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Abstract: China’s landslide disasters are serious, and regional landslide disaster early-warning is
one of the important means of disaster prevention and mitigation. The traditional regional landslide
disaster early-warning model, however, is limited by the complex landslide induction mechanism,
limited data accumulation, and insufficient big data analysis methods, and has problems such as
limited early-warning accuracy and insufficient refinement. In this paper, a machine learning method
was introduced into the field of regional landslide disaster warning. From the model construction
process of training sample-set construction, sample learning and training, model parameter optimiza-
tion, model preservation, warning output, and so on, a method for constructing a regional landslide
early-warning model based on machine learning was systematically proposed. In the sample learning
and training, 80% of the training sample-set was used as the training set, and 20% was used as the
test set for five-fold cross validation. The Bayesian Optimization algorithm was used to optimize
the model parameters, and the accuracy, ROC curve, and AUC value were used to verify the model
accuracy and model generalization ability. With China’s Fujian province as an example, based
on nine years of geological and meteorological data (2010–2018), geological environment factors,
factors of hazard-affected bodies and historical disaster situations, and rainfall-induced factors in
four categories, a total of 26 indicators were used as input characteristic parameters. Six machine
learning algorithms were adopted to improve model training; the results showed that the Random
Forest algorithm performed the best, giving an accuracy of 92.3%, and was the model with the best
generalization ability (AUC was 0.955). The second best was the Artificial Neural Network model,
with an accuracy of 0.937 and an AUC of 0.935. Next were the Nearest Neighbor model, the Logistic
Regression model, and the Support Vector Machine; the poorest results were from the Decision Tree
model. Finally, the typical rainfall-type landslide disaster process in Fujian Province was selected as
an example to verify the Random Forest algorithm model. The results showed that compared with
the early-warning results of the original explicit statistical model, the hit rate of the new model was
6 times, or equal to that of the original model, and the landslide density in the early-warning area of
the new model was 1.6–1.7 times that of the original model. Preliminary verification showed that
the new model based on the Random Forest method has obvious advantages, a higher hit rate and a
smaller warning area, and can achieve more accurate warnings. The follow-up will continue to track
the new landslide disaster situation in the study area and carry out model verification and correction.

Keywords: landslide; early-warning model; machine learning; Random Forest; model study

1. Introduction

China is one of the countries with the most widespread and serious geological disasters
in the world. Geological disasters spread throughout the country’s mountainous and
highland areas, with nearly one million known locations, causing hundreds of deaths and
billions of yuan of direct economic losses every year (according to the National Geological
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Disaster Bulletin issued by the Ministry of Natural Resources). More than 20 countries or
regions in the world, including Hong Kong, China, the United States, Italy, Brazil, Japan,
etc., have also performed or are carrying out regional geological disaster early-warning and
mitigation services to varying degrees [1]. Since 2003, the Chinese mainland has carried
out a meteorological early-warning for regional geological disasters and achieved good
results in disaster prevention and mitigation [2–10]. Additionally, in the monitoring and
early-warning demonstration area [11,12], the Three Gorges Reservoir Area [2], Wenchuan
earthquake disaster area [13], and other key regions, extensive research and practice have
also been carried out. According to statistics, since 2003, owing to the efforts of various
parties, the number of deaths and missing caused by geological disasters has decreased
from about 1000 per year during the Tenth Five-Year Plan period to about 500 since the
Twelfth Five-Year Plan period, which indicates that important contributions have been
made to meteorological early-warning and prediction of geological disasters [3,4].

The model study is the basic scientific problem of regional landslide early-warning. A
large number of scholars have carried out long-term and unremitting research on it. The
first and most widely used model is the statistics-based critical rainfall threshold model,
which was systematically studied in Hong Kong, China, and the United States [14,15], and
has been widely used as a reference in other countries or regions due to its advantages of
simplicity and ease of generalization [16–19]. Based on the statistical principle, the explicit
statistical early-warning model proposed by Liu Chuanzheng et al. [2] has been deeply
explored and applied at all levels of early-warning, key research areas, and monitoring and
early-warning areas in mainland China [4–7,9,11,12]. A regional dynamic early-warning
model based on the mechanism process analysis of rainfall–seepage and disaster occurrence
has been continuously studied. By coupling slope stability analysis with a hydrogeological
model, the critical rainfall index for landslide initiation has been determined [20–23], and
the physical significance of the dynamic early-warning model is clear, but due to the
complex parameter input and uncertainty in the model, this method is mostly used in the
small-scale research process, and its practical operation is also limited.

In recent years, with the rapid development of artificial intelligence technology, ma-
chine learning and deep learning algorithms based on artificial intelligence have become
increasingly mature and widely used in various industries. In the field of geological disaster
prevention and control, a variety of machine learning algorithms have been widely used
in landslide spatial evaluation and prediction in recent years, such as Artificial Neural
Networks, Decision Trees, Support Vector Machines, Random Forests, etc. [24–29]. Most
of the above-mentioned studies introduce machine learning algorithms into landslide
spatial evaluation and prediction to evaluate regional landslide sensitivity or susceptibility.
After the spatial evaluation is completed, the critical precipitation threshold is determined
by traditional statistical methods [30]. However, there are few related achievements of
realizing spatial and temporal warning for regional landslide disasters based directly on a
machine learning algorithm.

Aiming at the problems that exist in the traditional regional landslide early-warning
models, such as complex landslide-inducing mechanisms, limited data accumulation, and
insufficient data analysis methods, past results lead to limited warning accuracy and a
lack of indicator precision. Through the training sample-set construction, comparative
analysis of various machine learning methods could improve the precision of early-warning
models and other aspects of the research to solve these problems. This paper systematically
expounded on the construction method for a regional landslide disaster early-warning
model based on crucial components of machine learning algorithms: training sample-
set construction, model training, optimization evaluation, and early-warning modeling.
Taking Fujian Province of China as an example, the Random Forest algorithm and Near-
est Neighbor algorithm were applied, and Support Vector Machine, Logistic Regression,
Decision Tree, Artificial Neural Network, and other algorithms, based on the geological
and meteorological data from 2010 to 2018, were used to construct a regional landslide
disaster early-warning model for Fujian Province. We selected two typical rainfall-induced
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landslide disasters in Fujian Province in 2019. Taking the process as an example, we carried
out the live operation and application verification of the early-warning model.

