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Abstract: In the context of rapid urbanization, urban foresters are actively seeking management mon-
itoring programs that address the challenges of urban biodiversity loss. Passive acoustic monitoring
(PAM) has attracted attention because it allows for the collection of data passively, objectively, and
continuously across large areas and for extended periods. However, it continues to be a difficult
subject due to the massive amount of information that audio recordings contain. Most existing
automated analysis methods have limitations in their application in urban areas, with unclear eco-
logical relevance and efficacy. To better support urban forest biodiversity monitoring, we present a
novel methodology for automatically extracting bird vocalizations from spectrograms of field audio
recordings, integrating object-based classification. We applied this approach to acoustic data from
an urban forest in Beijing and achieved an accuracy of 93.55% (±4.78%) in vocalization recognition
while requiring less than 1/8 of the time needed for traditional inspection. The difference in efficiency
would become more significant as the data size increases because object-based classification allows
for batch processing of spectrograms. Using the extracted vocalizations, a series of acoustic and mor-
phological features of bird-vocalization syllables (syllable feature metrics, SFMs) could be calculated
to better quantify acoustic events and describe the soundscape. A significant correlation between
the SFMs and biodiversity indices was found, with 57% of the variance in species richness, 41% in
Shannon’s diversity index and 38% in Simpson’s diversity index being explained by SFMs. Therefore,
our proposed method provides an effective complementary tool to existing automated methods for
long-term urban forest biodiversity monitoring and conservation.

Keywords: biodiversity monitoring; soundscape ecology; spectrograms; acoustic indices; birds;
urban forests; object-based image analysis; novel approach

1. Introduction

Biodiversity loss has been a major and challenging problem globally, and is a potential
risk factor for pandemics [1]. The ongoing global COVID-19 pandemic has confirmed
this concern. The loss of biodiversity has generated conditions that not only favored
the appearance of the virus but also enabled the COVID-19 pandemic to surface [2,3].
Biodiversity conservation is, therefore, an urgent global task.
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Aiming to produce high-quality habitats and improve regional biodiversity [4], in 2012,
Beijing launched its largest decade-long afforestation campaign, the Plain Afforestation
Project (PAP), which required building hundreds of gardens and parks in urban areas.
To assess the success of PAP, the rapid and effective monitoring of urban biodiversity is
key [5], which has led to a need for innovative investigation approaches. However, the
need for expert knowledge and the substantial costs in terms of both money and time are
major obstacles for any multi-taxa approach based on large-scale fieldwork [6]. Thus, the
development of cost-effective and robust tools for monitoring urban forest biodiversity is a
pressing need [1].

Operating within the conceptual and methodological framework of ecoacoustics [7],
passive acoustic monitoring (PAM) is a promising approach with many advantages, includ-
ing its availability in remote and difficult-to-reach locations, noninvasiveness, non-observer
bias, permanent record of surveys, and low cost [8–11]. In addition, PAM allows for stan-
dardized surveys that can provide new insights into sound-producing organisms over
enhanced spatiotemporal scales [12]. For example, the global acoustic database Ocean
Biodiversity Information System–Spatial Ecological Analysis of Megavertebrate Population
(OBIS-SEAMAP) was developed to enable research data commons, and contains more than
one million observation recordings from 163 datasets spanning 71 years (1935 to 2005),
provided by a growing international network of data users [13].

In terrestrial soundscapes, bird vocalizations are one of the most prominent ele-
ments [14] and have been widely used to detect species and monitor and quantify ecosys-
tems [15]. More specifically, acoustic traits have been proved to respond to environmental
changes, such as climate change [16], habitat fragmentation [17], vegetation structure,
and microclimate [18]. With the emergence of PAM, massive acoustic data have accumu-
lated globally, offering unprecedented opportunities, as well as challenges, for innovative
biodiversity monitoring.

A critical challenge in PAM studies is the analysis and handling of very large amounts
of acoustic data, especially for programs spanning wide temporal or spatial extents [19].
However, manual analysis is still the primary method for extracting biological information
from PAM recordings [20], which typically combines aural and visual inspection of spectro-
grams [21,22] to achieve graphical representations of acoustic events connected to biophony,
geophony, and anthrophony, as well as a general overview of the daily acoustic pattern [21].
When experienced observers are involved, manual analysis is always considered to be the
most accurate, but it is time-consuming, costly, frequently subjective, and ultimately fails
to be applied across broad spatiotemporal scales [22].

To address the challenges posed by massive data and manual analysis, increasing
numbers of studies have been conducted on individual species, and there seems to be a
rising interest in the ecological processes of biomes [23,24]. It has been well established
that monitoring community acoustic dynamics is key to understanding the changes and
drivers of ecosystem biodiversity within the framework of soundscape ecology [25–28]. The
burgeoning development of this framework has stimulated research interest in ecological
applications of acoustic indices, which have been intensively proposed and tested [29–34].

