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Abstract: Low temperature is a primary factor limiting the distribution of Prunus mume. In order to
produce a variety that has both cold tolerance and the characteristic fragrance of true mume, previous
researchers crossbred a strong-tolerance variety apricot mei, P. mume ‘DF’ (‘Dan Fenghou’) and the
weak-tolerance variety of true mume, P. mume ‘BY’ (‘Beijing Yudie’). They gained an offspring variety
named P. mume ‘XR’ (‘Xiang Ruibai’), but its cold tolerance is unknown at this point. Here, three
varieties (XR, BY, and DF) were selected as the materials, and different low-temperature treatments
were used, with temperature as the only variable. Conventional biological methods, such as ion
leakage rate, different tissues, and plant viability statistics, were used, as well as an innovative use of
infrared engineering and moisture monitoring for dynamic observation of the water-to-ice process
in tissues. The results were as follows: DF cold tolerance was the highest, followed by XR and then
BY. The LT50 of XR was increased by 6 ◦C after five days of cold priming at 4 ◦C, which indicated a
stronger cold acclimation ability than the parent varieties. The XR variety enhanced the antioxidant
capacity by increasing SOD and POD enzyme activities during low temperature treatment, thus
enhancing the cold tolerance. The antioxidant enzyme genes PmSOD3, PmPOD2, PmPOD19, and
PmPOD22 had important regulatory roles in XR’s cold acclimation process.

Keywords: cold tolerance; Prunus mume ‘Xiang Ruibai’; infrared detection; LT50; antioxidant capacity

1. Introduction

Prunus mume Sieb. et Zucc. (mei) from the Rosaceae family is a species widely used
as a traditional ornamental flowering plant and fruit tree in China. Mei flowers bring
vitality and contribute to the diversity of flower varieties in early spring. However, they
grow along the Yangtze River basin and cannot overwinter outdoors in the north of China.
To expand distribution, the breeding of cold-resistant varieties has been conducted for
nearly half a century. Since the 1950s, Chen and Zhang have cultivated a population of
cold-tolerant mei varieties through introduction and hybridization, including FH (‘Feng
Hou’), DF (‘Dan Fenghou’), YX (‘Yan Xing’), and BM (‘Blireiana Mei’) [1–4]. According to
the source of the hybrids, the offspring of apricot and mei plants are divided into the apricot
mei group, while the offspring of plum and mei plants are divided into the Blireiana group.
Native mei varieties are called true mume [5]. In regional survival tests on the cold tolerance
of mei varieties, three major groups have been classified: apricot mei > blireiana > true
mume [4,6–8]. In studies on cold tolerance, the apricot mei group is represented by YX, FH,
DF, and ‘SC’ (‘Song Chun’), which was able to withstand the low temperature of −30 ◦C in
regional survival tests. The true mume ‘BY’ (‘Beijing Yudie’) had moderate cold tolerance
and required a certain microclimate to be cultivated in an open field in Beijing [4,7,9].
Although apricot mei varieties inherit the strong cold tolerance of apricots, they lose the
characteristic floral aroma of true mume, except for the ‘XR’ variety (‘Xiang Ruibai’). The
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‘XR’ variety studied in our research is a hybrid obtained by Chen in 1999, with the apricot
mei DF as the female parent and the true mume BY the male one. It emits the characteristic
floral aroma of true mume and has great research and development potential [10]. However,
an evaluation of its cold tolerance has never been reported.

With temperature as a parameter, injuries caused at 0 ◦C or above are termed ‘chilling
damage’, while those below 0 ◦C are called ‘frost damage’. Chilling damage can cause plant
photosynthesis, cell membrane fluidity, and a decrease in basal metabolism, and therefore,
plant growth and development are inhibited. Frost damage can lead to the direct mechani-
cal damage, and even death, of plant cells [11–13]. Tolerance to low temperature varies in
different species. For example, the japonica variety of rice can tolerate low temperatures in
boreal regions, but the indica variety cannot [14]. A complex and sophisticated mechanism
of tolerance to low temperatures can be developed in plants through low-temperature
acclimation and undercooling. Low-temperature acclimation refers to the process of treat-
ing plants at a low temperature that does not cause serious injury but instead leads to
significantly higher freezing tolerance in plants [12,15–17]. It includes cold and freezing
acclimation for woody plants and enhances cell membrane permeability, which can prevent
the formation of intracellular ice crystals [18]. Undercooling refers to the phenomenon
where water does not freeze when the temperature drops below freezing; it is an important
way to avoid freezing injuries in plant tissue cells [19–22].