2. Geological Background of the Study Area

Fujian Province is located in a mountainous highland area along the southeast coast of
mainland China. It is one of the provinces with complex terrain, abundant rainfall, and
frequent landslide disasters. At the present, the forest coverage rate of Fujian Province rate
has reached 66.8 percent, ranking first in China for 43 consecutive years. The highlands and
mountainous areas of the study area account for about 80% of the total area, mainly in the
central and western regions of Fujian Province. The terrain of Fujian Province is generally
high in the northwest and low in the southeast. Under the control of the New Cathaysia
tectonic system, the western Min-Dashan belt and the middle Min-Dashan belt are formed
in the west and central part of Fujian Province, and there are disconnecting valleys and
basins between the two belts. There are many river systems in Fujian Province, and their
flow direction is mostly from west to east. The rivers are mostly mountainous rivers
with abundant water volume, great seasonal changes, and rapid flow. The province has a
subtropical humid monsoon climate, with an average annual rainfall of 1000~1900 mm,
abundant rainfall, strong monsoon circulation, and a remarkable monsoon climate. There-
fore, Fujian is an area prone to natural disasters, frequently-occurring areas, and worst-hit
areas, especially landslide disasters are most widely distributed (Figure 1). The residual
slope soil layer in the study area is widely developed. The slope gradient is generally
0~30◦, locally greater than 30◦. Due to the poor geological environment conditions, most of
the villages in the mountainous area were built on the slopes, forming a large number of
high and steep slopes in front of or behind the houses. During the flood season, sudden
geological disasters such as collapses and landslides occur frequently. Although the scale
of landslides is small, most of them occur in front of or behind residents’ houses, which
can easily cause casualties and property losses. The occurrence of landslide disasters in
Fujian Province is closely related to the terrain and induced by heavy rainfall and human
engineering activities. The disaster-vulnerable terrain is prone to occur on gradients with a
slope of more than 20◦; generally, the hazards are liable to happen during the heavy rainfall
period from May to June and the typhoon and rainy period from July to September, and
they usually take place in front of and behind houses sections such as the cutting slopes,
planting economic forests, and spoiling soil along the slopes [31].
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3. Determination of Evaluation Index and Selection of Algorithm
3.1. Extraction of Evaluation Indexes

Landslide disasters are influenced and affected by the combination of topography,
geological conditions, environmental conditions, and human engineering. Analyzing
influence factors of landslide disasters is the basis for carrying out mechanism research,
early warning and forecasting, and disaster prevention and mitigation. According to the
existing survey and monitoring data in the study area, as well as the development and
distribution of regional landslide disasters and the analysis of influencing factors [31–33],
the input features of influencing factors are extracted from four aspects: geological envi-
ronment factors, hazard-affected body factors, historical disasters, and rainfall-induced
factors. Geological environment factors are the geological environment background factors
of landslide disasters in the study area, which determine the potential susceptibility degree
of landslide disaster in this area. Hazard-affected body factors are the evaluation indexes of
the hazard-affected body that may be caused when a landslide occurs. Historical disasters
refer to the number of historical landslide disasters in the study area. Rainfall-induced
factors are the direct rainfall-inducing factors of landslides in the forecast period. These
four categories cover all the geological environment aspects that influence the prediction of
the possibility and risk of landslides disaster in this study area.

The extracted geological environment factors mainly include grade, geomorphic type,
stratigraphic lithology, annual rainfall, vegetation type, water system influence, etc. Based
on the 1:200,000 and 1:500,000 geological environment and geological disaster survey
database of Fujian Province, the hourly precipitation data of Fujian Province from 2010
to 2018 (nearly 2000 stations), and the grid precipitation Real-time (QPE) data of Fujian
Province in 2021 (grid scale: 5 km × 5 km), the correlation analysis between these six
geo-environmental factors evaluation indexes and the spatial distribution of landslide
hazards in the region was carried out. According to the results of correlation analysis,
the grade factors were classified into five categories: 0~15◦, 15~25◦, 25~35◦, 35~50◦, ≥50◦

(Figure 2a); the geomorphic types were classified into five categories: plains, hills, low
mountains, medium mountains, and high mountains (Figure 2b). The lithological factors of
the formation were classified into a massive hard granite rock group, hard-harder diorite
rock group, massive hard-harder tuff lava rock group, medium-thick layer, and relatively
hard sandstone rock group, thin layer soft mudstone, shale rock group, medium-thick hard
quartz gneiss rock group, medium-thick hard carbonate rock group, and loose sandy clay
soil layer (Figure 2c). The annual average rainfall types were classified into 13 categories
such as 1400–1450 mm, 1450–1500 mm, and so on, up to >2000 mm (Figure 2d). Vegetation
affects landslides through coverage, density, abundance, height, underground biomass, leaf
area index, and aboveground biomass. According to the correlation between the spatial
distribution of landslides and the distribution of vegetation types, the vegetation types
were classified into six types (Figure 2e); the water system was classified into two categories
based on whether the impact distance is greater than 500 meters (Figure 2f). Detailed
information is shown in Table 1.

The main indicators of hazard-affected body factors extracted are roads, houses, and
population density. The road distribution layer was extracted from 1:250,000 DLG data,
and the distance from the road 0~500 m and ≥500 m were classified into two categories
and quantified separately (Figure 3a). The house distribution layer was extracted from
1:250,000 DLG data, and the distances from the house 0~500 m and ≥500 m were classified
into two categories and quantified separately (Figure 3b). According to the data of the
sixth National Population Census, the population density (unit: pieces /km2) types were
classified into seven categories, 50–100, 100–150, 150–300, 300–450, 450–600, 600–750, >750,
and quantified, respectively (Figure 3c). The specific content is shown in Table 1.
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Figure 2. Geological environment factor index of the study area: (a) grade, (b) geomorphic type,
(c) formation lithology, (d) annual rainfall, (e) vegetation type, (f) water system.

Table 1. Input features and parameters of the training sample set.

Category Serial Number The Input
Features Characteristic Parameters Data Sources and

Processing Methods

Geological
environment factors

1 Grade/(◦) 1© 0~15; 2© 15~25; 3© 25~35; 4© 35~50; 5© ≥50

1:100,000 grade map of
Fujian Province,
classification and
quantification

2 Geomorphic type
1© plains; 2© hills; 3© low mountains; 4© medium

mountains; 5© high mountains

1:200,000 geomorphic type
map of Fujian Province,
classification and
quantification

3 Stratigraphic
lithology

1© massive hard granite rock group; 2©
hard-harder diorite rock group; 3© massive
hard-harder tuff, tuff lava rock group; 4©
medium-thick layer and relatively hard
sandstone rock group; 5© Thin layer soft
mudstone, shale rock group; 6© medium-thick
hard quartz gneiss rock group; 7© medium-thick
hard carbonate rock group; 8© loose sandy clay
soil layer

1:200,000 stratigraphic
lithology map of Fujian
Province, classified and
quantified

4 Annual
rainfall/(mm)

1© 1400–1450; 2© 1450–1500; 3© 1500–1550; 4©
1550–1600; 5© 1600–1650; 6© 1650–1700; 7©
1700–1750; 8© 1750–1800; 9© 1800–1850;
10© 1850–1900; 11© 1900–1950;
12© 1950–2000; 13© >2000

1:500,000 geological
disaster survey and
zoning reports in Fujian
Province, vectorization
acquisition, classification,
and quantification

5 Vegetation type

1© South subtropical rainforest area in the east of
Daiyun Mountain; 2© Daiyun Mountain Yijiufeng
Mountain Range; 3© Evergreen
mulberry-semi-evergreen oak forest area; 4©
South subtropical rainforest area in southeastern
Pingling; 5© Coastal South Subtropical Rainforest
Area; 6© Evergreen mulberry tree leaf forest area

1:500,000 vegetation type
map of Fujian Province,
classification and
quantification

6 Water system
influence/(m)

1© 0~500; 2© ≥500

1:500,000 water system
distribution map of Fujian
Province, calculation
buffer classification
quantification
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Table 1. Cont.