Unfortunately, automated acoustic analysis remains a difficult subject to study because
of the wide variety of information available in each acoustic environment, making it
difficult to quickly identify and extract critical ecological information for interpreting
recordings [29]. Most existing acoustic indices use simple algorithms to collapse the signal
into one domain and quantify the soundscape by summing or contrasting acoustic energy
variations [12,24,34], which are intrinsically an extension of the traditional sound pressure
and spectral density indices [29,35–38]. Although cheap and fast, this type of analysis leads
to massive loss of information, so its eco-efficiency remains controversial. In addition, the
difficulty in excluding the interference of noise in order to quantify biophony alone remains
a major limitation of the existing indices, which leads to huge bias in the application of
these indices in urban areas [33], raising concerns over their applicability [34,37].
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Although automated analysis techniques are rapidly improving, software tools still
lag far behind actual applications [22,39–42]. We therefore suggest that advancing the
theory and practice of soundscape ecology research requires going beyond the limits of
the temporal/frequency structure of sound and developing more tools to retain as much
ecologically relevant information as possible from recordings, testing our methods in
complex urban environments to clarify their robustness.

Remote sensing technology has been broadly used in many applications, such as
extracting land cover/usage information. Object-based image analysis (OBIA) has emerged
as an effective tool to overcome the problems of traditional pixel-based techniques of image
data [43,44]. It defines segments rather than pixels to classify areas, and it incorporates
meaningful spectral and non-spectral features for class separation, thereby providing a
clear illustration of landscape patterns [43–46]. Owing to its superiority and efficiency [47],
OBIA has been utilized in many different areas, such as computer vision [48,49], biomedical
imaging [50,51], and environmental scanning electron microscopy (SEM) analysis [52–54].
Just as remote sensing images are numeric representations of the earth surface landscape
consisting of water area, forest land, wetlands, etc. [55], spectrograms are visual expressions
of collections of various sound components (biophony, geophony and anthrophony). As
such, could OBIA provide a novel perspective for extracting bird vocalizations when
introducing advanced remote sensing tools in the soundscape field? Could we further
digitally summarize vocalization patches and use them as ecologically relevant indicators
of acoustic community patterns?

Based on the above hypotheses, an automated bird vocalization extraction method
based on OBIA is presented here. We hypothesize that OBIA may allow for the extracting
of bird vocalizations from recordings with complex background noise and the represen-
tation of long-term acoustic data as numbers describing biophony. From the perspective
of community-level soundscape ecology, we are not necessarily concerned with species
identification, but with achieving a numerical description of the qualitative patterns of
species vocalizations [24]. OBIA enables rapid identification of the number of bird vocaliza-
tions while providing multidimensional spectral, morphological, and acoustic traits, unlike
other existing methods (whether manual or automatic). Examples of spectral variables
include the mean value and standard deviation of a specific spectral band; morphological
traits include size, perimeter, and compactness; acoustic traits include song length and
frequency information.

In the present paper, we take a first look at how OBIA might provide a new perspective
on the current automated acoustic analysis methods and provide a complement to existing
acoustic indices that can be used for urban forest biodiversity assessments.

2. Materials and Methods
2.1. Study Area and Data Sets

For the present study, we selected an old urban forest in Zhongshan Park, Beijing
(115◦24′—117◦30′ E, 39◦38′—41◦05′ N) as our case study area (Figure 1A). As the capital
of China and the second-largest city in the world, Beijing is also a major node in the East
Asian–Australasian bird flyway [56]. Beijing is a key corridor for birds’ spring and autumn
migrations, as it is in the ecosystem transition zone from Northeast China to North China.
Urban forests in Beijing play an important role in supporting roosting, breeding and other
activities of birds, and as a result, they are rich in soundscapes.

Our data were derived from audio recordings continuously obtained during four
consecutive sunny, windless days, from 18 to 21 May 2019, provided by three recorders
positioned in Zhongshan Park (Figure 1B). Recorders were placed and fixed horizontally
at a height of 2 m on healthy growing trees (Figure 1C,D). Auto-recording led to a total of
17,280 min of raw recordings, which were subsequently processed using the AudioSegment
function in PYTHON v.3.7.2 and sampled into 15-s clips every 15 min, resulting in a
sub-dataset of 1152 15-s clips. A sampling protocol of 15 s was used as it provided a
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tradeoff between ensuring an effective acoustic survey and a manageable amount of data
for processing when there is no standardized protocol [57].
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Figure 1. Location of the urban forest (A); location of sites used for acoustic recording (B); an acoustic
recorder (C) and its positioning in the urban forest (D) are also presented.

Recordings were obtained using Zoom H5 acoustic sensors (Zoom Inc., Tokyo, Japan,
System 2.40) with XYH-5 X/Y microphones. Zoom H5 is a commercial digital recording
device that has good sound reliability and has been successfully used in other soundscape
ecology research [27,58]. Parameters of sensors were set as follows: the sampling rate
was 44,100 Hz, bit depth 16 bits, and recording channels two (stereo). Files were saved as
non-compressed WAVE files.

Two trained technicians (Yu and Hanchen Huang) manually identified the acoustic
events (AEs) in all audio clips for further use in evaluating the reliability and sensitivity of
our approach. Over 95% of biological acoustic events (BEs) were from birds; thus, only bird
sounds were identified to the species level (List of Bird Species see Table A1), while BEs
that were not bird sounds were identified to the family level. For example, cricket sounds
were labelled Gryllidae. Because we were unable to distinguish individual animals based
on their sounds, technicians identified and counted the total number of BEs for a given
species (or family) in each clip. Anthropogenic and geophysical sounds were also counted
and classified into AEs. The results of this process were finally confirmed by Hanchen
Huang. Richness (S), Shannon’s diversity (H’) and Simpson’s diversity (λ) indices were
calculated for each spectrogram (i.e., per 15 s clip) to reflect the diversity of bird species as
well as AE and BE types [12].

