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Abstract: Traditional tree improvement is cumbersome and costly. Our main objective was to assess
the extent to which genomic data can currently accelerate and improve decision making in this
field. We used diameter at breast height (DBH) and wood density (WD) data for 4430 tree genotypes
and single-nucleotide polymorphism (SNP) data for 2446 tree genotypes. Pedigree reconstruction
was performed using a combination of maximum likelihood parentage assignment and matching
based on identity-by-state (IBS) similarity. In addition, we used best linear unbiased prediction
(BLUP) methods to predict phenotypes using SNP markers (GBLUP), recorded pedigree information
(ABLUP), and single-step “blended” BLUP (HBLUP) combining SNP and pedigree information.
We substantially improved the accuracy of pedigree records, resolving the inconsistent parental
information of 506 tree genotypes. This led to substantially increased predictive ability (i.e., by up to
87%) in HBLUP analyses compared to a baseline from ABLUP. Genomic prediction was possible across
populations and within previously untested families with moderately large training populations
(N = 800–1200 tree genotypes) and using as few as 2000–5000 SNP markers. HBLUP was generally
more effective than traditional ABLUP approaches, particularly after dealing appropriately with
pedigree uncertainties. Our study provides evidence that genome-wide marker data can significantly
enhance tree improvement. The operational implementation of genomic selection has started in
radiata pine breeding in New Zealand, but further reductions in DNA extraction and genotyping
costs may be required to realise the full potential of this approach.

Keywords: tree breeding; pedigree reconstruction; genomic selection; genomic prediction; single-step
BLUP; Pinus radiata

1. Introduction

Despite the increasing appreciation of deforestation as a major environmental threat,
global rates of forest loss have not decreased and continue to be largely driven by anthro-
pogenic changes in land use [1–3]. This trend will likely be exacerbated by projected human
population growth and climate change, both of which are expected to further aggravate the
looming environmental crisis and put significant pressure on the long-term sustainability
of natural renewable resources such as wood fibre [4]. Thus, the forest-based “circular” bioe-
conomy model, which is based on wood and products derived from wood as a dominant
part of the system [5], is facing the massive challenge of growing increasing amounts of
wood biomass under ever-increasing pressure to convert forests to agricultural land [6].

Traditional tree breeding is slow, expensive, and complex as the choice of species,
balance of genetic gain versus diversity, and scale of genetic testing and conservation
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should be considered [7,8]. Climate change is further increasing this complexity, and
assisted migration is increasingly recognised as a potentially effective climate change
adaptation tool at the population level [9–12], while the importance of within-population
adaptive genetic variation is also appreciated [13].

The development of genomic resources in forest tree species has enabled (1) efficient
population management in both conservation and breeding programmes (e.g., this Special
Issue); (2) effective tracing of co-ancestry and inbreeding [14,15]; (3) dissection of the genetic
architecture of complex traits through genome-wide association studies (GWAS) to identify
candidate genes for economically important or adaptive traits [16–19]; and (4) whole-
genome regression modelling to predict unobserved phenotypes and select genetically
superior individuals without field testing (i.e., genomic selection, [20–23]). Because forest
tree breeding is a long process, historical material is often unavailable for genotyping. Thus,
approaches combining data for genotyped and non-genotyped individuals are potentially
very useful. Blended “single-step” models combine phenotypic, pedigree, and genomic
data, which makes it possible to use historical records and reduces the burden of genotyping
costs in operational schemes [24]. However, there are still significant technical challenges
with this approach. For example, the marker-based relationship matrix needs to be rescaled
appropriately relative to the pedigree-based relationship matrix to avoid bias in genomic
breeding value estimates [25,26]. Furthermore, the relative weighting of the pedigree versus
genomic information needs to be assessed carefully during the matrix blending process to
prevent matrix inversion issues [25,26].

In this study, we used an extensive genomic and phenotypic data set from New
Zealand’s radiata pine breeding programme to (1) objectively characterise population
structure, (2) perform large-scale pedigree reconstruction, and (3) assess the potential for
operational implementation of genomic or single-step blended prediction.

2. Materials and Methods
2.1. Plant Materials and Phenotypic Data

Radiata pine occurs naturally in five locations (provenances): Año Nuevo (CA, USA),
Monterey (CA, USA), Cambria (CA, USA), Cedros Island (Mexico), and Guadalupe Island
(Mexico, Figure 1). The species was first introduced to New Zealand ca. 170 years ago
and has shown excellent growth under the local environmental conditions. Populations
of ca. 1000 individuals were collected from forest stands across New Zealand during
1950–1988. This included trees from all five provenances growing in provenance tests
established in New Zealand. Several sublines were established targeting different traits such
as growth and form, wood density, Dothistroma needle blight resistance, and internode
length. However, after the most recent revision of the breeding programme, a nucleus
breeding strategy was proposed [27]. This strategy featured a large open-pollinated main
population and a smaller elite population, with 50% of testing via progeny tests and 50%
via clonal tests. Overall, more than 400,000 trees have been grown and measured in more
than 100 replicated field trials.