Category Serial Number The Input
Features Characteristic Parameters Data Sources and

Processing Methods

Hazard-affected
body factors

7 The distance from
road/(m)

1© 0~500; 2© ≥500

The road distribution
layer was extracted from
1:250,000 DLG data, and
the buffer classification
quantization was
calculated

8 The distance from
house/(m)

1© 0~500; 2© ≥500

The house distribution
layer was extracted from
1:250,000 DLG data, and
the buffer classification
and quantification were
calculated

9
Density of

population/
(pieces/km2)

1© 50–100; 2© 100–150; 3© 150–300; 4© 300–450;
5© 450–600; 6© 600–750; 7© >750

The sixth national
population census data,
classification and
quantification

Historical disaster
factors 10 Historical

disaster/(pieces)
the number of historical damage points of each
grid cell/10

Potential points of
landslides in 1:500,000
geological disaster survey
data in the study area,
National Geological
Disaster Database
(2010–2018), with a
scaled range

Rainfall-inducing
factors

11 Rainfall of that
day/(mm) actual rainfall value/10

The data of meteorological
and water conservancy
hourly precipitation
stations from 2010 to 2018
were interpolated and the
range was scaled

12
Rainfall in the
previous
day/(mm)

actual rainfall value/10

13 Rainfall in the last
two days/(mm) actual rainfall value/10

... ... actual rainfall value/10

26 Rainfall in the last
15 days/(mm) actual rainfall value/10

Forests 2022, 13, x FOR PEER REVIEW 7 of 20 
 

 

26 
Rainfall in the 

last 15 
days/(mm)  

actual rainfall value/10 

The main indicators of hazard-affected body factors extracted are roads, houses, and 
population density. The road distribution layer was extracted from 1:250,000 DLG data, 
and the distance from the road 0~500 m and ≥ 500 m were classified into two categories 
and quantified separately (Figure 3a). The house distribution layer was extracted from 
1:250,000 DLG data, and the distances from the house 0~500 m and ≥ 500 m were classified 
into two categories and quantified separately (Figure 3b). According to the data of the 
sixth National Population Census, the population density (unit: pieces /km2) types were 
classified into seven categories, 50–100, 100–150, 150–300, 300–450, 450–600, 600–750, >750, 
and quantified, respectively (Figure 3c). The specific content is shown in Table 1. 

  
(a)  (b)  (c)  

Figure 3. Hazard-affected body factors: (a) distance from the road, (b) distance from the house, (c) 
population density. 

The historical landslides samples were extracted from the 1:500,000 geological disas-
ter survey data of the study area and the national geological disaster database (2010–2008), 
and the scope was scaled by ten times of reduction (Figure 1). 

The extracted index of rainfall-inducing factors mainly considers the rainfall of the 
current day and the daily rainfall of the previous 15 days. According to the data of mete-
orological and water conservancy hourly precipitation stations from 2010 to 2018, the in-
dex of rainfall-inducing factors of each grid cell were extracted, and the range was realized 
by reducing it ten times. 

Through the above analysis, the twenty-six input characteristics of four categories of 
input characteristic factor indexes (geological environment factor, hazard-affected body 
factor, historical disaster situation, and rainfall-inducing factor) in Fujian Province were 
obtained. Among them, nine input characteristics of two categories of geological environ-
ment factors and hazard-affected body factors were classified and quantified. Data range 
scaling was carried out for seventeen input features of two categories: historical disaster 
conditions and precipitation-inducing factors, as shown in Table 1. 

3.2. Selection of Machine Learning Algorithms 
Commonly used machine learning algorithms mainly solve three major problems of 

regression, clustering, and classification. The prediction data of the regression algorithm 
is continuous numerical data, mainly including linear regression, logistic regression, etc., 
in which logistic regression can also solve the classification problem. The prediction data 
of the clustering algorithm is categorical, and the category is unknown, which is mainly a 
K-means clustering algorithm. The prediction data of the classification algorithm is clas-
sified data, and the category is known. The main algorithms include the Nearest Neighbor 
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(c) population density.

The historical landslides samples were extracted from the 1:500,000 geological disaster
survey data of the study area and the national geological disaster database (2010–2008),
and the scope was scaled by ten times of reduction (Figure 1).

The extracted index of rainfall-inducing factors mainly considers the rainfall of the
current day and the daily rainfall of the previous 15 days. According to the data of
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meteorological and water conservancy hourly precipitation stations from 2010 to 2018,
the index of rainfall-inducing factors of each grid cell were extracted, and the range was
realized by reducing it ten times.

Through the above analysis, the twenty-six input characteristics of four categories of
input characteristic factor indexes (geological environment factor, hazard-affected body
factor, historical disaster situation, and rainfall-inducing factor) in Fujian Province were
obtained. Among them, nine input characteristics of two categories of geological environ-
ment factors and hazard-affected body factors were classified and quantified. Data range
scaling was carried out for seventeen input features of two categories: historical disaster
conditions and precipitation-inducing factors, as shown in Table 1.

3.2. Selection of Machine Learning Algorithms

Commonly used machine learning algorithms mainly solve three major problems of
regression, clustering, and classification. The prediction data of the regression algorithm is
continuous numerical data, mainly including linear regression, logistic regression, etc., in
which logistic regression can also solve the classification problem. The prediction data of the
clustering algorithm is categorical, and the category is unknown, which is mainly a K-means
clustering algorithm. The prediction data of the classification algorithm is classified data,
and the category is known. The main algorithms include the Nearest Neighbor algorithm,
Support Vector Machine, Artificial Neural Network, Logistic Regression, Decision Tree,
and Random Forest. For regional landslide disaster warning problems, the machine
learning classification algorithm is mainly used. In this paper, six algorithms, including
the Random Forest algorithm, Nearest Neighbor algorithm, Support Vector Machine,
Logistic Regression, Decision Tree, and Artificial Neural Network were selected to establish
a landslide early-warning model. The comparative analysis of algorithms is shown in
Table 2.

Table 2. Comparison and analysis of commonly used machine learning classification algorithms.