2.2. Methods

We developed an automated bird vocalization extraction approach based on OBIA,
which followed a typical analysis workflow of bird vocalizations with three main steps [59]:
preprocessing, automated extraction, and feature calculation. In line with this workflow, the
processing details of each step of our approach are described in the following subsections.
An overview of the approach is depicted in Figure 2.
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2.2.1. Pre-Processing

1. Audio recordings denoising

The step prior to spectrogram analysis was denoising, and it was carried out to obtain
clear vocalization patterns to improve extraction accuracy and minimize false positives [60].
We selected only noise reduction techniques that could perform batch and fast processing,
to allow the proposed approach to be more generalizable and to reduce the effects of
human operations.

Audio signals are characterized by the presence of higher energy in the low-frequency
regions dominated by environmental noise. Therefore, we applied a high-pass filter with
a cut-off frequency setting (800 Hz) below the lowest frequency at which bird songs are
expected, with a 12 dB roll-off per octave [61–64]. This allowed for the elimination of current
and environmental noise, mostly created by mechanical devices such as engines [65,66].
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Since medium and high frequencies are the useful part for discriminating between
different acoustic events [67], we applied a widely used signal enhancement method to our
recordings, the Wiener filter [68–70] and postfilter, to minimize baseline and white noise and
improve the quality of bird sound recordings. In field recordings, bird songs are transient
but a considerable amount of background noise is nearly stationary. The Wiener filter elimi-
nates this quasi-stationary noise, provided that it approximates a Gaussian distribution [22].

To verify the denoising effect, we randomly chose 80 clips from all datasets (including
anthropogenic AEs) that were listened to before and after the denoising process to assess
denoising efficacy.

2. Short-time Fourier transformation (STFT)-Spectrogram

Bird vocalizations of songs or calls are complex, non-stationary signals with a great
degree of variation in intensity, pitch, and syllable patterns [71]. One of the proven methods
for joint time-frequency domain analysis of non-stationary sound signals is STFT [59]. The
STFT spectrogram is a two-dimensional convolution of the signal and window function [72]:
the X-axis represents time, the Y-axis represents frequency, and the amplitude of a particular
frequency at a particular time is represented by its color in the image [73].

Our STFT spectrogram was calculated with a Hamming window of 1024 samples,
no zero paddings, and a 75% overlap between successive windows. A peak amplitude of
−25 dB was set to standardize the spectrograms [42].

2.2.2. Bird Vocalization Extraction

Generally, bird vocalizations are classified into songs (longer-term) and calls (shorter-
term). In the present study, the separation between songs and calls was not considered
because both types use syllables as fundamental units [74]. All vocalizations were seg-
mented and classified at the syllable level. To facilitate understanding, a BE refers to either
a song (call) in recordings or a syllable in spectrograms [10].

Bird syllable extraction is the key part of the proposed OBIA. All processing steps
were conducted in one framework. Firstly, we adopted a multi-resolution segmentation
algorithm to segment spectrograms into image objects. Then, we manually selected samples
representing a pure spectrum of bird syllables to generate potential extraction features
using a Classification and Regression Tree (CART). Finally, to extract bird syllables from
background noise, we applied the rulesets established from identified potential features to
all spectrograms.

1. Segmentation

Segmentation creates new meaningful image objects according to their spectral prop-
erties (Figure 3), including subdividing and merging operations [75]. We applied the MRS
algorithm embedded in eCognition Developer™ to generate image objects. This algorithm
consecutively merges pixels or existing image objects into larger objects based on relative
homogeneity within the merged object [53,54,76]. The process uses three key parameters in
the process: scale, shape and compactness [77]. A coarse scale value allows for the forming
of larger objects and more heterogeneity, involving more spectral values. Shape defines
the influence of color (spectral value) and shapes on the formation of the segments, while
compactness defines whether the boundary of the segments should be smoother or more
compact [78]. In our segmentation, we employed the “trial and error” method of visual
inspection to determine the optimal segmentation parameters [53], as bird syllables and
their shapes on spectrograms are easily recognized by human eyes. After several attempts,
we finally selected a scale of 40, 0.2 of shape, and 0.5 of compactness to produce segmented
image objects.
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2. Classification

Techniques from machine learning and computational intelligence have been used in
bird vocalization analysis [79,80]. In the present study, CART [81] was applied to construct
accurate and reliable predictive models for syllable extraction. CART does not require any
special data preparation, only a good representation of the problem. Creating a CART
model involves selecting input variables and split points on those variables until a suitable
tree is trained. To operate CART, we randomly selected 288 syllable samples, one for each
of the 288 audio clips, and divided them into training samples (70%, n = 202) and testing
samples (30%, n = 86). Meanwhile, the ten most explanatory object features, including spec-
tral, shape and textural characteristics (Table 1), were identified by calculating the feature
variations in syllable samples and other objects, and were imported into CART as input
variables. The representation of the CART model is a binary tree derived from recursive
binary splitting (or greedy splitting). The binary tree allows for relatively straightforward
obtainment of clear classification rules from the model diagram.

Table 1. The summary of the 10 most explanatory object features used in CART.