As early as the 1970s, Lyons and Raison demonstrated that, when plants are exposed
to low temperatures, the stimulation of membrane lipids results in a series of changes that
increase membrane permeability, which can lead to cell bursting and large amounts of
dielectric exocytosis [23]. The increase in the cell membrane permeability of cold-tolerant
varieties is minor and easily restored, while the cell membranes of varieties that have
poor cold tolerance are easily damaged. Therefore, the change in electrolyte extravasation
can be measured as a scale of cold tolerance in plants [24–27]. In addition, the logistic
equation can be used to determine the semi-lethal temperature (LT50) and the critical lethal
temperature of plants [25,28,29]. Zhang evaluated and compared the cold tolerance of 38
Prunus mume varieties using conductivity and growth recovery [6,26]. Other studies have
recognized conductance as a reliable parameter for determining the cold tolerance of cotton,
grapevines, plums, hazelnuts, fig, apricots, and their interspecific hybrids [26,30–33].

The freeze–thaw ability of plants has an important effect on the survival and growth of
plants and assists in evaluating their freezing tolerance and, thus, selecting strong-tolerance
plants [34–36]. The plant freeze–thaw ability leads to temperature changes through exother-
mic or endothermic processes [24]. Detecting the formation and development of ice crystals
in plants during the freeze–thaw process is of great significance. In early research, the
internal structures of plant tissues have been observed and dissected in laboratory settings,
and the biochemical indicators of plant tissues have been analyzed to determine their
freeze–thaw situations [37–39]. Infrared spectroscopy, nuclear magnetic resonance imag-
ing, and impedance spectroscopy have also been used for freeze–thaw detection [40–42].
Infrared thermal imaging was used to directly observe ice nuclei, where the ice initially
formed and then expanded in plants [43]. Prunus persica and Malus domestica apples have
inherent ice-nucleating agents that are highly active at low temperatures, and ice-nucleated
bacteria may induce them to bloom or freeze [44,45]. Icing in plants was found to be se-
quential: it started from the bark outside the stem and then spread to primary tissues, such
as flower buds and young branches [46]. Based on the dielectric and exotherm temperature
principle, sensors have been investigated to analyze variations in water and ice content in
stems [47–51].

In this study, the true mume BY, the apricot mei DF, and their progeny XR were
treated with artificial gradient cooling to study their cold tolerance. The methods of
morphology, section observation, tissue browning, ion leakage rate, infrared thermal-
imaging technology, and freeze–thaw detection sensors were used. The results were applied
together to analyze the cold tolerance of the three varieties and to provide a preliminary
study on the mechanism of elevated cold acclimation ability in XR.
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2. Materials and Methods
2.1. Plant Materials and Treatments

The three P. mume cultivars (apricot mei ‘DF’, true mume ‘BY’, and their hybrid off-
spring ‘XR’) were grown at two sites in Beijing, China: (i) Jiufeng National Forest Park
(39◦54′ N, 116◦28′ E, 800 m.a.s.l.); and (ii) Beijing Forestry University (40◦00′ N, 116◦34′ E,
200 m.a.s.l.). Grafted seedlings were chosen to corroborate the results of adult trees and
avoid errors caused by discrete branches (Supplementary Materials Figure S1).

The twigs of annual branches and stems of the three varieties adult trees were har-
vested before (September 2018 when the fallen leaf scars appear at the petiole) and after
winter (February 2019 when flower buds and leaf buds start to sprout). They were treated
at a steady rate of −0.5/K h down to 4, 0, −5, −10, −15, −20, −25, −30 and −40 ◦C in
a temperature-alternating test chamber (Qieke, Beijing, China). The air temperature was
then held at the target temperature for 1 h, and stems were thawed at a rate of 5 K/h and
warmed to 4 ◦C. The twigs can be used to measure ion leakage, freezing tolerance, paraffin
section and infrared video thermography. Adult tree branches of BY and DF in the field
were measured for stem water content with a stem moisture sensor. The purpose of this
was to observe the pattern of freezing and thawing of water in the branches of true mume
BY and apricot mei DF grown in the one field environment in winter.