Commonly Algorithm Principle Advantages Disadvantages

Logistic Regression

Based on the existing data, a
regression formula (the
best-fitting parameter set) was
established for the
classification boundary.

1© The calculation is small
and the speed is fast;
2© It has a good probability

explanation;
3© Can easily update the

model.

1© It is easy to under-fit and
the accuracy is limited;
2© It can only deal with two

classification problems, and it
must be linearly separable.

Nearest Neighbor algorithm
Classification is carried out by
measuring the distance
between different eigenvalues.

1© Suitable for multiple
classification problems;
2© High accuracy;
3© It is not sensitive to

abnormal points.

1© Large amount of
calculation, poor
comprehension;
2© When the training data is

highly dependent and the
samples are unbalanced, the
prediction accuracy of rare
categories is low.

Decision Tree

The tree structure is used to
establish the decision model
according to the
data attribute.

1© Easy to explain and explain,
good at dealing with the
interaction between features;
2© Suitable for analyzing

discrete data;
3© Small-scale data sets are

effective.

1© Poor treatment of
continuous variables;
2© Online learning is not

supported, and the Decision
Tree needs to be reconstructed
when there are new samples.
3© Easy to overfit.
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Table 2. Cont.

Commonly Algorithm Principle Advantages Disadvantages

Artificial Neural Network

Simulating biological neural
networks, a class of
pattern-matching algorithms
is a huge branch of machine
learning with hundreds of
different algorithms.

1© High classification
accuracy;
2© Strong learning ability.

1© A large number of
parameters are required;
2© Unable to observe the

learning process, the results
are difficult to interpret;
3© The study time is long.

Support Vector Machine

To find the optimal
hyperplane, the data can be
divided into two parts, each
part of the data belongs to the
same class.

1© It can solve nonlinear
classification;
2© The idea of classification

is simple.

1© Large memory
consumption, difficult to
implement for large-scale
training samples;
2© It is difficult to solve the

multi-classification problem;
3© Difficult to explain,

complex to run and optimize.

Random Forest algorithm

A forest is built randomly. The
forest is composed of many
independent Decision Trees,
and finally, the optimal
classification result is obtained
comprehensively.

1© The limited sample can be
fully applied;
2© It has the advantages of

diversity and accuracy.

It will overfit on some
noisy problems.

The quality of a machine learning model depends on its evaluation accuracy and
model generalization ability. Several common parameters for model evaluation include
the following:

(1) Accuracy (ACC), which expresses the model evaluation accuracy. The accuracy of the
model is the ratio of the number of samples correctly predicted by the model to the
total number of samples. In addition, there are metrics such as precision, recall, and
F1 value.

(2) The ROC curve and AUC value express the generalization ability of the model. ROC
(Receiver Operating Characteristic) curve refers to the receiver operating characteristic
curve, which is a comprehensive index reflecting the continuous variables of sensi-
tivity and specificity. Its main analysis tool is a curve drawn on a two-dimensional
plane; AUC (Area Under roc Cure) value is the area under the ROC curve. Usually,
the value of AUC is between 0.5 and 1.0, and the larger the AUC value, the better the
performance of the model.

(3) Learning curve, which describes the model fitting problem and judges whether the
model is over-fitting or under-fitting.

4. Regional Landslide Early-Warning Model Method Based on Machine Learning
4.1. Construction of Training Sample-Set

The accurate construction of the training sample-set is the foundation of the machine-
learning regional landslide disaster warning model, and it directly determines the accuracy
and generalization ability of the warning model to a certain extent. The occurrence of
regional landslide hazards is controlled by the coupling effect of geological environmental
conditions and rainfall conditions. From the perspective of input features, machine learning
samples include attributes of three aspects: geographic location, geological environmental
conditions, and precipitation conditions. Geographical location refers to the spatial geo-
graphic coordinates of the point where the sample is located; geological environmental
conditions refer to the geological environmental background conditions of the sample;
precipitation conditions refer to the induced rainfall factors of the sample. From the per-
spective of output features, the training sample-set includes positive samples (landslide
points, generally denoted as one) and negative samples (non-landslide points, generally
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denoted as zero). The balance of the number of positive and negative samples should be
considered when sampling positive and negative samples.

The construction process of the training sample-set is shown in Figure 4, which mainly
includes three steps: geological environment and rainfall factor feature library construction,
positive and negative sample sampling, and sample feature attribute extraction.
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4.1.1. Construction of Characteristic Database of Geological Environment and
Rainfall Factors

The construction of the geological environment characteristic database and rainfall
factor characteristic database is completed based on the analysis of regional landslide
disaster distribution patterns and influencing factors in the study area. The geological
environmental factors affecting the occurrence of regional landslides generally include
topography, strata lithology, human activities, etc.; the rainfall-inducing factors affecting
the occurrence of regional landslides generally include daily rainfall, previous rainfall,
previous effective rainfall, etc.

The geological environment factors and rainfall-inducing factors are overlaid with
the warning grid profiling unit respectively (Figure 5), and the geological environment
characteristic library and rainfall factor characteristic library of the early-warning grid unit
are obtained. The geological environment characteristic library contains the characteristics
attributes of each geological environment influencing factor of each early-warning grid unit;
the rainfall factor characteristic library contains the daily rainfall characteristic attribute or
effective rainfall characteristic attribute of each early-warning grid unit.

The early-warning grid unit is determined according to the size of the study area
and the actual need for early-warning. It is generally a uniform grid unit, which can be
determined by referring to the early-warning space accuracy in the relevant early-warning
standards (Table 3).
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Table 3. Precision division of early-warning space (reproduced from [34]).

Warning Grading Recommended Early-Warning Accuracy

At the national level 1:500,000–1:1,000,000

At the provincial level 1:100,000–1:500,000

The municipal 1:50,000–1:100,000

At the county level 1:10,000–1:50,000

Thematic early-warning area 1:2000–1:10,000

4.1.2. Sampling Method of Positive and Negative Samples

Positive samples refer to the points where landslides occur, and the sampling of
positive samples is generally based on historical landslide data. The screening requires that
landslides should have both definite spatial geographic coordinates (the specific accuracy
is determined by the specific conditions of the study area) and time coordinates (generally
accurate to the day in the 24-h early-warning). Generally speaking, the sampling accuracy
of positive samples is higher.

Negative samples refer to points where landslides do not occur, which cannot be
obtained directly. In this paper, the negative samples were sampled in two aspects based on
the method of “random sampling under space-time constraints” [35,36]: first, the size of the
buffer radius was corrected; secondly, in addition to random sampling outside the positive
sample buffer, sampling was supplemented in the grid where the positive sample is located,
that is, the negative samples were completed in two parts. The schematic diagram is shown
in Figure 6.
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Determination of the spatial location of the negative samples, random sampling in
the space outside a certain buffer zone of positive samples, and the determination of the
radius of the buffer zone should take into account the minimum early-warning grid cell
size in the study area and the distribution of historical landslide points. In this paper, the
buffer radius was used as the warning grid unit size to ensure the balance of positive and
negative samples; the number of negative samples collected was two times that of the
positive samples.