We used phenotypic and, where available, genomic data for a subset of 4254 tree
genotypes from five historical populations (“260”, “313”, “314”, “397”, and “399”) tested in
five trial series (“FR260”, “FR305GF”, “FR305HD”, “FR353”, and “Cloned Elites”, Table 1
and Supplementary Materials Table S1) for genomic and single-step blended prediction
analyses. We focused on two phenotypic traits, both of which are part of the breeding
objective for radiata pine in New Zealand: diameter at breast height (DBH), which was
measured using a diameter tape at tree height of 1.4 m, and wood density (WD), which was
estimated through the maximum moisture content method [28]. In addition to material
directly involved in the breeding programme, we also used two biparental linkage mapping
populations (Table 1) to test whether genomic prediction is effective within families. Thus,
we used phenotypic data for 4430 tree genotypes (4254 from historical populations as
described above and 176 from the two mapping families) and genomic data for 2466 tree
genotypes (Table 1).
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Figure 1. Natural distribution of radiata pine in North America.

Table 1. Populations, families, and trial series included in genomic (GBLUP), pedigree-based
(ABLUP), and single-step blended (HBLUP) prediction analyses (see Table S1 for field trial details).

Population Description Analysis Number of
Parents (Families)

Number of
Genotyped
Individuals

Number of
Genotypes Used

in GBLUP

260 Progeny test ABLUP, HBLUP 47 (26) 0 0
313 Cloned Elites ABLUP, GBLUP, HBLUP 55 (74) 695 681
314 Cloned Elites ABLUP, HBLUP 55 (75) 609 0
397 Older Clonal Tests ABLUP, GBLUP, HBLUP 64 (50) 464 444
399 Older Clonal Tests ABLUP, GBLUP, HBLUP 24 (42) 522 469

QTL Mapping family
(268,405 × 268,345) GBLUP 2 (1) 93 86

FWK Mapping family
(850,055 × 850,096) GBLUP 2 (1) 83 81

Total 2466 1761

2.2. Genomic Data

Single-nucleotide polymorphism (SNP) data were generated using two genotyping
platforms. First, an exome capture genotyping-by-sequencing (GBS) method [29] was
implemented using probes obtained by resequencing transcriptomes from multiple tis-
sues [30,31]. This platform allowed us to generate data for 50,917 SNP markers. Second, a
subset of the GBS markers were used to develop a custom radiata pine Affymetrix Axiom
36K array, NZPRAD02, which included 36,285 SNPs [32].

Where necessary, we combined data by identifying a subset of SNPs that performed
consistently well using both platforms. Briefly, we genotyped 295 individuals using both
GBS and the NZPRAD02 Axiom array, and then we identified 9353 SNPs for which geno-
typic calls were strongly correlated between the two platforms (Pearson’s r > 0.9).
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2.3. Data Analysis
2.3.1. Population Structure

We used the smartpca function within the EIGENSTRAT package to perform individual-
based principal component analysis [33] of all genotyped individuals. This was done
using the set of 9353 SNPs that had good transferability between genotyping platforms
(see Section 2.2).

2.3.2. Pedigree Reconstruction

Pedigree reconstruction was performed on 2476 individuals (populations “313”,
“314”, “397”, and “399”), with 42 individuals genotyped using the Axiom SNP array
and 2434 individuals genotyped using GBS [29,31]. Marker data were combined as de-
scribed above and then filtered for an individual call rate > 0.75 and SNP call rate > 0.95,
leaving 2290 tree genotypes and 8523 SNPs for further analyses.

Pedigree reconstruction analyses then followed five steps. First, we calculated pedigree-
based and genomic relationships between trees. Pedigree-based relationship coefficients
(APED) were calculated based on information from the Radiata Pine Breeding Company
(RPBC) using the pedigree R-package [34]. Genomic relationships were estimated using the
identity-by-state (IBS) allele-sharing similarity statistic from PLINK 1.9 [35,36]. We used
IBS coefficients because they make few population genetic assumptions and are robust to
the presence of genetically differentiated groups [37,38]. Second, we used the two linkage
mapping populations (Table 1) to estimate the IBS threshold separating first-degree rela-
tives (full-sib or parent–offspring) from unrelated individuals. This was possible because
parent–offspring relationships in these populations had been validated previously using
microsatellite markers [39]. Third, we performed a preliminary quality assurance check
to identify unexpected duplicates (i.e., samples from presumably unrelated trees with
IBS > 0.95) or unexpected conflicts (i.e., samples from the same genotype with IBS < 0.95).
We compared all duplicates and conflicts with their presumed parents and offspring based
on the pedigree information to resolve ambiguous identities. Unresolved duplicates and
conflicts were assigned proxy identities and were also included in downstream analyses.
Fourth, we performed computer simulations to assess the effectiveness of the apparent
R package [40] for pedigree reconstruction. The apparent package searches for triplets of
individuals (two parents and an offspring) by minimising genetic distance based on dense
marker arrays [40]. We tested four scenarios in which the population of candidate parents
contained the true parents and (i) 100 randomly selected parents genotyped using GBS;
(ii) 100 randomly selected parents genotyped using the Axiom array; (iii) 50 randomly
selected parents genotyped using GBS and 50 randomly selected parents genotyped using
the Axiom array; or (iv) 50 randomly selected full-sibs (25 from each mapping population),
all genotyped using GBS. For each scenario, we used the number of correct assignments
and the number of statistically significant assignments as performance criteria. Finally,
we performed the actual pedigree reconstruction for the 2290 individuals included in the
filtered data set.