Grafted to Armeniaca sibirica (L.), Lam seedlings can be used as juvenile tree mate-
rial to measure ion leakage, freezing tolerance, infrared video thermography, SOD and
POD activity and gene expression. They were selected after 5 d of cold accumulation
at 4 ◦C and cold accumulation ability was compared with the unaccumulation material.
Accumulation and unaccumulation grafted seedlings were treated as whole plants in the
cabinet refrigerator (SC/SD-332C, Haier, Shandong, China). The temperature inside the
cabinet refrigerator was regulated by an external high-precision intelligent thermostat
switch (LUEABB, SM6-LCD). Treating with a cooling rate of 1 ◦C /1 h to 4, 0, −5, −10,
−15, −20 ◦C and each gradient was maintained for 12 h, with the 25 ◦C material as the
control. The material was then taken at each gradient temperature point and thawed at 4 ◦C
for 12 h. The treated stems were used for ion leakage, freezing tolerance measuring and
infrared video thermography observing. The other grafted seedlings of the three varieties
experienced chilling treatment (4 ◦C for 8 h and 5 d), freezing treatment (−5 ◦C for 1 h) and
recovery to 4 ◦C after freezing (1 ◦C /1 h). Then, the stems were used for SOD and POD
activity measuring, transcriptome sequencing and gene expression analysis. More than
three biological replicates were performed.

2.2. Measurement of Ion Leakage

The twigs of annual branches and grafted seedlings stems were rinsed with deionized
water. Six 0.5 cm long branches without buds were cut and inserted into one glass test
tube with 10 mL of deionized water, with three biological and technical replications. The
tubes were incubated at 25 ◦C for 8h and the electrical conductivity of the water bath with
the segments (Sinitial) was measured (FG3-FK Conductivity Meter, Mettler Toledo, Zurich,
Switzerland). To measure the maximal conductivity (Stotal), the tubes were incubated in a
water bath at 100 ◦C for 30 min and subsequently cooled at 25 ◦C for 30 min. The extent of
ion leakage from tubes without branches (S0) was determined. The index of cell membrane
injury (L) was estimated according to Zhang et al. (1985):

L = 100 (Sinitial− S0) / (Stotal− S0) [%]

The low semi-lethal temperature (LT50) was calculated by fitting the logistic equation
the with electrolyte exudation rate [52].

2.3. Determination of Freezing Tolerance

The cold tolerance of vegetative and reproductive shoots of adult trees and grafted
seedlings was evaluated by placing the materials at a range of freezing temperatures. At
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least four twigs bearing numerous reproductive and vegetative shoots were randomly
selected from the sample pools of the three varieties. Twig samples were exposed in a
hydroponic bottle at 4 ◦C for 12 h before initiating the freezing protocol. The freezing
protocol was the same as that of ion leakage measurement. Then, hydroponic twigs were
placed at day and night temperatures of 25 and 22 ◦C, respectively, with light of 1000 lx
for 14 h per day for one week to allow frostbite to develop or recover. The injury to
shoots was assessed with the degree of browning discoloration (n = 24 to 71 shoots per
exposure temperature). Buds die if they are attacked by frost, so their statistics were
either undamaged (0%) or frost-killed (100%). All the samples were observed under a
stereomicroscope (Shanghai, China).

2.4. Paraffin Section

Stem samples of the three varieties of adult trees were divided into two treatment
groups, which were, respectively, treated at 4 and−30 ◦C for 5 h, thawed, and stored in FAA
solution (formaldehyde: glacial acetic acid: 70% ethanol = 1: 1: 18 v/v). The samples were
dehydrated in a gradient ethanol series for 1 h (70%, 85%, 95%, and 100%) and embedded in
paraffin. Sections at a thickness of 8 µm were fixed on silane-coated slides when the paraffin
was melted but the tissue samples remained. Afterward, the samples were dehydrated
using a gradient ethanol series and dyed with safranin o-fast green staining. Finally, the
sections were observed with an automatic microscope (Panoramic MIDI, 3DHISTECH Ltd.,
Budapest, Hungary).

