c)2 wij (18)
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where wij is the spatial weight between elements i and j, n is the total number of samples,
ci is the residual at i, c is the average of the residuals, and S0 is the aggregation of all
spatial weights:

S0 =
n

∑
i=1

n

∑
i=1

wij (19)

The Z-score is a multiple of the standard deviation and can effectively reflect the
degree of dispersion of a data set [16]. The statistical Z-score formula is as follows:

Z =
I− E(I)√

V(I)
(20)

E(I) =
−1

n− 1
(21)

V(I) = E(I 2) − E(I)2 (22)

If the Z-score is between −1.96 and +1.96, the uncorrected p value will be greater than
0.05, so the null hypothesis cannot be rejected because the displayed pattern is likely to be
the result of a random spatial process, such as spatial autocorrelation. If the Z-score is less
than−2.58 or greater than +2.58, the observed spatial pattern may be extremely uncommon
and may not be the result of a random process; a small p value can also reflect this result,
indicating strong spatial autocorrelation [16,19].

3. Results
3.1. Comparison of Model Fitting Results

The fitting results of all models are shown in Table 3. With the OLS global model, the
fitting effect is relatively moderate, the AICc value of all models is the largest, and R2

a is the
smallest. The LMM outperforms the OLS model when random effects are added. GWR
and MGWR consider the spatial factors of the study area, and the fitting effect is better than
that of the former two modes. TWR introduces a temporal factor into the model, and the
model performance is second only to that of GTWR. GTWR yields the best fitting effect,
with the smallest AICc value and largest R2

a . The RSS, MSE, and RMSE of GTWR are also
reflective of good performance.

Table 3. Comparison of the fitting results of the OLS, LMM, GWR, MGWR, TWR, and GTWR models.

Model RSS RMSE AICc R2 R2
a

OLS 889,784 48.52 4026 0.464 0.454
LMM 778,693 45.39 3995 0.527 0.519
GWR 710,468 43.35 3989 0.572 0.536

MGWR 681,806 42.47 3988 0.589 0.547
TWR 594,131 39.65 3953 0.643 0.637

GTWR 443,198 34.24 3912 0.734 0.729

Figure 5 shows the carbon storage observation data and model fitting results for the
Liangshui Nature Reserve in different years, obtained by interpolation in ArcGIS 10.7 with
the IDW. The geographic locations of the sample plots monitored during the second-class
surveys in 1989 and 1999 were the same. The number of sample plots was also basically the
same; therefore, the carbon storage distribution in the two years was roughly similar, but
carbon storage varied in different parts of the reserve. The northernmost, westernmost and
southernmost areas exhibited the highest carbon storage, ranging from 120 to 180 (Mg/ha).
The central area displayed scattered regions of high carbon storage, with carbon storage
ranging from 80 to 120 (Mg/ha). Carbon storage in most other regions ranged from
20 to 60 (Mg/ha). In the survey in 2009, a different number of plots than that in 1989 and
1999 was selected, and new plot locations were selected. In addition, the natural tree growth
and windfall results indicated that the distribution of CS slightly differed from 10 and
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20 years earlier, but the overall distribution was similar. Similarly, the carbon storage in the
west was relatively high, ranging from 120 to 180 (Mg/ha), and the area with high carbon
storage in the central region was wide, with values ranging from 160 to 200 (Mg/ha). The
carbon storage in the eastern region was relatively low, ranging from 20 to 60 (Mg/ha),
and the carbon storage in other regions varied from 60 to 120 (Mg/ha). The total carbon
storage was clearly higher than that in 1989 and 1999. In 2019, new sample locations
different from 2009 were used in the survey. The general carbon storage distribution was
basically the same as that in previous years. Carbon storage increased in the northernmost
region of the reserve, the distribution of high-carbon areas broadened, and the total carbon
storage increased.

Figure 5. Temporal and spatial distributions of carbon storage based on observation data and model
fitting results.