Time attribute assignment of negative samples: under the constraints of a certain
period (according to the completeness of rainfall data in the study area, it is generally the
whole period of the multi-year flood season), the random function is adopted for sampling.
The random function is as follows:

T = RAND (T1, T2) (1)

Description:
T, time acquired randomly;
T1, the lower limit of the time range of random acquisition time;
T2, the upper limit of the time range of random acquisition time.

(2) Negative samples are collected in the grid where positive samples are located

For the determination of the spatial location of negative samples, random sampling
was performed in the grid where the positive samples are located. The number of negative
samples collected was about equal to the number of positive samples.

Time attribute assignment of the negative sample also uses the random function shown
in Equation (1), with the additional constraint that the negative sample time property
sampled should be different from the positive sample.

4.1.3. Feature Attribute Extraction and Data Screening

The positive and negative samples are spatially overlaid with the geological envi-
ronment feature database to extract the geological environment feature attributes of the
positive and negative samples. Based on the temporal attributes of the positive and nega-
tive samples, and the rainfall factor feature attributes of the positive and negative samples
were extracted by the query. At this point, the construction of the whole training sample-set
was completed. In addition, data cleaning is particularly important throughout the training
sample-set construction process, and the model evaluation accuracy is higher using the
cleaned data set. Data cleaning generally consists of two categories:

(1) Handling data errors: for example, manual errors, data transmission errors, equip-
ment failures, and ambiguity of geological information can affect the original data
set, these errors data must be processed and cleaned in advance. In general, this type
of data cleaning refers to the imputation or elimination of missing values and the
identification of outliers in the data.

(2) Feature attribute preprocessing: considering the dimension difference of the input
features of the training samples, it is necessary to perform uniform normalization
or feature scaling on the input features of the samples. Different machine learning
algorithms differ in their sensitivity to the difference of input feature scales, and
the requirements for input feature attribute preprocessing are also different. It is
recommended that the input features of the training samples be uniformly normalized
or scaled before model training. Generally, the range of input features of the samples
should be at least not much different; otherwise, it will directly affect the accuracy of
the model.

In summary, the above-mentioned training sample-set construction method was used
to complete the positive and negative samples in Fujian Province, and the sample-set covers
15,589 samples in the past nine years (2010–2018). Among them, there are 3562 positive
samples and 12,027 negative samples, and the ratio of positive and negative samples is
about 1:3.4. The spatial distribution of positive and negative samples is shown in Figure 7.
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The positive and negative sample attributes determine the output features of the final
training sample-set. The output features of positive samples were taken as one, and the
output features of negative samples were taken as zero.
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4.2. Optimization of Model Parameters

The selection of model parameters has a significant impact on model accuracy, and
model optimization is crucial in model construction. The most commonly used model
parameter optimization methods include traditional methods and hyperparametric Op-
timization algorithms. The traditional parameter optimization method is the grid search
method, whose optimization accuracy is inversely proportional to its speed. In order to
optimize parameters more efficiently, the Bayesian Optimization algorithm has gradually
emerged [37,38]. The Bayesian Optimization algorithm adopts the Gaussian process to fit
the distribution of the objective function by increasing the number of samples, and the
objective function is optimized by cross-verifying the accuracy. Each iteration outputs
a hyperparameter, and the hyperparameter is optimized in the process of finding the
optimal value.

4.3. Model Saving and Early-Warning Output

The model trained by machine learning can be saved by calling the DUMP function in
the python environment. The model is generally saved as a .pkl format file.

When the actual early-warning is running, the trained early-warning model is directly
called by the LOAD function to output the probability of possible landslide disasters.
According to the probability, the warning level is determined by classification. The setting of
graded breakpoints can refer to the classification table of geological disaster meteorological
risk early-warning grades (according to the geological disaster regional meteorological risk
early-warning standard (trial) (T/CAGHP 039-2018)), and can also be fine-tuned according
to the specific conditions of the study area. Considering that the output threshold was set
to 0.5 in the machine learning algorithm, the geohazard meteorological warning probability
class classification was adjusted in conjunction with the specific conditions of the study
area. That is, when the output probability P ≥ 50% and P < 60%, the yellow warning of
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landslide disaster is issued; when the output probability P ≥ 60% and P < 80%, the orange
warning of landslide disaster is issued; when the output probability P ≥ 80%, a red warning
of landslide disasters is issued, as shown in Table 4.

Table 4. Division of early-warning levels.

The Warning Level The Risk of Landslides Output Probability/P

Red alert highest risk P ≥ 80%

Orange alert higher risk 60% ≤ P < 80%

Yellow warning high risk 50% ≤ P < 60%

5. Result and Verification
5.1. Model Parameter Optimization Training and Effect Evaluation

The training sample-set of regional landslide early-warning in Fujian Province was
divided into the training test sets in the ratio of 4:1. The parameters were optimized
by a Bayesian Optimization algorithm and five-fold cross-validation. The six commonly
used machine learning classification models were compared and evaluated to compare
the accuracy and model generalization ability indexes of each model. The optimization
parameters and effect evaluation comparison of the six models is shown in Table 5 and
Figure 8.

Table 5. Comparison of partial hyperparameter optimization and model evaluation of six machine
learning algorithms.

Machine Learning
Model Accuracy Model Generalization

Ability Hyperparameter Hyperparameter
Value

Random Forest
algorithm

0.923 0.955
n_estimators 118

max_depths 10

min_samples_split 3

Nearest Neighbor
algorithm 0.932 0.924 n_neighbors 10

Decision Tree 0.937 0.904 max_depths 4

Support Vector
Machine

0.932 0.920
C 3

gamma 0.003

Logistic Regression 0.940 0.922 C 5

Artificial Neural
Network

0.937 0.935
hidden_layer_sizes (6,7)

max_iter 1680

According to the calculation results of the six machine learning algorithms (Table 5),
it can be seen that the Random Forest model had the best performance; its accuracy rate
was 0.923, the model generalization ability was the best (AUC = 0.955), and the model
had no overfitting phenomenon; the learning and ROC curves are shown in Figure 9. The
second is the Artificial Neural Network model, with an accuracy rate of 0.937 and an AUC
of 0.935, followed by the Nearest Neighbor model, Logistic Regression model, and Support
Vector Machine model, with AUCs of 0.924, 0.922, and 0.920, respectively; the worst was
decision-making tree, its AUC value being 0.904 and its accuracy 0.937.
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5.2. Model Early-Warning Verification—Taking the Random Forest Algorithm as an Example

On two days, 22 June and 28 June 2021, six and four landslide disasters occurred in
Youxi County and Shaowu City, Fujian Province, respectively, all of which were small-scale
landslide disasters caused by local rainstorms.