2.5. Infrared Video Thermography

The exothermic reaction during icing allowed us to observe the critical freezing tem-
peratures of different tissues of the three varieties. Selected detached twigs of adult trees
and intact grafted seedlings were used as material. The experiments were conducted in
two types of controlled environment chambers: a horizontally adjustable temperature re-
frigerator (SC/SD-332c, Haier, Shandong, China) or an external microcomputer intelligent
temperature controller (LB-SM6, Lueabb, Wenzhou, China). The temperature remained
stable after placing thermometers at three different sites in the chambers. Temperature
changes and ice in plants were monitored with an infrared thermal imager (Ti55FT, Fluke,
State of Washington, USA). Infrared images were recorded with one photo every two
seconds, and the fluctuation in temperature was also noted. Exothermal activity in the
plants was monitored synchronously to generate a real-time heat map. As the water turned
into ice, a large amount of latent heat from fusion was released, and the temperature rose.
The greater the amount and range of frozen water, the longer and more obvious the reaction.
The whole procedure was repeated at least nine times.

2.6. Measurement of Stem Water Content in Field by Stem Moisture Sensor

Based on the principle of standing wave rate [53], the arbor stem moisture sensor
consisted of a signal source, a coaxial transmission line, and a two-pin parallel stainless-
steel probe. Perennial branches with diameters of 10 cm on adult trees of DF and BY in
field were selected. A hole was drilled at a distance of 1 m from the ground, and probes
to measure voltage and temperature were placed. The dielectric properties of the arbor
stem determined the degree of the voltage difference across the coaxial transmission line
(i.e., the output voltage of the sensor). The collected data were remotely transmitted to a
smart forestry ecological detection platform via GPRS (general packet radio service), which
generated the visualized microenvironment. Using a standard curve, the output voltage
value could be converted to the volume of water content in the trunk. It was drawn by
collecting isolated stems of the same thickness from the chosen trees and by measuring
the voltage value in the natural environment after fully absorbing water (Supplementary
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Materials Figure S2). Combined with the temperature and water content values, the freezing
volume of the moisture in the stem could be calculated with the following formula [51]:

Vice = π(R2−r2)HθA*ρw/ρice

where Vice is the freezing volume; R is the stem radius; r is the radius of stems that were
not frozen or thawed during the freeze–thaw process; H is the stem length measured by
sensor; θA is the θStem volume of moisture content at the freezing point; ρw is the density
of water; and ρice is the density of ice.

2.7. SOD and POD Activity Determination

The stems of grafted seedlings that experienced chilling treatment (4 ◦C for 8 h and 5 d),
freezing treatment (−5 ◦C for 1 h) and recovery to 4°C after freezing (1 ◦C/1 h) were chosen.
SOD and POD enzyme activities were determined using NBT and guaiacol methods [54].
Sample powder (0.05 g) was homogenized in 1.2 mL of 0.05 M phosphate buffer (PH 7.8) in
an ice bath and centrifuged at 10,000× g for 15 min at 4 ◦C. The supernatant was replaced
with SOD and POD enzyme solutions. NBT and guaiacol methods were used to measure
SOD and POD activities [54]. The absorbances were measured at 560 nm and 240 nm,
respectively, with an ultraviolet spectrophotometer. The SOD and POD activities were
calculated according to the standard curve and dilution of the supernatant. Each treatment
was performed in triplicate.

2.8. Gene Expression Analysis and Validation

The materials same as SOD and POD activity determination were used for transcrip-
tome sequencing. Heat maps of SOD- and POD-enzyme-related genes in low-temperature
stress were visualized with TBtools based on RPKM (reads per Kilobase of exon model per
million mapped reads) values.