From a temporal perspective, carbon stocks showed an increasing trend from 1989 to
2019. A comparison of the observation results and model results suggests that the estimated
results of the global OLS model and LMM are significantly different from the observations
in terms of the geographical distribution, and large gaps in carbon storage values exist.
The estimated results of the local GWR, MGWR, TWR, and GTWR models are basically
consistent with the observation data in terms of distribution, but the carbon storage values
obtained with GWR and MGWR are slightly different from the observations; the TWR and
GTWR models provide relatively good estimated results. Among them, GTWR yields the
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best fitting effect, and both the geographical distribution and the value of carbon storage are
closest to the observed values. The purpose of making Figure 5 is to make the fitting results
look more concrete, and also to use a more intuitive way to show the spatial distribution of
the fitting results of different models.

3.2. OLS and LMM

The OLS regression model is used to estimate the relationship between CS and impact
factors, and it is used as a benchmark for model comparison. The OLS model is based on a
global fixed effect and only reflects the average relationship between the dependent variable
and the predictors [44,45]. The LMM adds random effects on the basis of the OLS approach,
and the parameter estimation results of the two models are similar. Table 4 indicates that
carbon storage increases as Age, DBH, B3-Mean, and B4-Mean increase, reflecting a positive
correlation. Additionally, carbon storage increases as Slope, RVI, B4-Mean, and B4-Entropy
decrease, reflecting a negative correlation.

Table 4. Comparison of parameter estimates with the OLS model and LMM.

Parameter
Estimate Std. Error t Test p Value

OLS LMM OLS LMM OLS LMM OLS LMM

Intercept 36.187 47.556 20.306 20.162 1.78 2.36 0.075 0.046
Slope −2.936 −2.862 0.952 0.942 −3.08 −3.04 0.002 0.016
Age 0.353 0.362 0.091 0.098 3.87 3.7 0.000 0.006
DBH 1.775 1.622 0.259 0.321 6.84 5.06 0.000 0.001
RVI −3.075 −3.840 1.047 1.016 −2.94 −3.78 0.003 0.005

B3-Mean 8.805 9.2573 1.900 1.808 4.63 5.12 0.000 0.001
B4-Mean −7.196 −8.077 1.745 1.780 −4.12 −4.54 0.000 0.002

B4-Entropy 11.984 12.415 5.646 5.476 −2.12 −2.27 0.034 0.053

3.3. GWR, MGWR, TWR and GTWR

The GWR and MGWR models take local spatial factors into account and solve spatial
heterogeneity problems. The TWR and GTWR models further consider time and simultane-
ously solve temporal and space heterogeneity problems [46]. The adaptive double-square
kernel function is used as the spatial weighting kernel function, and the appropriate
bandwidth is selected according to the smallest AICc value [47]. Table 5 summarizes the
parameter estimates of the four models. Except for the median coefficient of B4-Entropy
for the GTWR model, the positive and negative median coefficients of all other models are
consistent with the positive and negative median coefficients of the OLS model and LMM.
Notably, the model parameters of GWR and MGWR are highly similar [48], and the model
parameters of TWR are closest to those of GTWR.

3.4. Spatial Autocorrelation Analysis

In order to study the spatial correlation of residuals of different models, the residual
Moran’s I and Z-scores of OLS, LMM, GWR, MGWR, TWR, and GTWR models at 10 dif-
ferent bandwidths from 0 m to 4000 m are calculated and compared. Figure 6 shows the
variation trend of Moran’s I of the global model residual at different bandwidths. No-
tably, the Moran’s I trends of the OLS model and LMM residuals are roughly the same.
The spatial autocorrelation associated with the LMM residuals is greatly reduced, but the
Moran’s I values of the model residuals at a small spatial scale (0–1200 m) are still very
large. As the spatial scale becomes increasingly larger, Moran’s I of the residuals of the
two models approaches 0, which means that the spatial autocorrelation decreases with
increasing scale [49]. The residual Moran’s I values of the local GWR, MGWR, TWR, and
GTWR models are much smaller than that of the global OLS model, the degree of spatial
autocorrelation is low, and there is a general negative correlation between the residuals.
At small spatial scales, the Moran’s I values of the residual of the GWR (0–400 m and
800–1200 m) model are larger than those of other models [50]; additionally, the Moran’s I
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values of the residuals of the MGWR model at all scales are closest to 0, and the Moran’s I
trends of the residuals of the TWR and GTWR models are the same, but the GTWR residuals
are closer to 0 than those of TWR at each spatial scale.