Based on the actual precipitation data in Fujian Province (5 km × 5 km QPE data
from China Meteorological Administration), the new model based on Random Forest and
the original explicit statistical model was used to simulate the early-warning. Then, the
objective forecast results of the model on 22 June and 28 were compared with the actual
occurrence of landslide disasters, as shown in Table 6 and Figures 10 and 11.

According to the comparison on 22 June 2021 (Table 6, Figure 10), the six actual
landslide disasters all fell in the early-warning area of the Random Forest model (one
in the yellow early-warning area and six in the orange early-warning area), with a hit
rate of 100%; one landslide disaster fell in the early-warning area (yellow early-warning
area) of the explicit statistical model, with a hit rate of 16.7%. The landslide densities in
the early-warning areas of the two models were 6.2 and 3.8 per 1000 square kilometers,
respectively. The actual landslide density in the early-warning area of the Random Forest
model was 1.6 times that of the explicit statistical model.
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Table 6. Comparison between the Random Forest model and explicit statistical early-warning model.

Actual Landslide (Number)

22 June 2021
Results of Different Models

28 June 2021
Results of Different Models

Explicit Statistical
Models

Random Forest
Model

Explicit Statistical
Models

Random Forest
Model

6 4

All warning area

Accuracy (%) 16.7 100.0 100.0 100.0

Number of
landslides 1 6 4 4

Area of warning
area (km2) 262.2 971.9 4119.1 2359.8

Landslide density
(amount of per

1000 km2)
3.8 6.2 1.0 1.7

Yellow Alert area

Number of
landslides 1 1 2 0

Area of warning
area (km2) 262.2 576.0 3051.3 1631.9

Landslide density
(amount of per

1000 km2)
3.8 1.7 0.7 0.0

Orange Alert area

Number of
landslides 0 5 2 4

Area of warning
area (km2) 0 396.0 1067.8 728.0

Landslide density
(amount of per

1000 km2)
/ 12.6 1.9 5.5

According to the comparison on 28 June 2021 (Table 6, Figure 11), four landslide
disasters all fell in the early-warning area (orange warning area) of the Random Forest
model, with a hit rate of 100%; four landslides fell in the warning zone of the explicit
statistical model (two yellow warning areas), the hit rate is also 100%. The landslide
densities in the early-warning areas of the two models were 1.7 and 1.0 per 1000 square
kilometers, respectively. The actual landslide density in the early-warning area of the
Random Forest model was 1.7 times that of the explicit statistical model.

By comparing the results of the two models, it can be seen that the hit rate of the
new model based on the Random Forest was six times that of the original model (22 June)
or equivalent (28 June), and the landslide density in the early-warning area of the new
model was 1.6–1.7 times that of the original. Meanwhile, it can be seen from Figure 11
that no landslide occurred in WuYiShanshi area (upper right corner of the figure frame).
There is no warning area in the warning results of the Random Forest model, and there is a
certain range of yellow warning areas in the warning results of the explicit statistical model
warning results. The preliminary verification shows that the new model based on the
Random Forest has obvious advantages with a higher hit rate, smaller warning area, and
more accurate warning. Since there are few new landslide disasters in the study area, the
current model verification work is relatively weak, and we will continue to track the new
landslide disasters in the study area and strengthen the model validation and correction.



Forests 2022, 13, 2182 16 of 19
Forests 2022, 13, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 10. Comparison of early-warning results of different models on 22 June 2021 (above: early-
warning results of the Random Forest model; below: explicit statistical model warning results). 

According to the comparison on 28 June 2021 (Table 6, Figure 11), four landslide dis-
asters all fell in the early-warning area (orange warning area) of the Random Forest model, 
with a hit rate of 100%; four landslides fell in the warning zone of the explicit statistical 
model (two yellow warning areas), the hit rate is also 100%. The landslide densities in the 
early-warning areas of the two models were 1.7 and 1.0 per 1000 square kilometers, re-
spectively. The actual landslide density in the early-warning area of the Random Forest 
model was 1.7 times that of the explicit statistical model. 

Table 6. Comparison between the Random Forest model and explicit statistical early-warning 
model. 

Actual Landslide (Number)  

22 June 2021 
Results of Different Models 

28 June 2021 
Results of Different Models 

Explicit Statisti-
cal Models 

Random Forest 
Model 

Explicit Statistical 
Models 

Random Forest 
Model 

6 4 

All warning 
area 

Accuracy (%)  16.7 100.0 100.0 100.0 
Number of landslides 1 6 4 4 

Area of warning area (km2) 262.2 971.9 4119.1 2359.8 
Landslide density (amount 

of per 1000 km2)  
3.8 6.2 1.0 1.7 

Figure 10. Comparison of early-warning results of different models on 22 June 2021 (above:
early-warning results of the Random Forest model; below: explicit statistical model warning results).

Forests 2022, 13, x FOR PEER REVIEW 17 of 20 
 

 

Yellow 
Alert area 

Number of landslides 1 1 2 0 
Area of warning area (km2) 262.2 576.0 3051.3 1631.9 
Landslide density (amount 

of per 1000 km2)  3.8 1.7 0.7 0.0 

Orange 
Alert area 

Number of landslides 0 5 2 4 
Area of warning area (km2) 0 396.0 1067.8 728.0 
Landslide density (amount 

of per 1000 km2)  / 12.6 1.9 5.5 

 
Figure 11. Comparison of early-warning results of different models on June 28, 2021 (above: early-
warning results of Random Forest model; below: explicit statistical model warning results). 

By comparing the results of the two models, it can be seen that the hit rate of the new 
model based on the Random Forest was six times that of the original model (22 June) or 
equivalent (28 June), and the landslide density in the early-warning area of the new model 
was 1.6–1.7 times that of the original. Meanwhile, it can be seen from Figure 11 that no 
landslide occurred in WuYiShanshi area (upper right corner of the figure frame). There is 
no warning area in the warning results of the Random Forest model, and there is a certain 
range of yellow warning areas in the warning results of the explicit statistical model warn-
ing results. The preliminary verification shows that the new model based on the Random 
Forest has obvious advantages with a higher hit rate, smaller warning area, and more 
accurate warning. Since there are few new landslide disasters in the study area, the cur-
rent model verification work is relatively weak, and we will continue to track the new 
landslide disasters in the study area and strengthen the model validation and correction. 