Total RNA of the stems for transcriptome sequencing was isolated with an RNA
Extraction Kit (Tiangen, Beijing, China), and for reverse transcription into cDNA, we used
a FastQuant RT Kit (TIANGEN, Beijing, China). cDNA (2 µL) was used as the template
in a 10 µL qRT-PCR instrument with TB Green IIPremix Ex Taq (TaKaRa, Dalian, China).
The relative expression levels were calculated using the 2−∆∆Ct method, and the Ubiquitin 2
(UBQ2) gene of P. mume was used as the internal control [55]. The four selected genes and
specific primers are listed in Supplementary Table S1. Each qRT-PCR was repeated at least
three times.

2.9. Statistical Analysis

Each group of experiments was repeated three times, and the average values were
used to calculate the significance of each variety. The significance was tested with a single-
factor analysis of variance (Duncan’s multiple comparison analysis), where * indicates
p < 0.05. A three-variable linear regression formula was applied for modeling. SPSS 26
(SPSS Inc., Chicago, IL, USA) was used for the whole analysis.

3. Results
3.1. Heat Release and Icing of Different Varieties of P. mume at Low Temperatures

The freezing rate of water in a plant is affected by various factors, such as environ-
mental temperature, moisture content, osmotic potential, and ice cores. We found that
water generated heat when turning to ice in the stems and buds, as shown in Figure 1A,B.
During the freezing process, the tissue temperature increased by at least 2 ◦C. In the
experimental process, we recorded the surface temperatures of the plants before exotherm
as the freezing-point temperatures. The changes in the trends of freezing-point tempera-
tures of the three varieties at different ages were the same. BY was the highest, while DF
was the lowest (Figure 1C,E). The temperatures ranged from −3 to −6 ◦C (adult trees)
and from −1 to −5 ◦C (grafted seedlings). During the observation process, it was found
that the highest freezing rate of DF was caused by the intracellular moisture content



Forests 2022, 13, 2163 6 of 14

(Supplementary Materials Figure S3). We also studied the changes in ice patterns in flower
buds and found that the freezing-point temperatures and freezing rates were lower than
those of the branches (Supplementary Materials Figures S4 and S5). The freezing-point
temperature of flower buds was in the range of −6 to −8 ◦ C, and the change in the trend
of the three varieties was contrary to the results for the branches: BY was the lowest and
DF was the highest.
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Figure 1. Branch and bud freezing temperature statistics and diagrams of the exothermic processes
of icing. Diagrams of the icing processes of stems (A); and buds (B) in XR captured with infrared
cameras. Box diagrams based on icing temperature statistics (C–E): (C), one-year-old branches of
mature trees; (D), flower buds of mature trees; and (E), branches of one-year-old grafted seedlings.

We supplemented the observations of the moisture, temperature, and ice content
changes with those of live P. mume trees in the field (Figure 2). The results showed that the
stems of plants that were detected in winter underwent freeze–thaw changes every day. This
repeated freeze–thaw phenomenon was likely to cause one-year-old branches to rupture
and dehydrate, and this was observed from a process named the tipping phenomenon.
The results showed that the DF freezing-point temperature was higher than that of BY
most of the time, which was not consistent with the infrared results (Figure 1C–E). These
results drew our attention to the fact that the water content of DF was consistently higher
than that of BY, which could be due to the difference in basal water content between
the two varieties. Despite the errors in the basal water content, two peaks in the graph
(from 19 to 23 December and from 29 December to 4 January) revealed substantial icing
results for BY (green frames in Figure 2). These results could still corroborate the infrared
observation results.