Table 5. Comparison of parameter estimates with the GWR, MGWR, TWR, and GTWR models.

Parameter Models Mean STD Min Median Max

Intercept

GWR 59.122 14.526 31.178 66.296 80.532
MGWR 42.777 0.363 42.055 42.849 43.510

TWR 19.721 41.639 −35.698 26.179 66.296
GTWR 25.408 56.280 −113.552 30.221 196.112

Slope

GWR −3.425 1.522 −5.925 −3.688 −0.035
MGWR −2.017 0.077 −2.081 −2.067 −1.808

TWR −3.103 0.425 −3.688 −2.926 −2.736
GTWR −2.869 1.615 −7.173 −2.796 2.006

Age

GWR 0.236 0.371 −0.426 0.18 0.912
MGWR 0.369 0.183 0.034 0.341 1.024

TWR 0.444 0.296 0.180 0.297 0.922
GTWR 0.428 0.316 −0.021 0.350 1.182

DBH

GWR 2.264 1.497 0.432 1.469 4.982
MGWR 1.633 0.035 1.571 1.636 1.694

TWR 2.219 2.296 −0.256 1.469 5.432
GTWR 1.810 1.762 −0.764 1.380 6.481

RVI

GWR −4.889 1.628 −10.281 −4.799 −3.117
MGWR −3.166 0.375 −3.734 −3.220 −2.472

TWR −1.322 1.482 −3.347 −0.594 0.191
GTWR −1.501 5.905 −18.245 −0.324 12.037

B3-Mean

GWR 9.977 2.213 5.484 10.983 11.7
MGWR 7.227 0.042 7.142 7.225 7.337

TWR 5.942 4.192 1.951 3.959 11.665
GTWR 7.328 8.908 −4.139 4.086 34.291

B4-Mean

GWR −9.94 3.406 −15.417 −10.35 −3.572
MGWR −6.508 0.082 −6.613 −6.550 −6.285

TWR −5.238 4.067 −10.350 −4.783 −0.395
GTWR −9.008 9.704 −40.573 −6.802 5.123

B4-
Entropy

GWR −9.398 4.682 −17.063 −10.178 1.933
MGWR −11.405 0.506 −11.962 −11.640 −10.092

TWR −4.052 9.373 −11.391 −10.178 9.593
GTWR 1.475 14.355 −41.318 0.415 36.677

Figure 6. (a) Moran’s I values of the global model residual under different bandwidths; (b) Moran’s I
values of the local model residual under different bandwidths.
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Figure 7 shows the Z-score of the residuals of each model. When the scale of the OLS
model is 0–400 m and 800–1200 m, the Z-scores are 3.1 and 3.6, respectively, which are
both greater than 2.58. This finding indicates that the residual of the OLS model has a high
degree of spatial autocorrelation at small scales. The Z-score of the residual of the LMM
is 2, which is greater than 1.96, when the scale is 0–400 m, indicating that there is a certain
spatial autocorrelation at this scale. The Z-scores of the GWR, MGWR, TWR, and GTWR
model residuals are greater than −2.58 or less than 2.58 at all scales, indicating that the
spatial autocorrelation of the residuals of these models is low [15].

Figure 7. (a) Z-score of the global model residual under different bandwidths; (b) Z-score of the local
model residual under different bandwidths.