6. Conclusions 

Figure 11. Comparison of early-warning results of different models on 28 June 2021 (above:
early-warning results of Random Forest model; below: explicit statistical model warning results).
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6. Conclusions

This paper proposed a method and process for building a regional landslide disasters
early-warning model based on machine learning. Taking Fujian Province as the geological
background, the landslide disaster early-warning based on machine learning in this region
was carried out. Six machine learning algorithms were selected, including the Random
Forest algorithm, Nearest Neighbor algorithm, Support Vector Machine, Logistic Regres-
sion, Decision Tree, Artificial Neural Network, etc. According to the topography, geological
conditions, environmental conditions, human engineering activities, and other influencing
factors of Fujian Province, evaluation indexes such as grade, geomorphic type, lithology,
historical disasters, vegetation type, water system influence, annual rainfall, distance from
house, distance from road, density of population, daily rainfall, and daily rainfall from
the previous 1 to 15 days were selected. The sample data set of the early-warning model
was constructed by including 27 disaster-influencing factors, and the establishment of the
geological disaster early-warning model was realized through several key steps such as the
construction of the sample-set, the model training and parameter adjustment optimization,
and the classification of the model early-warning level. The results of the early-warning
model showed that the Random Forest algorithm performed better. This algorithm has
the advantages of fully applying limited samples, diversity, and accuracy; and it has the
disadvantage of overfitting on certain noisy problems. In this early-warning model, the
Random Forest algorithm accuracy rate was the highest (92.3%), and the model generaliza-
tion ability was the best (AUC is 0.955); the second best was the Artificial Neural Network
model, which has the advantages of high classification accuracy and strong learning ability,
but because it is the disadvantage of requiring a large number of parameters in this model,
the accuracy rate was slightly lower than that of the Random Forest model, being 0.937,
and the AUC was 0.935. Contrary, the Nearest Neighbor model, Logistic Regression model,
and support vector machine model have problems such as difficulty in solving multi-
classification problems and requiring a large amount of training data, their AUC values
being 0.924, 0.922, and 0.920, respectively. The worst model was the Decision Tree model,
which has problems such as poor handling of continuous variables and easy overfitting, its
AUC value being 0.904 and the accuracy 0.937. For the selection of the typical rainfall-type
landslide disaster process in Fujian Province from 2019 to 2021 and for the verification of
the Random Forest algorithm model, the results showed that the early-warning hit rate
of the model was 100%. Compared with the early-warning results of the original explicit
statistical model, the hit rate of the new model is higher than that of the original one, since,
the landslide density in the early-warning area of the new model was 1.6–1.7 times higher
than that of the original model. The preliminary verification showed that the new model
based on the Random Forest had obvious advantages with a higher hit rate and smaller
warning area, which can achieve more accurate warnings.

Research on the regional geological disasters early-warning model based on machine
learning is relatively complex. Through the research in this paper, the problems of in-
sufficient samples, limited methods, and insufficient precision in the traditional regional
landslide early-warning model were solved to a certain extent. For the geological disasters
early-warning model constructed by machine learning, the larger the sample data set, the
higher the accuracy of the trained model, and the follow-up will increase the amount of
data to optimize and improve the early-warning models.

Author Contributions: Data resources, J.H., Y.L., P.Z.; research methods, Y.L., P.Z.; writing—original
draft preparation, Y.L., S.M.; editing, Y.L., S.M., R.X. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was financially supported by the National Natural Science Foundation of China
(42077440; 41202217) and the National Key Research and Development Program of China (2018YFC15 05503).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Forests 2022, 13, 2182 18 of 19

Data Availability Statement: Not applicable.

Conflicts of Interest: There is no conflict of interest in the research methods, routes and data in
this study.

References
1. Guzzetti, F.; Gariano, S.L.; Peruccacci, S.; Brunetti, M.T.; Marchesini, I.; Rossi, M.; Melillo, M. Geographical landslide early

warning systems. Earth Sci. Rev. 2020, 200, 102973. [CrossRef]
2. Liu, C.-Z.; Liu, Y.-H. Early warning theory for regional geo-hazards and design of explicit statistical system. Hydrogeol. Eng. Geol.

2007, 34, 11–18.
3. Liu, C.-Z.; Liu, Y.-H.; Wen, M.-S.; Tang, C.; Xue, Q.-W. Method and Application of Regional Warning for Geo-Hazards in China;

Geological Publishing: Beijing, China, 2009.
4. Liu, C.-Z.; Liu, Y.-H.; Wen, M.-S.; Tang, C.; Zhao, L.-Q.; Tian, H. Early warning for regional geo-hazards during 2003–2012, China.

Chin. J. Geol. Hazard Control. 2015, 26, 1–8.
5. Liu, Y.-H.; Liu, C.-Z.; Lian, J.-F.; Wen, M.-S.; Tang, C. Preliminary study of geo-hazards regional early warning based on explicit

statistical theory. Geol. China 2008, 35, 344–350.
6. Liu, Y.-H.; Liu, C.-Z.; Wen, M.-S.; Tang, C. Study of Early Warning Models for Regional Geo-Hazards in China. J. Eng. Geol. 2015,

23, 738–746.
7. Liu, Y.-H.; Zhang, Z.-X.; Su, Y.-C. Case study of vulnerability evaluation for geo-hazards bearing capacity of a region. J. Eng. Geol.

2018, 26, 1121–1130.
8. Liu, Y.-H.; Su, Y.-C. Early-warning model of regional geological disasters based on meteorological factor in Qingchuan County,

Sichuan Province. J. Eng. Geol. 2019, 27, 134–143.
9. Li, S.-D.; Bai, Y.-H.; Jiang, Y.; Wang, Z.-H.; Wie, W.-H.; Li, X.; Liu, L.-N. Explicit Statistic Meteorological Early-warning Model of

Geological Hazards in Xinjiang, China Based on the Genesis Theory of Endogenic and Exogenic Couping. J. Earth Sci. Environ.
2017, 39, 287–300.

10. Wei, P.-X.; Li, X.-J. The meteorologic early warning research of sudden geo-hazard in Guangdong province. Chin. J. Geol. Hazard
Control. 2015, 26, 138–144.

11. Wen, M.-S.; Liu, Y.-H.; Su, Y.-C.; Fang, Z.-W.; Xiao, R.-H.; Chen, C.-L.; Xu, W.; Chen, Y.-C. Geo-Hazards Investigation Report of
Qingzhujiang River Region, Sichuan; China Institute of Geo-Environmental Monitoring: Beijing, China, 2016.

12. Hou, S.-S.; Li, A.; Han, B.; Zhou, P.-G.; Ye, H.-J.; Zhu, B.; Ma, W.-F. An approach of geo-hazard warning system in Ya’an, Sichuan
and its analysis. Chin. J. Geol. Hazard Control. 2014, 25, 134–138.

13. Liu, C.-Z.; Wen, M.-S.; Liu, Y.-H.; Liu, Q.-Q.; Gu, X.-X. Study of Geo-Hazards in Wenchuan Earthquake Zone; Geology Press: Beijing,
China, 2017.

14. Cannon, S.H.; Ellen, S. Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California. Calif. Geol. 1985,
38, 262–272.