Feature Name Description Rel. Imp

Brightness Mean value of all image bands 81.24
Shape index The smoothness of the boundary of an image object 10.85
Area The area of objects in number of pixels 18.01
Length/width The ratio of length to width 7.58
Elliptic fit How well an image object fits into an ellipse 1.36
Hue Mean of hue, one of three color components 4.97
Saturation Mean of saturation, one of three color components 23.12
Intensity Mean of intensity, one of three color components 54.33
GLCM-M Mean value of GLCM (Gray-level Co-occurrence Matrix) 19.54
GLCM-H Homogeneity of GLCM (Gray-level Co-occurrence Matrix) 60.49

Rel. imp stands for relative importance; GLCM (Gray-level Co-occurrence Matrix) is a tabulation of how often
different combinations of pixel gray levels occur in a scene.

The complexity of a decision tree is defined by the number of splits in each tree.
Simpler trees are preferred, as they are easier to understand and less likely to overfit
the data. Trees can be pruned to further improve performance. The fastest and simplest
pruning method is to work through each leaf node in the tree and evaluate the effect of
removing it using a hold-out test set. Leaf nodes are removed only if this results in a
decrease in the overall cost function for the entire test set. Node removal is stopped when
no further improvements can be made.

We introduced two indicators, relative cost (RC) and rate of change (ROC), to evaluate
the performance of the CART model. The value of RC ranges from 0 to 1, with 0 indicating
a perfect model with no error and 1 indicating random guessing. Similarly, the value of
ROC ranges from 0 to 1, with higher values suggesting better performance. The resulting
optimal decision tree consisted of three features: brightness, intensity, and grey level co-
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occurrence matrix (GLCM) homogeneity (Figure 4). It had an RC of 0.124 and a ROC of
0.979, indicating the reliability of the prediction model. The final step was to apply the
ruleset generated from CART to classify all image objects.
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2.2.3. Feature Representation of Extracted Syllables

The time-frequency pattern of syllables displayed via spectrograms is a useful represen-
tation of species information, which can also characterize bird vocalization patterns [82,83].
Based on the remote sensing framework, where syllables on spectrograms are comparable to
landscape patches on maps, our approach could easily calculate and analyze morphological
descriptors. Each extracted syllable was characterized by a sequence of feature vectors.

Considering their good performance with respect to feature analysis of syllables in
previous studies, instantaneous frequency (IF) [59], and amplitude [84] were adopted in this
work. Each parameter was further statistically analyzed to obtain more detailed descriptive
values such as maximum (IF_MAX), minimum (IF_MI), mean, and central frequency. The
mean instantaneous frequency (IF_MN) is the first moment of the spectrogram relative to
the frequency, and it can be calculated using Equation (1):

fi(t) =

∫ ∞
−∞ f · S(t, f )d f∫ ∞
−∞ S(t, f )d f

(1)

where fi(t) is the mean instantaneous frequency at time t, and S (t, f ) is the spectrogram at
frequency f and time t.

In addition to the time-frequency characteristics, we also summarized the landscape
metrics that were of practical meaning for syllable patches. Datasets were rasterized in R
(https://www.r-project.org (accessed on 28 May 2021)) and imported into FRAGSTATS [85].
For each extracted syllable (patch level), we calculated area, shape index, border index,
length, width (duration), etc., to obtain the fundamental spatial character and morphologi-
cal understanding of each patch. Landscape-level metrics were also further summarized
and nondimensionalized in each spectrogram, reflecting time-frequency patterns of acous-
tic activities, including: (1) NP, the number of syllable patches; (2) CA, the sum of the areas
of all patches; (3) SHAPE_MN, mean value of the shape index of each patch; (4) TL, total
bandwidth occupancy of all patches, calculated from a transformation of patch length; and
(5) TW, total duration of all patches, calculated from a transformation of patch width. To
facilitate reading, we abbreviated all these syllable feature metrics as SFMs (Table 2).

https://www.r-project.org


Forests 2022, 13, 264 9 of 21

Table 2. Summary of the main syllable feature metrics (SFMs).

SFMs Description in Landscape Ecology Transformation Meaning in Acoustics

NP (Patch Number) NP is a count of all the patches across the
entire landscape. none Number of acoustic events.

CA (Class Area) CA is the sum of the areas of all patches
belonging to a given class. none Proportion of spectrogram covered by

acoustic-event patches.

SHAPE_MN SHAPE_MN equals the average shape index
of patches across the entire landscape. none

Average shape index (complexity of
patch shape) of the extracted
vocalization syllables.

TL (Total Length) The sum of the lengths of all patches
belonging to a given spectrogram. ×15 Total bandwidth occupancy of acoustic

events (Hz).

TW (Total Width) The sum of the widths of all patches
belonging to a given spectrogram. ÷200 The total duration of the acoustic

events (s).

2.3. Statistical Analysis

All statistical analyses were performed in R version 4.0.5 (R Core Team, Vienna,
Austria, 2021).

Because the probability distribution of the raw data failed the Kolmogorov–Smirnov
test for normality, transformations were performed using the bestNormalize package [86],
which attempts a range of transformations and selects the best one based on the goodness-
of-fit statistic to ensure transformations are consistent. It can also remove the effects of
order-of-magnitude differences among variables.