2.3.3. Genomic Prediction (GBLUP)

We tested genomic prediction within and across populations and families, and then
we identified the minimum number of SNPs required for accurate prediction. This was
accomplished using genomic best linear unbiased prediction (GBLUP, [41,42]), the rrBLUP
R package [43], and the following model:

y = Xβ + Zu + e (1)

where y is a vector of observed phenotypes, estimated as clonal best linear unbiased
predictors (BLUPs) corrected for site and design terms using a mixed linear model fitted
using the lme4 R package [44,45]; β is a vector of fixed effects (overall mean); u is a vector
of random genomic estimated breeding values following var(u) ∼ N

(
0, Gσ2

u
)
, where G is
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the marker-based relationship matrix [46] and σ2
u is the additive genetic variance captured

by genetic markers; e is a vector of random residual effects following var(e) ∼ N
(
0, Iσ2

e
)
,

where I is the identity matrix and σ2
e is the residual variance; and X and Z are index matrices

assigning the fixed effects in β and random effects in u to the phenotypes in y.
To assess the effectiveness of GBLUP prediction, we used random k-fold cross-validations

in which the data were randomly partitioned into training and test sets, or cross-validations
in which a particular population or family was entirely or partly removed from the training
set [47]. To quantify GBLUP effectiveness, we calculated predictive ability as the correlation
between predicted (i.e., GBLUP) and “observed” phenotypes (i.e., clonal BLUPs, see above).
We excluded the non-genotyped “260” population, as well as the “314” population because
of the large proportion of missing data for WD. We also excluded tree genotypes with
missing phenotypic data. Thus, the data set for GBLUP analyses included 1761 of the
1857 tree genotypes from three breeding populations (“313”, “397”, and “399”) and two
biparental mapping families (“QTL” and “FWK”; Table 1). In random cross-validations,
predictive abilities were calculated based on the observed and predicted values of all
1761 tree genotypes. Only the predicted values for the test set were used, and data were
split randomly into k folds (i.e., based on the desired size of the training set) until a predicted
value was available for each genotype. In cross-validations across populations or within
families, predictive abilities were calculated only based on the values for individuals in the
target population or family that were not included in the training set in any given iteration
of the analysis. For example, when 20 individuals from the “QTL” family were included in
the training set, predictive abilities were calculated based on the observed and predicted
values of the remaining 66 individuals in this family that were in the test set (Table 1).

2.3.4. Pedigree-Based and Single-Step Blended Prediction (ABLUP and HBLUP)

Pedigree prediction (ABLUP) uses the pedigree alone to predict phenotypes, whereas
single-step blended prediction (HBLUP) combines pedigree and genomic data. Because the
quality of the pedigree affects the resulting prediction accuracy, we compared scenarios
of ABLUP and HBLUP using (i) the originally recorded pedigree; (ii) a pedigree corrected
through pedigree reconstruction, but with unresolved cases reverting to the originally
recorded pedigree; and (iii) a pedigree corrected through pedigree reconstruction, with
unresolved cases set as “parent unknown”.

The ABLUP and HBLUP linear mixed models were implemented in the breedR R
package [48] as follows:

y = Xβ + Zu + ew (2)

where y is a vector of observed phenotypes (i.e., measurements), β is a vector of fixed ef-
fects such as site and replication within site, u is a vector of random terms (described
below), X and Z are index matrices assigning the fixed effects in β and random ef-
fects in u to the phenotypes in y, and ew is the vector of weighted residuals following
var(ew) ∼ N

(
0, Iσ2

ew

)
, where I is the identity matrix and σ2

ew is the weighted residual vari-

ance following σ2
ew = average(

(
diag(W)xσ2

e
)−1

). W is a diagonal matrix of weights following:

W =


w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wn

 (3)

where wn is the weight estimated for the nth environment
(

wn = 1
σ2

n

)
, with σ2

n being the
site-specific residual variance from a site-specific linear regression model, which only
includes fixed terms. The random terms in u includes the (i) site-specific effects of blocks
within replications b, which follows var(b) ∼ N