By combining the Moran’s I and Z-score results for the residuals of each model, we
find that spatial autocorrelation is notable for the OLS model, thus violating the OLS
assumptions and leading to biased estimates of coefficients [51]. The LMM overcomes the
spatial self-correlation issue to a certain extent, although issues still exist at small scales.
Various GWR-based models (GWR, MGWR, TWR, and GTWR) can significantly reduce this
spatial autocorrelation issue [52]. MGWR overcomes the influence of spatial autocorrelation
to the greatest extent and outperforms the other methods without considering the time
dimension. GTWR greatly reduces the spatial autocorrelation while considering time. Thus,
for estimations of long-term carbon storage, GTWR is the optimal model [53].

3.5. Optimal Model Space Analysis

Figure 8 shows the carbon storage heat map of standing trees fitted by GTWR model
and the error analysis diagram of average carbon storage at different longitudes and
latitudes. We can visually see the spatial distribution of carbon in different years. The
carbon storage distribution in 1989 and 1999 was roughly similar, with higher carbon
reserves in the north and west than in other regions. Carbon storage increased significantly
in 2009 and 2019 compared with 1989 and 1999, with those in the north being higher than
in other regions; the specific spatial distribution is shown in the figure below. It can also be
seen intuitively from the figure that the GTWR model fits the distribution of carbon storage
in different longitudes and latitudes and the error range. We find that the GTWR model
basically controls the error range within 10–30%, and the fitting effect is good but still has
a large room for improvement. How to further improve the fitting effect will be our next
work to be studied.
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Figure 8. (a–d) are the carbon storage heat maps in 1989, 1999, 2009, and 2019 fitted by the GTWR
model and the average carbon storage error analysis maps at different longitudes and latitudes,
respectively.

4. Discussion

Northeast China is the region with the richest forest carbon reserves in China, and it
includes the Greater Xing’an Mountains, Xiao Xing’an Mountains, and Changbai Moun-
tains. The Liangshui Nature Reserve is located in the southeastern section of the Xiao
Xing’an Mountains and on the east slope of the Dali Belt Ridge. Remote sensing images
and forest stand survey data were used to study the distribution of carbon storage in
the Liangshui area and provide a reference significance for studying the distribution of
standing wood carbon storage in the entire northeast region [30]. The Liangshui Nature
Reserve, as a natural forest area, is characterized by important strategic significance in
terms of a natural ecosystem balance in the context of achieving carbon neutrality. When
using stand factor, terrain factor, remote sensing factor, and other data for prediction and
carbon storage analysis, a lot of manpower and material resources required for manual
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census can be saved, and the results provide important reference value for the monitoring
of natural ecosystems and establishment of management plans for protected areas [24].

This study uses OLS, LMM, GWR, MGWR, TWR, and GTWR models based on 1989,
1999, 2009, and 2019 two-year survey data, as well as Landsat 5 TM and Landsat 8 OLI
data, to investigate the distribution of standing wood carbon storage in forests in the
Liangshui Nature Reserve. Notably, carbon storage is heterogeneous in space and time.
The OLS model can predict standing wood carbon storage to a certain extent, but the global
model assumes the carbon process to be constant in time and space. Thus, spatial and
temporal heterogeneity may cause biased estimates of model coefficients [54]. The LMM is
also a global model, but it considers random effect errors to address spatial and temporal
autocorrelation issues, thus producing a better fitting effect than that of the OLS approach
(R2

a increased by 14%) [55]. The local GWR and MGWR models include geographic location
information and can overcome spatial heterogeneity issues; additionally, these models
outperform the OLS model and LMM [56]. Notably, MGWR is based on a multi-bandwidth
method and produces a realistic and useful spatial result [57]. The Moran’s I of the residuals
of the MGWR model is the smallest among those of all models at different bandwidths,
indicating that the impact of spatial autocorrelation is highly mitigated. If time is not
considered, the MGWR model exhibits the best performance; that is, MGWR is fully
capable of assessing the spatial distribution of standing wood carbon storage in short
periods or single years. The TWR and GTWR models also include time. As a result, these
models perform well [58]; compared with that of the OLS model, the R2