2.3.1. Accuracy Assessment

Manual inspection of BEs from audio clips was used as a reference for accuracy
assessment. To minimize errors, we marked each syllable patch with a serial number when
calculating it to avoid missing or double-counting. We also recorded the time spent by the
technician on each spectrogram. We used relative error (RE) as a measurement of accuracy,
which is the ratio of the absolute value of the reference value [87]. Specifically, RE was
calculated by dividing the number of syllables correctly identified through the automated
approach by the total number of BEs identified through manual inspection as a reference.

2.3.2. Correlation Analysis

Correlation analysis (Spearman’s rho, p < 0.01) was performed between the number
of extracted syllable patches and bioacoustic and acoustic events to further verify the
reliability of the approach of automated extraction of bird vocalizations. Then, a second
Spearman’s rho correlation test was performed for the relationships between SFMs and
bird species S. Non-parametric correlation analysis was selected because not all data were
normally distributed despite being transformed.

2.3.3. Modelling

To test the efficacy of SFMs as a biodiversity proxy, we used a random forest (RF)
machine learning procedure (randomForest package) [88,89] to predict bird species biodi-
versity from SFMs calculated from matching recordings.

RF is a meta-estimator and one of the most accurate learning algorithms available.
The RF algorithm aggregates many decision trees and combines the results of multiple
predictions, while ensuring that the ensemble model makes fair use of all potentially pre-
dictive variables and prevents overfitting [90]. In addition, RF accommodates multivariate
collinearity among predictors, which is convenient for calculating the nonlinear effects
of variables [27]. We used a bootstrapping cross-validation method to select the model
structure with the lowest median of mean squared error (MSE) and highest R2 between
tested data and predicted values [12]. MSE was also used to measure the importance of
each variable. A higher percentage increase in MSE indicated a greater ability to predict
the model [91].
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3. Results
3.1. Approach Reliability

With pre-processing denoising, we removed more than 85% (n = 77) of the anthro-
pogenic acoustic events (for a denoising example see Figure 5A,B). The number of syllables
identified from the spectrograms varied from 0 to 183 in each spectrogram according to
the automatic extraction approach. The REs of the approach ranged from 11.52% to 0.00%
across all spectrograms with an average of 6.45% (±4.78%), suggesting that the automated
extraction process yielded high accuracy (93.55%) values (for an example of identified
syllables see Figure 5).
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spectrogram. (B1,B2) shows the result of noise reduction: a cleaner recording (although possibly with
some artifacts) that is ready to be used as input into segmentation algorithms. (C1,C2) shows the
result of the segmentation procedure and (D1,D2) shows the classification results; the yellow patches
are the extracted syllables.

A high correlation coefficient between the NP values and the number of bio-acoustic
events and all acoustic events (r = 0.71, p < 0.01; r = 0.89, p < 0.01) was observed for
the Spearman’s rho correlation matrix (Table 3). The CA (area), TL (duration) and TW
(frequency) values of extracted syllables were also significantly correlated with bio-acoustic
events and all acoustic events, albeit less strongly (Table 3).
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Table 3. Spearman’s rho correlation matrix (p < 0.01; n = 288).

NP CA TL TW

BE 0.71 0.60 0.56 0.63
AE 0.89 0.74 0.71 0.79

These results indicate that this new, automated approach was much more efficient than
manual inspection. For manual inspection, on average, it took approximately 27 s of effort
to analyze 15-s acoustic data, which was approximately eight times longer than the time
required for the automated approach (3.5 s refers to the time taken for the whole process
shown in Figure 2, averaged by each 15 s-spectrogram). This is because analysts tend to
replay recordings to confirm results [92], and the time spent on loading and annotating
vocalizations must also be accounted for. Further, it is expected that the difference in
efficiency would be more significant with increasing amounts of data, because spectrograms
can be batch processed using our approach.

3.2. SFMs’ Correlation with Biodiversity

High correlation coefficients (r > 0.5) between SFMs and bird species richness were
found, except for shape index and MIF (avg, min, and max) (Figure 6). Simpson’s and
Shannon’s diversity indices were also correlated with SFMs, albeit less strongly. PN always
had the highest correlation with the three diversity indices.

3.3. Prediction of Biodiversity

Random forest regression models confirmed that combinations of SFMs are good
predictors of biodiversity (Table 4). Bird species richness was predicted well (R2 = 0.57)
but the acoustic diversity of bird communities was less reliably predicted (Simpson’s and
Shannon’s diversity indices had R2 of 0.38 and 0.41, respectively). These results suggest
that SFMs have great potential for tracking acoustic communities, even in the presence of
considerable anthrophony (human-induced noise) in an urban environment [29,93].

Table 4. Mean squared error (MSE) and R2 of the top models of SFMs that predicted species richness,
Shannon diversity, and Simpson diversity in acoustic recording samples.

Response Variable Model Type a SFM-Covariates MSE R2

Richness 3 PN + CA + TW + TL + Border_len + Width_Pxl + HSI_Transf +
HSI_Tran_1 + Max_pixel_ + Shape_MN + Compactnes + Brightness +
Roundness + Area_Pxl + Border_ind + MIF_min + MIF_max + MIF

1.47 0.57
Simpson diversity 1 0.30 0.38
Shannon diversity 2 0.27 0.41

a The number of variables tried at each split. For each number of variables per split from one to six, a new random
forest was generated, which was evaluated and chosen both by the error rates in the test set and the out-of-bag
OOB error. See Appendix A Materials for the descriptions of variables that are not described in the text.