(
0, Iσ2

b
)
, where I is the identity matrix

and σ2
b is the site-specific block-within-replication variance; and (ii) additive genetic effects

a, which follows var(a) ∼ N
(
0, Kσ2

a
)
, where K denotes the pedigree-based relationship
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matrix A [49] in pedigree-based analyses (ABLUP) or the “blended” relationship matrix H
combining information from the pedigree and SNP markers in HBPLUP analyses (described
below), and σ2

a is the additive genetic variance.
Marker-based and pedigree-based relationship matrices generally have different scales

because they have different reference (base) populations [50]. This can affect the accuracy
of predicted genomic breeding values [51]. Therefore, adjusting the marker-based rela-
tionship matrix G to the reference population of the pedigree-based relationship matrix
A (i.e., making the two matrices equivalent) is the most crucial step in single-step evalua-
tions. The marker-based relationship matrix G was constructed following the approach
of VanRaden [46]:

G =
ZZ′

2 ∑j pj
(
1− pj

) (4)

where Z = M − P; M is a matrix of marker genotypes coded 0, 1, and 2, corresponding to
the number of non-reference alleles; P is a vector of the expected numbers of non-reference
alleles (i.e., the doubled frequencies of the alternative alleles); and pj is the frequency of the
non-reference allele at the jth locus.

Re-scaling of the marker-based relationship matrix was performed following the
approach of Gao et al. [52]:{

Avg.diag(G)β + α = Avg.diag(A22)
Avg.o f f diag(G)β + α = Avg.o f f diag(A22)

(5)

where A22 is the pedigree-based relationship matrix for genotyped individuals. The G
matrix is usually not positive semi-definite, which is one of the assumptions of mixed linear
models. Therefore, relative weighting (w) of the genomic and pedigree-based relationship
matrices was used to calculate a weighted G matrix (Gw) as follows:

Gw = wA22 + (1− w)G (6)

The blended H matrix, combining SNP and pedigree-based information, was con-
structed as follows:

H =

[
A11 + A12A−1

22 (Gw −A22)A−1
22 A21 A12A−1

22 Gw
GwA−1

22 A21 Gw

]
(7)

where A11 is the relationship matrix for non-genotyped individuals, A12 and A21 are the
relationship matrices between genotyped and non-genotyped individuals, and A22 is as
defined above.

The narrow-sense heritability (h2, Table 2) for each ABLUP and HBLUP scenario was
calculated as:

h2 =
σ2

a
σ2

a + σ2
ew

(8)

Standard errors of variance components and narrow-sense heritability were esti-
mated through the delta method using a first-order Taylor approximation in breedR. Cross-
validations were performed by including all but one trial series in the training set, with the
remaining trial series used as a test set. The performance of ABLUP and HBLUP scenarios
was assessed using predictive ability as described above for GBLUP.
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Table 2. Narrow-sense heritabilities (h2) and their standard errors (in parentheses) for diame-
ter at breast height (DBH) and wood density (WD) from three different pedigree-based models
(ABLUP) and three single-step blended prediction models (HBLUP) using the default weight (0.05)
on pedigree information.

Model Pedigree Unresolved
Parentage DBH WD

ABLUP Originally recorded Originally recorded 0.248 (0.009) 0.409 (0.011)
ABLUP Corrected Originally recorded 0.245 (0.009) 0.488 (0.011)
ABLUP Corrected Unknown 0.234 (0.009) 0.467 (0.011)
HBLUP Originally recorded Originally recorded 0.186 (0.001) 0.436 (0.011)
HBLUP Corrected Originally recorded 0.213 (0.009) 0.435 (0.011)
HBLUP Corrected Unknown 0.212 (0.009) 0.434 (0.011)

3. Results
3.1. Population Structure

Principal component analysis of the SNP data (Figure 2) clearly separated the two
biparental mapping families (“FWK” and “QTL”), but not the four breeding populations,
which are strongly inter-connected. For example, the “397” and “399” populations are
closely related and contain many of the parents of the “313” and “314” populations.

Figure 2. Principal component analysis of population structure for all genotyped radiata pine trees
(Table 1). The percentages of single-nucleotide polymorphism (SNP) variation captured by the first
two principal components (PC1 and PC2) are shown in parentheses.

3.2. Pedigree Reconstruction

Identity-by-state (IBS) analysis of the linkage mapping populations showed a clear
separation of first-degree relatives from unrelated individuals with an empirical threshold
value of 0.85 (Figure 3). This threshold appeared to be consistent across both genotyping
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platforms (Figure S1) and allowed us to identify two types of inconsistencies between
pedigree-based and SNP-based relationships. The first set of discrepancies consisted of
pairs of individuals presumed to be unrelated based on pedigree information but appearing
to be closely related based on SNPs (IBS > 0.85). This set consisted of 14,853 cases, or 0.7% of
the pairs presumed to be unrelated. The second set consisted of first-degree relatives based
on pedigree information (i.e., full-sib or parent–offspring pairs) that appeared unrelated
based on SNPs (IBS < 0.85). This set consisted of 2215 cases, or 10% of the presumed
first-degree relatives.

Figure 3. Distribution of identity-by-state (IBS) similarity coefficients within and across families. IBS
coefficients between parents and their offspring are shown in green (“QTL” family) and red (“FWK”
family). IBS coefficients for unrelated trees in the “QTL” versus “FWK” families are shown in blue.
An empirical threshold between unrelated and related trees was set at IBS = 0.85 (red line).