15. Pietro, A. A warning system for rainfall-induced shallow failures. Eng. Geol. 2004, 73, 247–265.
16. Hong, H.; Pourghasemi, H.R.; Pourtaghi, Z.S. Landslide susceptibility assessment in Lianhua County (China): A comparison

between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 2016, 259, 105–
118. [CrossRef]

17. Peruccacci, S.; Brunetti, M.T.; Gariano, S.L.; Melillo, M.; Rossi, M.; Guzzetti, F. Rainfall thresholds for possible landslide occurrence
in Italy. Geomorphology 2017, 290, 39–57. [CrossRef]

18. Wei, L.-W.; Huang, C.-M.; Chen, H.; Lee, C.-T.; Chi, C.-C.; Chiu, C.-L. Adopting the I3-R24 rainfall index and landslide
susceptibility for the establishment of an early warning model for rainfall-induced shallow landslides. Nat. Hazards Earth Syst.
Sci. 2018, 18, 1717–1733. [CrossRef]

19. Ding, G.-L.; Wang, Y.-H.; Mao, J.; Yao, K.; Liu, H.-H. A study of the rainfall threshold of debris flow forewarning in Beijing based
on susceptibility analysis. Hydrogeol. Eng. Geol. 2017, 44, 136–142.

20. Keefer, D.K.; Wilson, R.C.; Mark, R.K.; Brabb, E.E.; Brown, W.M., III; Ellen, S.D.; Harp, E.L.; Wieczorek, G.F.; Alger, C.S.; Zatkin,
R.S. Real-Time Landslide Warning during Heavy Rainfall. Science 1987, 238, 921–925. [CrossRef]

21. Mulyana, A.R.; Sutanto, S.J.; Hidayat, R.; Ridwan, B.W. Capability of Indonesian Landslide Early Warning System to detect
landslide occurrences few days in advance. In Proceedings of the 21st EGU General Assembly, EGU2019, Vienna, Austria, 7–12
April 2019.

22. Pennington, C.V.; Freeborough, K.; Dashwood, C.; Dijkstra, T.; Lawrie, K. The national landslide database of Great Britain:
Acquisition, communication and the role of social media. Geomorphology 2015, 249, 44–51. [CrossRef]

23. Ponziani, F.; Berni, N.; Stelluti, M.; Zauri, R.; Pandolfo, C.; Brocca, L.; Moramarco, T.; Salciarini, D.; Tamagnini, C. LANDWARN:
An Operative Early Warning System for Landslides Forecasting Based on Rainfall Thresholds and Soil Moisture. In Landslide
Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 627–634.

24. Chen, W.; Pourghasemi, H.R.; Zhao, Z. A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial
neural network models for landslide susceptibility mapping. Geocarto Int. 2017, 32, 367–385. [CrossRef]

http://doi.org/10.1016/j.earscirev.2019.102973
http://doi.org/10.1016/j.geomorph.2016.02.012
http://doi.org/10.1016/j.geomorph.2017.03.031
http://doi.org/10.5194/nhess-18-1717-2018
http://doi.org/10.1126/science.238.4829.921
http://doi.org/10.1016/j.geomorph.2015.03.013
http://doi.org/10.1080/10106049.2016.1140824


Forests 2022, 13, 2182 19 of 19

25. Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative
assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model
tree. Landslides 2016, 13, 361–378.

26. Bui, D.T.; Tuan, T.A.; Hoang, N.-D.; Thanh, N.Q.; Nguyen, D.B.; Van Liem, N.; Pradhan, B. Spatial prediction of rainfall-induced
landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference
model and artificial bee colony optimization. Landslides 2017, 14, 447–458.

27. Liu, Y.-L.; Yin, K.-L.; Liu, B. Application of logistic regression and artificial neural networks in spatial assessment of landslide
hazards. Hydrogeol. Eng. Geol. 2010, 37, 92–96.

28. Xu, C.; Xu, X.-W. Logistic regression model and its validation for hazard mapping of landslides triggered by Yushu earthquake.
J. Eng. Geol. 2012, 20, 326–333.

29. Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of logistic regression and random forests techniques for
shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [CrossRef]

30. Sun, D.; Gu, Q.; Wen, H.; Shi, S.; Mi, C.; Zhang, F. A Hybrid Landslide Warning Model Coupling Susceptibility Zoning and
Precipitation. Forests 2022, 13, 827. [CrossRef]

31. Zhou, T.-Z.; Chen, G.; Zhao, X.-F.; Zhu, Y.-F. Study of distribution laws and genesis of landslides in Fujian province. J. Chongqing
Univ. Sci. Technol. Nat. Sci. Ed. 2007, 9, 17–19.

32. Gao, S.; Liu, A.-M.; Huang, Z.-G.; Zheng, W.-W. The character analysis on heavy rainfall inducing geological hazards in Fujian
province. Geol. Fujian 2010, 29, 64–71.

33. Ye, L.-Z.; Liu, K.; Huang, G.-P.; Zheng, M.-Z. The characteristics and influence factors of catastrophic geological disaster in Fujian
province. Chin. J. Geol. Hazard Control. 2015, 26, 98–102.

34. China Geological Disaster Prevention Engineering Association. Standard of Geo-Hazards Early-Warning Based on Meteorological
Factors (T/CAGHP 039-2018); China University of Geosciences Press: Wuhan, China, 2018.

35. Liu, Y.-H.; Fang, R.-K.; Su, Y.-C.; Xiao, R.-H. Machine learning-based model for warning of regional landslide disasters. J. Eng.
Geol. 2021, 29, 116–124.

36. Miao, Y.-M. A New Approach to Generating Absence Samples for Landslide Susceptibility Assessment. Master’s Thesis, Nanjing
Normal University, Nanjing, China, 2016.

37. Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In Proceedings of the
25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012.

38. Sun, D.; Wen, H.; Wang, D.; Xu, J. A random forest model of landslide susceptibility mapping based on hyperparameter
optimization using Bayes algorithm. Geomorphology 2020, 362, 107201. [CrossRef]

http://doi.org/10.1016/j.geomorph.2015.06.001
http://doi.org/10.3390/f13060827
http://doi.org/10.1016/j.geomorph.2020.107201

	Introduction 
	Geological Background of the Study Area 
	Determination of Evaluation Index and Selection of Algorithm 
	Extraction of Evaluation Indexes 
	Selection of Machine Learning Algorithms 

	Regional Landslide Early-Warning Model Method Based on Machine Learning 
	Construction of Training Sample-Set 
	Construction of Characteristic Database of Geological Environment and Rainfall Factors 
	Sampling Method of Positive and Negative Samples 
	Feature Attribute Extraction and Data Screening 

	Optimization of Model Parameters 
	Model Saving and Early-Warning Output 

	Result and Verification 
	Model Parameter Optimization Training and Effect Evaluation 
	Model Early-Warning Verification—Taking the Random Forest Algorithm as an Example 

	Conclusions 
	References