3.2. Damage and Cold-Tolerance Ability of Different Varieties of P. mume

There were significant differences among the three varieties in the results of the ion
leakage rate (Figure 3A, B). When the ambient temperature dropped to −30 ◦C, the ion
leakage rate of DF was still below 50%, while BY was already above 50% at −20 ◦ C and
exceeded 70% at −30 ◦C. The LT50 also showed that the lethal temperature of DF was
lower than those of XR and BY. The analysis of material from the adult trees using the
isolated branches and planting environments of the three varieties was inconsistent, so
this study also used the data of one-year-old grafted seedlings to corroborate the results of
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the adult trees (Figure 3C). The results showed that the LT50 for the seedlings was lower
than that of adult trees because the one-year-old seedlings were weaker, but the change in
the trend of the three varieties was consistent. The cold acclimation abilities of the three
varieties (18 November and 19 February) were compared. The degree of cell rupture under
cold stress in the plants was reduced after deep winter, and the LT50 increased by 2–4 ◦C
(Figure 3A,B). However, it was difficult to observe the effect of cold acclimation for the
20-year-old adult trees, so grafted seedlings that had not experienced low temperatures
were selected. Figure 3D–F shows that the three varieties were placed in a 4 ◦C environment
for five days to achieve cold acclimation that could withstand temperatures above −10 ◦C,
and the results were much stronger than materials not pretreated at 4 ◦C. A comparison of
the three varieties found that the cold acclimation ability of XR was stronger than both its
parents, and the LT50 after cold acclimation increased by 6 ◦C.
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Figure 2. Dynamic monitoring of temperature, moisture content, and ice conditions during overwin-
tering of adult trees of apricot mei DF and true mume BY.

We used the degree of stem restoration to evaluate the recovery abilities of the three
varieties after low-temperature treatment (Figure 4A–G). When the temperature was below
−20 ◦C, the branches of the three varieties turned brown and moldy after recovery. The
interiors of the stems were also heavily waterlogged (Figure 4E–G). Paraffin sections
provided a good view of the cellular changes within the stems. The ice crystal extrusion
caused many voids in the tissues after freezing treatment. Due to different cold tolerance
levels, the size of the ice voids in the three varieties was different. Because of the lower
tissue density, the stems of BY had a large number of voids in the cortex and phloem fiber.
The offspring, XR, had the same phenomenon as BY, but the void distribution and tissue
rupture were relatively mild.
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Figure 4. Freehand and paraffin slices of three P. mume variety one-year-old branches under cryogenic
treatment. A-G indicate temperatures of 4, −5, −10, −15, −20, −25, and −30 ◦C, respectively. The
three varieties were sorted as: 1, DF; 2, XR; and 3, BY. Ep, epidermal cell; Co, cortex; Ph, phloem; Pf,
phloem fiber; Xy, xylem; Pi, pith. The red arrows point to images observed in paraffin sections of the
third node of the branch from top to bottom in the red box, respectively.

Unlike stems, buds protect themselves from cold temperatures by keeping water
in their cells for undercooling to avoid freezing [46]. Therefore, the morphological data
showed that there was no recovery ability of the flower buds and leaf buds after freezing
injury (Figure 5A). We calculated the survival rates of buds after different temperature
treatments (Figure 5B,C). The changes in the trends of leaf buds and flower buds were
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consistent among the three varieties. The survival rate of DF was the highest, and that of
XR was the second highest, while the survival rate of BY was the lowest. Different tissue
comparisons revealed that leaf buds had a higher rate of viability than flower buds. The
leaf buds were still viable at −20 ◦C, but the flower buds were fragile. The results suggest
that the leaf buds were more cold-tolerant than the flower buds.

Forests 2021, 12, x FOR PEER REVIEW 9 of 14 
 

 

three varieties were sorted as: 1, DF; 2, XR; and 3, BY. Ep, epidermal cell; Co, cortex; Ph, phloem; Pf, 

phloem fiber; Xy, xylem; Pi, pith. 

Unlike stems, buds protect themselves from cold temperatures by keeping water in 

their cells for undercooling to avoid freezing [46]. Therefore, the morphological data 

showed that there was no recovery ability of the flower buds and leaf buds after freezing 

injury (Figure 5A). We calculated the survival rates of buds after different temperature 

treatments (Figure 5B,C). The changes in the trends of leaf buds and flower buds were 

consistent among the three varieties. The survival rate of DF was the highest, and that of 

XR was the second highest, while the survival rate of BY was the lowest. Different tissue 

comparisons revealed that leaf buds had a higher rate of viability than flower buds. The 

leaf buds were still viable at −20 °C, but the flower buds were fragile. The results suggest 

that the leaf buds were more cold-tolerant than the flower buds. 