For all simulated scenarios, analyses using apparent resulted in assigning the true par-
ents for all, or nearly all (≥98%), offspring (Table S2). For scenarios comparing genotyping
platforms (Scenarios 1–3), at least 99% of the assignments were statistically significant. In
the fourth scenario, which tested the effect of relatedness among candidate parents, the
proportion of statistically significant assignments was much lower (51%).

Across the four genotyped breeding populations, 506 individuals had inconsistent
parentage based on the recorded pedigree versus SNP data. Of these, 37 had inconsistent
maternal information, 404 had inconsistent paternal information, and 65 had inconsistent
information for both parents. A combined parentage analysis, which was performed using
the apparent R package and IBS matching (i.e., IBS > 0.85), identified putative parents for
241 individuals (48%). However, only 51 (21%) of these assignments were statistically
significant based on the apparent analysis.

3.3. Genomic Prediction (GBLUP)

To set a baseline of genomic predictive ability, we first performed random cross-
validations in which genotyped individuals (Table 1) were randomly assigned to training
and test populations, and then subsets of markers were sampled at random (Figure 4).
Predictive abilities were moderate for both DBH and WD but substantially higher for WD.
This was expected because of the higher narrow-sense heritabilities for WD (0.41–0.49)
than for DBH (0.19–0.25) (Table 2). Furthermore, training set sizes of 800–1200 and as few
as 2000 markers appeared to capture most of the predictive ability achievable with this
data set.
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Figure 4. Genomic predictive abilities for diameter at breast height (DBH) and wood density (WD)
as a function of training set size (A) and number of markers (B) used in random cross-validations
of 1761 radiata pine genotypes from five populations (Table 1). Error bars correspond to standard
deviations across 100 random cross-validations for each set of parameters. Analyses in (A) were
based on all 9353 markers. The training set size in (B) was N = 1200 and subsets of markers were
selected at random. Predictive abilities were calculated based on the predicted and observed values
of all 1761 genotypes, after data had been split randomly into k folds until a predicted value was
available for each genotype (see Materials and Methods and Table 1). The dashed line in (B) indicates
the plateau in predictive ability.

Next, we explored scenarios in which the phenotypes of specific populations were
predicted from training sets that included a small subset of individuals from the same
population. These scenarios were used to simulate reduced field testing. More specifically,
we tested whether we could predict the phenotypes of the more advanced “313” population
by training a model on the other populations and families included in GBLUP analyses.
The average predictive abilities for DBH and WD were 0.17 and 0.41, respectively, when no
“313” genotypes were included in the training set (Figure 5A). However, including even as
few as 100 (15%) of the “313” genotypes in the training set resulted in roughly 50% higher
predictive abilities, with no further improvements when 200 or 300 “313” genotypes were
included in the training set. Finally, GBLUP predictions based on as few as 2000 randomly
selected markers were nearly as good as those based on the whole set of 9353 markers
(Figure 5B).

The relative importance of within-family selection is likely to increase as genomic se-
lection is implemented operationally. Therefore, we tested whether within-family genomic
prediction can be effective by applying the across-population cross-validation procedure
used for the “313” population (see above) for the “QTL” and “FWK” biparental mapping
families (Figure 6). As expected from previous studies, prediction of DBH was poor (predic-
tive abilities≤ 0.1). The predictive ability for WD was moderate in both families (0.34–0.52),
though including subsets of “QTL” or “FWK” genotypes in the training population did
not substantially improve predictive ability (Figure 6A,C). Compared to other scenarios,
predictive abilities increased more slowly with the number of markers used: a plateau was
reached at M = 3000–5000 SNPs (Figure 6B,D).



Forests 2022, 13, 282 10 of 19

Figure 5. Genomic predictive abilities across populations for diameter at breast height (DBH) and
wood density (WD) as a function of the number of “313” genotypes included in the training set (A) and
the number of markers (B) used in cross-validations across populations. Error bars correspond to
standard deviations across 100 iterations for each set of parameters. For analyses in (A), a training
set of 800 genotypes (including the desired number of “313” genotypes) was randomly sampled
from the total number of 1761 genotypes (Table 1) and all 9353 SNPs were used. The training set in
(B) was selected at random (N = 800), with no “313” genotypes included, and subsets of markers were
selected at random. All predictive abilities were only for “313” genotypes that were not included
in the training set (N = 381–681, see Materials and Methods and Table 1). The dashed line in (B)
indicates the plateau in predictive ability.

Figure 6. Cont.
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Figure 6. Genomic predictive ability within families. GBLUP predictive ability for diameter at breast
height (DBH) and wood density (WD) as a function of the number of “QTL” or “FWK” genotypes
included in the training set (A,C) and the number of markers (B,D) used in cross-validations. Error
bars correspond to standard deviations across 100 iterations for each set of parameters. For analyses in
(A,C), a training set of 1600 genotypes (including the desired number of “QTL” or “FWK” genotypes)
was randomly sampled, and all 9353 markers were used. The training set in (B,D) was selected at
random (N = 1600), with no “QTL” or “FWK” genotypes included, and subsets of markers were
selected at random. All predictive abilities were only for “QTL” or “FWK” genotypes that were not
included in the training set (N = 41–86, see Materials and Methods and Table 1). The dashed lines in
(B,D) indicate the plateaus in predictive ability.