We used all 14 SFMs as predictors (including soundscape and patch levels) in each RF
regression model and investigated the relative contributions of each SFM. These metrics
described soundscapes (syllable patches) from different perspectives and levels. Results
demonstrated that SFMs effectively explained different pieces of information in acoustic
recordings, likely because their unique mathematical properties reflect different dimensions
of a soundscape. The number of syllable patches (PN) was the strongest single predictor in
the best model found for richness (Figure 7a). In the best models predicting Simpson’s and
Shannon’s diversity, the SFM with the highest importance was the total length of patches
(20% and 23% of variance explained, respectively) (Figure 7b,c). It is noteworthy that PN,
TL, and PI (Patch Intensity) were always the top three predictors for the three models (the
sum of their contributions was 68%, 57%, and 65% in models a, b, and c respectively),
suggesting that PN, TL and PI can be considered the most promising SFMs. All other
indices exceeded the analytic threshold [63,94], suggesting that they all contributed little to
predictive power.
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Figure 6. Spearman’s correlation coefficient values shown for each relationship in the
upper half of the matrix (only showing coefficient values that are statistically significant,
p < 0.001). The diagonal shows the variables. Labels: NP = the number of syllable patches,
CA = the sum of the areas of all patches in the given spectrogram, SHAPE_MN = the average shape
index of patches across the entire spectrogram, TW = total duration of all patches in the given
spectrogram (s), TL = total bandwidth occupancy of all patches in the given spectrogram
(Hz), MIF = the mean instantaneous frequency (Hz), MIF_min = the minimum instantaneous fre-
quency (Hz). MIF_min = the maximum instantaneous frequency (Hz). S = bird species richness,
λ = Simpson’s Diversity Index, H’ = Shannon’s diversity index.
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Figure 7. Importance of covariates in random forest models, indicated by mean percent increase in
mean squared error (MSE): the final models. (a) Richness of bird species, (b) Simpson diversity, and
(c) Shannon diversity. Greater MSE indicates a larger loss of predictive accuracy when covariates are
permuted and thus a larger influence in the model. Results are shown for acoustic index covariates,
ordered by MSE. See Appendix A for a description of all SFMs.

4. Discussion

When analyzing biophony in urban environments, anthrophony could lead to potential
false positives [95]. Low recognition accuracy is often attributed to noise [96], which affects
the whole process unless removed initially. Hence, at present, most methods for analyzing
biophony in urban environments are trained and tested on relatively low numbers of
high-quality recordings that have been carefully selected [22]. This may lead to better
results but will limit the generalization of their approach to real field recordings, especially
in urban areas with complex acoustic environments. Therefore, in our study, we used only
noise reduction, which meant that batch and fast processing could be performed.

According to Spearman’s rho correlations, NP was always more strongly correlated
with AEs than with BEs, suggesting that SFMs were still somewhat influenced by human-
generated noise, even after the denoising process. SFMs were hardly affected by constant-
intensity noise (e.g., noise from aircraft or automobile traffic; for an example see Figure 5D:
persistent noise was not extracted by the algorithm) [29,33]. In addition to pre-processing
filtering, which eliminated most of the noise, CART models minimized the confounding
effects of noise and syllables through training samples. The inherent properties of constant-
intensity noise are different from those of bird vocalizations and are easily recognized by the
model. For example, the brightness (Figure 4) of bird vocalizations was generally greater
than 80, while the values for noise were 30–60. Nevertheless, some intermittent human
noises, such as car horns and ringtones, might be extracted together with bird vocalizations
using our approach. However, we believe that testing the approach in other habitats such
as natural forests or biodiversity conservation areas will yield more encouraging results.

By treating spectrograms as images, previous studies have applied image process-
ing techniques to extract bird vocalizations [10,59,60,83,96–98], such as widely used me-
dian clipping [41,99,100] and frame- or acoustic event-based morphological filtering [66].
There are plenty of toolboxes available to extract acoustic traits [22], such as central fre-
quency, highest frequency, lowest frequency, initial frequency, and loudest frequency and
so on [10,59], which are basically time–frequency characteristics only. To the best knowl-
edge, all these studies aimed to identify or classify one or several bird species specifically.
However, when focusing on the entire ecosystem, the species-level approach misses the
forest for the trees [101]. Unlike the studies aiming at recognition of one or more species,
ours attempted to take a global estimate of the acoustic output of the community. Our
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results indicated that SFMs are a promising complement to the existing indices working as
biodiversity proxies when rapid assessments are required because SFMs were significantly
correlated with diversity indices. SFMs allow for the effective interpretation of different
pieces of bio-information in recordings, probably because their unique mathematical prop-
erties reflect different components of the soundscape, preserving more of the potentially
eco-relevant information.