a value increases by
40% and 61%, respectively, for these models. When TWR only introduces temporal distance
and temporal nonstationarity, the performance of the model is better than that of MGWR,
indicating that in assessments of the distribution of long-period standing wood carbon
storage in forests, temporal nonstationarity is more important than spatial nonstationarity.
Of course, this result may be related to the limited number of samples [59]. GTWR includes
temporal and spatial factors at the same time, and R2

a is 0.729; additionally, the model
residuals (RSS and RMSE are the smallest of all models) are the most ideal, and the AICc
value is the smallest. These results indicate that, in the studies of the long-term distribution
of standing wood carbon storage, the GTWR model has an absolute advantage over other
methods. The GTWR model based on survey data from 1989, 1999, 2009, and 2019 can
be used to determine the relationship between standing wood carbon storage and stand
factors, topographic factors, and remote sensing factors. In particular, the acquisition of
data from remote sensing products saves manpower and material resources. It is possible
to predict forest standing wood carbon storage to a certain extent without conducting
large-scale field surveys, thus promoting the path to carbon neutrality [60]. According to
the research results, the GTWR model displays the best performance of the considered
models, but the effect of GTWR on spatial heterogeneity is not as good as that of MGWR;
thus, determining how this effect can be improved should be a focus of future studies.
Another thing to note is that, due to the limited number of samples, the IDW mapping
results of these models may not be enough to be evaluated in this study, and high-precision
results (airborne data, especially unmanned aerial vehicle LiDAR data) should be used for
subsequent verification work [54].

5. Conclusions

In this study, the global and local models were used to study the spatiotemporal
distribution of forest carbon storage in the Liangshui Nature Reserve, to compare the
fitting effects of different models, and to conduct spatial autocorrelation analysis. The
results showed that parameter (Age, DBH and B3-Mean) estimates tended to be positive
for predicting standing wood carbon storage, and parameter (RVI, B3-Mean, B4-Mean and
B4-Entropy) estimates tended to be negative for predicting standing wood carbon storage.
The global model (OLS, LMM) has poor fitting results compared to the local model (GWR,
MGWR, TWR, and GTWR), and OLS model yields the worst fitting effect. As a global model,
the LMM also has a higher R2

a and more ideal model residuals than the OLS model. Notably,
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R2
a is 14% higher than that of the OLS model. The fitting effects of the GWR, MGWR,

TWR, and GTWR models are further improved; notably, compared with that of OLS, R2
a

increased by 18%, 20%, 40%, and 61% with these models, respectively. TWR performs better
than GWR and MGWR when only considering temporal factors, indicating that temporal
heterogeneity is more influential than spatial heterogeneity. Especially for the long-term
monitoring of carbon storage distributions, temporal factors play an important role in model
fitting. The traditional OLS model is influenced by strong spatial autocorrelation, which will
lead to biased estimates of model coefficients. Although the LMM is an improvement over
the OLS approach, it is inferior to the local GWR-based models (GWR, MGWR, TWR, and
GTWR). MGWR solves the spatial heterogeneity problem to the greatest extent observed.
If time is not considered, MGWR performs best. Considering both temporal heterogeneity
and spatial heterogeneity problems, GTWR provides a good fitting effect, and compared
with other models in this study, it yields the best R2

a and the most ideal model residuals.
This study provides evidence of spatiotemporal heterogeneity between forest carbon

storage and forest stand factors, topographic factors, and remote sensing factors in the
Liangshui area. Additionally, possible solutions for modeling forest carbon storage and
other related factors in the Liangshui area are given. This study contributes to the investi-
gation of ecological resources in protected areas, and the results could be used by relevant
departments in the monitoring of carbon storage.
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