3.4. Pedigree-Based and Single-Step Blended Prediction (ABLUP and HBLUP)

The main objective of these analyses was to assess the potential of performing pre-
dictions across series of trials, only some of which are genotyped (Table 1). The results
obtained from single-step blended prediction (HBLUP) were generally consistent with
those from genomic prediction (GBLUP, Figures 4–6) for both phenotypic traits, but the
differences in predictive ability between models and populations were more pronounced
for DBH (Tables 3 and 4). The predictive ability for DBH in the “Cloned Elites” series was
nearly doubled (87% increase) using the best HBLUP model (r = 0.227) compared to the
traditional ABLUP analysis with the originally recorded pedigree (r = 0.121). This clearly
reflects the impact of genomic data in both improving the accuracy of pedigree information
and capturing “hidden” relationships not reflected in pedigree records. While this pattern
was generally consistent across trial series, several factors affected the performance of
ABLUP and HBLUP, particularly for DBH (Tables 3 and 4).
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Table 3. Predictive abilities for pedigree-based (ABLUP) versus single-step blended (HBLUP) predic-
tion analyses for diameter at breast height (DBH). Results from the best HBLUP model are shown in
bold. Cross-validations were performed by including all but one trial series in the training set, with
the remaining trial series used as a test set (see Materials and Methods).

Pedigree Option Trial Series ABLUP
HBLUP—Weight on Pedigree Information

0.05 0.1 0.2 0.3 0.4 0.5

Originally recorded

FR260 0.227 0.221 0.221 0.221 0.223 0.224 0.224
FR305GF 0.441 0.382 0.391 0.404 0.414 0.421 0.428
FR305HD 0.459 0.497 0.498 0.499 0.499 0.498 0.497

FR353 0.241 0.334 0.329 0.320 0.312 0.304 0.297
Cloned Elites 0.121 0.200 0.199 0.199 0.198 0.196 0.193

Corrected, unresolved
relationships as

originally recorded

FR260 0.221 0.215 0.216 0.217 0.218 0.218 0.219
FR305GF 0.402 0.373 0.381 0.391 0.399 0.404 0.409
FR305HD 0.460 0.497 0.497 0.498 0.498 0.497 0.496

FR353 0.241 0.333 0.330 0.324 0.319 0.313 0.306
Cloned Elites 0.151 0.208 0.210 0.212 0.213 0.212 0.210

Corrected, unresolved
relationships set as “unknown”

FR260 0.227 0.214 0.216 0.217 0.218 0.220 0.221
FR305GF 0.382 0.367 0.372 0.379 0.384 0.389 0.393
FR305HD 0.462 0.496 0.498 0.499 0.500 0.500 0.498

FR353 0.274 0.332 0.331 0.328 0.326 0.323 0.320
Cloned Elites 0.195 0.209 0.213 0.219 0.223 0.226 0.227

Table 4. Predictive abilities for pedigree-based (ABLUP) versus single-step blended (HBLUP) pre-
diction analyses for wood density (WD). Results from the best HBLUP model are shown in bold.
Cross-validations were performed by including all but one trial series in the training set, with the
remaining trial series used as a test set (see Materials and Methods).

Pedigree Option Trial Series ABLUP
HBLUP—Weight on Pedigree Information

0.05 0.1 0.2 0.3 0.4 0.5

Originally recorded

FR260 0.232 0.294 0.291 0.287 0.283 0.280 0.276
FR305GF 0.413 0.390 0.400 0.412 0.419 0.426 0.431
FR305HD 0.396 0.411 0.415 0.419 0.421 0.421 0.421

FR353 0.318 0.431 0.435 0.438 0.437 0.435 0.430
Cloned Elites 0.371 0.402 0.409 0.420 0.430 0.438 0.444

Corrected, unresolved
relationships as

originally recorded

FR260 0.316 0.304 0.305 0.306 0.306 0.306 0.307
FR305GF 0.412 0.389 0.400 0.413 0.420 0.425 0.428
FR305HD 0.365 0.413 0.414 0.413 0.412 0.409 0.406

FR353 0.331 0.441 0.445 0.449 0.449 0.447 0.442
Cloned Elites 0.392 0.403 0.409 0.418 0.426 0.432 0.438

Corrected, unresolved
relationships set as “unknown”

FR260 0.334 0.327 0.328 0.329 0.329 0.330 0.330
FR305GF 0.415 0.369 0.380 0.393 0.402 0.408 0.412
FR305HD 0.367 0.411 0.411 0.410 0.409 0.407 0.405

FR353 0.362 0.438 0.442 0.446 0.447 0.445 0.442
Cloned Elites 0.427 0.400 0.406 0.416 0.425 0.433 0.440