Using the proposed approach, we could collect a series of data including acoustic
traits on the time–frequency scale (Figure 8), such as duration and mean, maximum, and
minimum frequency of acoustic events, and morphological characteristics of acoustic events
(Figure 9), such as the size and shape characteristics for each syllable patch. Such features
(i.e., SFMs) may contribute to a more nuanced understanding of the acoustic environment
of the study area from multiple perspectives. In Figure 8, the frequency patterns of syllable
patches are shown across frequency intervals. The soundscape was dominated by mid-
frequency sounds (3–5 kHz); syllable patches were over 50%. Mid-frequency sounds are
generally attributed to biophony, especially bird species ranging from larger birds such
as the Eurasian magpie (Pica pica) to smaller species such as the Oriental reed warbler
(Acrocephalus orientalis). At the other end of the frequency spectrum, the number of patches
within individual high-frequency intervals was quite low (biophony patches in the highest
four frequency intervals accounted for 1.5%) and were mainly within 20–22 kHz, which
may be attributed to some night-flying moths of the family Noctuidae or to mating calls
from grasshoppers. In Figure 9, the average shape index (SHAPE) over 24 h was shown
to rise rapidly at dawn chorus to reach the peak of the day, falling rapidly and remaining
steady until dusk, when the chorus rose rapidly again, and then fluctuated and fell until
the morning. The daily pattern of SHAPE is consistent with previous studies of other
acoustic indices [27,31,102,103], thus reflecting a daily activity pattern and highlighting
distinct dawn and dusk bird choruses. However, compared to other indices that only focus
on sound intensity, SHAPE provides a new perspective on patterns of complexity of bird
songs: songs of the dawn and dusk choruses tended to be more complex and elaborate than
daytime songs. This is mainly related to defending territory and/or attracting a mate [104].
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Borrowing a framework from landscape ecology, many types SFMs can effectively
be used to interpret different aspects of acoustic information and different components of
the soundscape, which is presumably attributed to the mathematical properties of SFMs
and to the introduction of a spatial concept. SFMs calculated in this study, such as area,
compactness, roundness, and shape index of the patches, could be easily generated in
eCognition developer. In addition, many existing open-source platforms (e.g., package
landscapemetrics in R) or software have integrated huge workflows, which can provide
similar functions (e.g., QGIS). Measurement of biophony from multiple dimensions has
been considered useful for detecting variations in the behavior and composition of acoustic
communities and, as a result, to better monitor their dynamics and interactions with
habitats [29]. These results support the possibility that PAM could potentially offer a more
comprehensive picture of biodiversity than traditional inspection [63].

Under the high pressure of a surplus of data, and facing the lack of technology, funding
and standardized protocols [11], most passive monitoring now lasts one to three years at
most [105], while ecosystem conservation and ecological change detection usually require
at least ten years. In particular, there is usually a lag period when measuring the benefits
of planted forests, as individual trees need to grow and stands need to mature to form
a stable structure [4]. Short-term monitoring may lead to a reduction in the quality and
reliability of data [106]. This emphasizes the significance of utilizing and applying PAM
within the framework of a monitoring strategy, with defined objectives, effective indicators,
and standardized protocols [20].

There is developing acknowledgment from governments and related sectors that urban
greenery is not monitored adequately to satisfy its crucial roles in biodiversity provisioning
and ecosystem support [33,107]. A rich and diverse biophony usually indicates a stable and
healthy ecosystem [26]. With its government-led design, planning, and implementation,
the in-depth greening project in Beijing has indeed enhanced green space in the plain
area, if only considering the total increased amounts of trees and connected urban forest
and park patches [108]. However, the large-scale transition between cropland and forest
generated by the afforestation process has the potential to lead to original wildlife habitat
loss. By long-term monitoring of biodiversity patterns and processes, we can better assess
the positive and negative impacts of afforestation projects.

According to our preliminary results, the proposed approach (with high computational
efficiency and accuracy) may benefit further research on the rapid assessment and predic-
tion of biodiversity in urban forests, providing an indirect but immediate measurement of
bird activity dynamics across enhanced spatio-temporal scales. This would facilitate the
application of PAM and the formulation of a standardized sampling protocol. Furthermore,
a robust automated approach could support PAM as part of citizen science research. This
would benefit developing countries that lack financial budgets, experts, and capacity for
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massive data processing. Globally, only 5% of PAM studies are conducted in regions of Asia,
western Oceania, northern Africa, and southern South America, where some countries
still have no record of using PAM [20]. As our approach does not require a priori data, it
facilitates the implementation of long-term ecosystem monitoring in developing countries
where baseline data are not available.

5. Conclusions

In 2019, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services (IPBES) warned that the unprecedented deterioration of natural resources was
deracinating millions of species and reducing human well-being worldwide. However,
global biodiversity loss has not attracted as much public attention as global climate change.
To evaluate the diversity of coexisting birds in urban forests and ultimately facilitate the
assessment of afforestation benefits in urbanized Beijing, we developed an automated
approach to extract and quantify bird vocalizations from spectrograms, integrating the
well-established technology of object-based image analysis. The approach could achieve
recognition accuracy (93.55%) of acoustic events at much higher efficiency (eight times
faster) than traditional inspection methods. In addition, it also provided multiple aspects
of acoustic traits, such as quantity, song length, frequency bandwidth, and shape informa-
tion, which can be used to predict bird biodiversity. In our case, 57% of the variance in
bird species richness could be explained by the acoustic and morphological features se-
lected. The proposed soundscape evaluation method sheds light on long-term biodiversity
monitoring and conservation during the upcoming global biodiversity crisis.