First, pedigree accuracy was critical. Using corrected pedigree information tended
to result in higher ABLUP predictive ability for genotyped trial series, and particularly
for the “Cloned Elites” series, where a large number of pedigree inconsistencies were
detected. Setting unresolved relationships as “unknown” tended to be the best approach
(ABLUP columns in Tables 3 and 4), although this was not always true. Second, SNP
data tended to increase predictive abilities beyond the effect of using corrected pedigree
information (i.e., ABLUP versus HBLUP columns in Tables 3 and 4). Third, the degree
of relatedness between the training and test populations largely determined predictive
ability. For example, the lowest predictive ability was for the “Cloned Elites” because they
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have relatively weak relatedness to the populations in the “FR353” and “FR305” series. In
contrast, predictive ability was much higher for the “FR305” series, presumably because of
its higher relatedness to populations in the “FR260” and “FR353” series. Fourth, the quality
of phenotypic data might have played a role. For example, the predictive ability for the
“FR260” series was relatively low, possibly because phenotypes from that series were based
on a single observation (i.e., no clonal replication). This effect, however, may be confounded
with the lack of genotypic data for the “FR260” series. Finally, the optimal weighting of
pedigree versus SNP information differed considerably among trial series and HBLUP
scenarios. As expected, where (i) genotyping data were absent, (ii) there were suspected
mismatches between phenotypic and SNP records, or (iii) high rates of pedigree errors had
been resolved (i.e., in the “FR260”, “FR305”, and “Cloned Elites” series, respectively), the
optimal weighting of pedigree data was high (0.5). In contrast, the optimal weighting for
the “Cloned Elites” was very low (0.05) prior to resolving pedigree errors (Tables 3 and 4).

4. Discussion

Recent advances with DNA sequencing and genotyping technology [53] have enabled
studies of both long-term evolutionary history [54,55] and recent demographic events [56],
as well as the recovery of missing genealogy in pedigreed populations and the prediction
of unmeasured phenotypes [57,58]. Furthermore, while results from early genome-wide
association studies were likely limited by low statistical power and confounding caused
by population structure [23,59–61], this field is gathering momentum as data sets are
becoming larger [16–19]. Although the dissection of complex trait genetic architecture
remains an aspirational goal for the medium to long term, our results clearly show that
genomic data can be practically useful in tree improvement in the short term by enabling the
(1) improvement of pedigree records and control of inbreeding; (2) prediction of phenotypes
from genomic data (GBLUP); and (3) integration of historical and contemporary phenotypic
and genomic data sets through single-step blended prediction (HBLUP). In the following
sections, we discuss our results in the context of each of these potential applications,
highlighting outstanding issues and caveats.

4.1. Population Structure, Pedigree Reconstruction, and Control of Inbreeding

Tree improvement programmes globally are not very advanced because of the long
generation cycles of even the fastest-growing species [62,63]. However, management of
inbreeding may be necessary even after only three breeding cycles [64] and will inevitably
become important in the future. Genomic information provides a wide range of options
for maintaining diversity and avoiding inbreeding depression [14,65]. Correct pedigree
information is critical for the accurate estimation of breeding values, other genetic pa-
rameters [66,67], and genetic gain [68]. Pedigree reconstruction is a powerful tool for
correcting pedigree record errors [64,69]. Unsampled parental candidates can make pedi-
gree reconstruction difficult, but sib-ship reconstruction can also be used [70]. Furthermore,
relatedness among candidate parents introduces additional challenges for reconstructing
pedigrees, even when thousands of genetic markers are used. Our results confirmed these
challenges. Statistically significant parentage could not be assigned for most offspring
for which pedigree inconsistencies were uncovered, presumably because the true parents
had not been genotyped. We compared two approaches to dealing with such cases: either
keeping the originally recorded parent or setting pedigree records to “parent unknown”.
Our ABLUP and HBLUP results (Tables 3 and 4) supported the intuitive expectation that
allowing missing data is better than using incorrect data. Finally, while ABLUP and HBLUP
predictive abilities were generally improved by using corrected pedigrees (Tables 3 and 4),
changes in heritability were more variable (Table 2). Thus, the presumed increase in ge-
netic gain as a result of using more accurate pedigree records is yet to be demonstrated in
radiata pine.
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4.2. Genomic Prediction (GBLUP)

An important measure of the success of breeding programmes is the genetic gain
achieved per unit of time. Thus, opportunities for shortening breeding cycles are ap-
pealing [8]. However, this can be particularly challenging in forest species where many
economically important traits are expressed at a later age, preventing early selection. The
ability to predict unobserved phenotypes through a genome-wide set of molecular markers
(i.e., genomic selection) is a promising strategy for overcoming this challenge [23,41].

Through various re-sequencing and array-based approaches, medium- to high-density
SNP genotyping platforms have recently become available for several forest tree
species [16,31,71–73]. Theoretically, this allows capturing genetic relatedness, Mendelian
segregation [74], and, possibly, linkage disequilibrium between markers and causative loci
in genomic prediction [75], compared to only expected levels of relatedness in pedigree-
based analyses. A seminal simulation study by Grattapaglia and Resende [76] highlighted
the potential of genomic selection in forest tree species. Empirical studies quickly en-
sued, using both open-pollinated [20,21] and control-pollinated families [71], as well as
genotyping platforms ranging from genome-wide GBS [20,21] to exome capture [22] and
custom SNP arrays [77,78]. As predicted by theoretical considerations, simulations, and
well-characterised case studies [79], the first generation of empirical studies in forest trees
showed that the level of relatedness between the training and test populations is by far
the most important determinant of predictive ability. Our results were consistent with this
trend. Random cross-validations (Figure 4), predictions across populations separated by
one generation (Figure 5), and predictions within untested families (Figure 6) consistently
showed that genomic prediction should be achievable for moderately heritable traits such
as WD. Furthermore, genomic prediction may also work for more challenging traits such as
DBH, provided that the training population is large enough (ideally ≥1000) and contains
many close relatives (e.g., the parents) of the individuals in the prediction population.

It is not clear whether the predictive abilities we observed would persist across multi-
ple generations. Linkage disequilibrium between markers and causative loci is believed
to be the only persistent component of genomic prediction across generations [80]. Cap-
turing this linkage disequilibrium at the population level will be particularly challenging
in organisms with complex genomes, containing a large proportion of repetitive elements
(such as radiata pine and most other commercially important conifers) or higher levels of
ploidy [81]. The implementation of multi-generation prediction models might help with
mitigating this issue [82], but the marker density (and associated cost) required to assure
robust genomic prediction across generations is currently unknown. In our analyses, as
few as 2000–5000 markers were sufficient to reach a plateau in predictive ability, which
is not surprising given the high level of relatedness within and across the populations
we used and is consistent with both theoretical [75] and empirical results [71]. It is also
possible that linkage disequilibrium caused by the recent admixture of breeding popu-
lations developed in New Zealand, including the surprisingly high proportion of trees
with island ancestry [32], made it possible to achieve moderate GBLP predictive abilities
with a relatively small number of markers. Genomic prediction in more homogeneous
populations of distantly related individuals indicate that the number of markers needed to
saturate predictive ability is both trait- and population-specific [47,83,84].

Finally, within-family prediction is likely to be the crux of the operational implemen-
tation of genomic selection. Based on our results, within-family predictive abilities were
moderate for WD but probably too low to be considered operationally viable for DBH.
Additional empirical experiments, with larger numbers of inter-connected families, are
currently in progress. The results from these experiments, as well as the cost of DNA
extraction and genotyping, will likely drive the rate of operational implementation of
genomic selection in the short to medium term (i.e., 2–5 years).
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4.3. Single-Step Blended Prediction (HBLUP)

We demonstrated the potential impact of genomic data in two ways. First, both
traditional ABLUP and blended HBLUP predictive abilities tended to improve when a
genomics-corrected pedigree was used and unresolved relationships were set as “un-
known”. This is probably because we used an advanced generation breeding population
with a complex pedigree, and any incorrect parentage assignments would have had cascad-
ing effects of incorrect genetic relationships and potentially affected the matrix rescaling
step in HBLUP [85]. Second, in addition to the effect of using corrected pedigree informa-
tion, SNP data tended to further improve predictive abilities in HBLUP analyses, compared
to traditional ABLUP analyses (Tables 3 and 4). This was presumably because genomic
data improved the estimation of the true relationships among trees and uncovered relation-
ships that were not reflected in the pedigree records. Furthermore, differential weighting
of pedigree versus genomic information in HBLUP analyses provided further insights
about (1) the importance of the relationship between the training and test populations;
(2) potential labelling issues leading to mismatches between phenotypic and SNP records;
and (3) the relative frequency of resolved pedigree errors in different populations. There-
fore, careful consideration should be given to the composition of the training population
and trait heritability [86], so that the optimal weighting of pedigree information remains
consistent and robust [87,88].

5. Conclusions

Our study clearly illustrates the potential benefits of using genome-wide molecular
marker information in tree improvement. First, using SNP markers, we substantially
improved the accuracy of pedigree information, leading to increased predictive abilities.
Second, genomic prediction was possible across populations for both phenotypic traits
included in this study (DBH and WD). Third, within-family genomic prediction was
possible for the more highly heritable WD trait using moderately large training populations
(N = 800–1200) and as few as 2000–5000 SNP markers. Finally, we demonstrated that
single-step blended prediction combining historical and contemporary data sets can be
effective. However, the practical significance of our results still needs to be quantified
in empirical case studies as it is not yet clear how the promising predictive abilities we
observed will translate into genetic gain per unit of time and whether genotyping costs
are justified. Therefore, the rate of operational implementation of genomic or single-step
blended prediction over the next few years will be driven by direct empirical evidence of
economic feasibility.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f13020282/s1, Figure S1: Distribution of identity-by-state (IBS)
coefficients using different genotyping platforms. Table S1: Description of field experiments used
in single-step genomic evaluation. Table S2: Simulation-based evaluation of parentage assignment
using the apparent R package.
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