Author Contributions: Conceptualization, Y.Z., J.Y. and C.W.; data curation, Y.Z. and Z.B.; formal
analysis, Y.Z. and J.Y.; funding acquisition, C.W.; investigation, Y.Z. and Z.B.; methodology, Y.Z., J.Y.
and J.J.; project administration, C.W.; resources, Z.S., L.Y. and C.W.; software, Y.Z. and J.Y.; validation,
Y.Z., J.Y., J.J., Z.S., L.Y. and C.W.; visualization, Y.Z.; writing—original draft, Y.Z.; writing—review
and editing, J.Y., J.J. and C.W. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Non-Profit Research Institutions of the Chinese
Academy of Forestry (CAFYBB2020ZB008).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank Hanchen Huang for bird species identification, Junyou Zhang for
writing advice, and Shi Xu, Qi Bian for field investigation.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. List of Bird Species. A total of 30,758 vocalizations pertaining to 33 species were counted
during recording sessions, as shown in the table below.

No. Common Name Binomial Name Number of
Syllable Patches % Predominant

Frequency Intervals

1 Common Blackbird Turdus merula 227 23.67049 /
2 Eurasian tree sparrow Passer montanus 158 16.4755 2.3–5 kHz or
3 Azure-winged magpie Cyanopica cyanus 120 12.51303 2–10 kHz
4 Large-billed crow Corvus macrorhynchos 116 12.09593 1–2 kHz
5 Spotted dove Spilopelia chinensis 109 11.36601 1–2 kHz
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Table A1. Cont.

No. Common Name Binomial Name Number of
Syllable Patches % Predominant

Frequency Intervals

6 Light-vented bulbul Pycnonotus sinensis 55 5.735141 1.5–4 kHz
7 Eurasian magpie Pica pica 46 4.796663 0–4 kHz
8 Common swift Apus apus 42 4.379562 20–16,000 Hz
9 Yellow-browed warbler Phylloscopus inornatus 17 1.77268 4–8 kHz
10 Arctic warbler Phylloscopus borealis 12 1.251303 /
11 Crested myna Acridotheres cristatellus 7 0.729927 /
12 Two-barred warbler Phylloscopus plumbeitarsus 7 0.729927 /
13 Dusky warbler Phylloscopus fuscatus 6 0.625652 /
14 Marsh tit Poecile palustris 5 0.521376 6–10 kHz
15 Grey starling Spodiopsar cineraceus 4 0.417101 above 4 kHz
16 Great spotted woodpecker Dendrocopos major 4 0.417101 0–2.6 kHz
17 Chinese grosbeak Eophona migratoria 4 0.417101 /
18 Barn swallow Hirundo rustica 3 0.312826 /
19 Chicken Gallus gallus domesticus 2 0.208551 5–10 kHz
20 Grey-capped greenfinch Chloris sinica 2 0.208551 3–5.5 kHz
21 Yellow-rumped Flycatcher Ficedula zanthopygia 1 0.104275 /
22 Oriental reed warbler Acrocephalus orientalis 1 0.104275 /
23 Yellow-throated Bunting Emberiza elegans 1 0.104275 /
24 Red-breasted Flycatcher Ficedula parva 1 0.104275 /
25 Carrion crow Corvus corone 1 0.104275 0–8 kHz
26 Dusky thrush Turdus eunomus 1 0.104275 /
27 Black-browed Reed Warbler Acrocephalus bistrigiceps 1 0.104275 /
28 Grey-capped pygmy woodpecker Dendrocopos canicapillus 1 0.104275 4.5–5 kHz
29 Naumann’s Thrush Turdus naumanni 1 0.104275 /
30 U1 / 1 0.104275 /
31 U2 / 1 0.104275 /
32 U3 / 1 0.104275 /
33 U4 / 1 0.104275 /

Note: Unidentified species marked as U1-Un.

Table A2. List of other SFMs.

No. Metric Description

1 Border_len(Border Length) The sum of the edges of the patch.

2 Width_Pxl (Width) The number of pixels occupied by the length of
the patch.

3 HSI_Transf HSI transformation feature of patch hue.
4 HSI_Tran_1 HSI transformation feature of patch intensity.

5 Compactnes

The Compactness feature describes how compact a
patch is. It is similar to Border Index but is based on
area. However, the more compact a patch is, the smaller
its border appears. The compactness of a patch is the
product of the length and the width, divided by the
number of pixels.

6 Roundness

The Roundness feature describes how similar a patch is
to an ellipse. It is calculated by the difference between
the enclosing ellipse and the enclosed ellipse. The radius
of the largest enclosed ellipse is subtracted from the
radius of the smallest enclosing ellipse.
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Table A2. Cont.

No. Metric Description

7 Area_Pxl (Area of the patch)

The number of pixels forming a patch. If unit
information is available, the number of pixels can be
converted into a measurement. In scenes that provide
no unit information, the area of a single pixel is 1 and
the patch area is simply the number of pixels that form
it. If the image data provides unit information, the area
can be multiplied using the appropriate factor.

8 Border_ind (Border index)

The Border Index feature describes how jagged a patch
is; the more jagged, the higher its border index. This
feature is similar to the Shape Index feature, but the
Border Index feature uses a rectangular approximation
instead of a square. The smallest rectangle enclosing the
patch is created and the border index is calculated as the
ratio between the border lengths of the patch and the
smallest enclosing rectangle.
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