 

Figure 5. Anatomical states of survival or frozen death of leaf buds and flower buds, and survival 

rates of three P. mume varieties. Morphological and anatomical images of flower buds (fb) and leaf 

buds (lb): (A), 1–3 are BY, XR, and DF, respectively. lb-s, leaf bud survival; lb-d, leaf bud death; fb-

s, flower bud survival; fb-d, flower bud death. 

3.3. Antioxidant Enzymes SOD and POD Induce Cold Acclimation Ability of XR 

Antioxidant enzymes have the function of converting peroxide formation in plants 

into less toxic or harmless substances, so the SOD and POD antioxidant enzyme activities 

of mei were determined. In stage 3 in Figure 6, the three varieties experienced cold accli-

mation. The variation in the SOD content of BY was not obvious, and that of DF decreased 

more than three times; only the SOD content of XR gradually accumulated. The POD con-

tent of BY showed an overall decreasing process. It decreased by one-fold after cold accli-

mation, and there was no significant change when freezing. FH remained around 2 

U.g−1.min−1, with a small decrease after cold acclimation. The results for XR gradually 

increased during cold acclimation and decreased when freezing. A comparative analysis 

of the three varieties showed that the SOD and POD enzyme activities of XR were elevated 

after cold acclimation, suggesting it may enhance its cold tolerance by increasing antioxi-

dant enzyme activity (Figure 6B). 

Figure 5. Anatomical states of survival or frozen death of leaf buds and flower buds, and survival
rates of three P. mume varieties. Morphological and anatomical images of flower buds (fb) and leaf
buds (lb): (A), 1–3 are BY, XR, and DF, respectively. lb-s, leaf bud survival; lb-d, leaf bud death; fb-s,
flower bud survival; fb-d, flower bud death. Flower bud (B) and leaf bud (C) survival rate of three P.
mume varieties.

3.3. Antioxidant Enzymes SOD and POD Induce Cold Acclimation Ability of XR

Antioxidant enzymes have the function of converting peroxide formation in plants
into less toxic or harmless substances, so the SOD and POD antioxidant enzyme activities
of mei were determined. In stage 3 in Figure 6, the three varieties experienced cold
acclimation. The variation in the SOD content of BY was not obvious, and that of DF
decreased more than three times; only the SOD content of XR gradually accumulated.
The POD content of BY showed an overall decreasing process. It decreased by one-fold
after cold acclimation, and there was no significant change when freezing. FH remained
around 2 U.g−1.min−1, with a small decrease after cold acclimation. The results for XR
gradually increased during cold acclimation and decreased when freezing. A comparative
analysis of the three varieties showed that the SOD and POD enzyme activities of XR were
elevated after cold acclimation, suggesting it may enhance its cold tolerance by increasing
antioxidant enzyme activity (Figure 6B).

The transcriptome data were used to mine XR for DEGs (differential expression genes).
During cold acclimation, SOD- and POD-enzyme-related differential genes were mapped
on a heat map (Figure 6A). The DEGs were classified into two classes based on a cluster
analysis. The FPKM values for class II of the PmSOD genes were all higher than those of
class I. The expression of PmSOD3 was significantly higher than the other genes in class
II, with the highest value exceeding 1000 FPKM. These results made PmSOD3 a key gene
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for the enhancement of SOD enzyme activity. The expression of POD-related genes in
class II was higher than that in class II. All the class I genes were upregulated during the
cold response and acclimation periods (stages 2 and 3, respectively, in Figure 6A). Among
them, PmPOD2 had the highest FPKM value, suggesting it might be greatly involved in
POD enzyme synthesis. PmPOD19 and 22 were not clustered in the same class, but their
expression trends in the cold acclimation period of XR were similar, and their expression
levels showed two-fold and nine-fold increases from the control, respectively. These results
were consistent with the trends in POD enzyme activity. However, their expressions were
still elevated in the freezing period, while enzyme activity was not. This phenomenon could
be produced by the inhibition of gene regulation by ice crystals in the cells and tissues.
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4. Discussion 

Figure 6. SOD and POD enzyme activity changes and encoding gene expression patterns of three
P. mume varieties under cold stress: (A) measurement of SOD and POD enzyme activities (p < 0.05,
marked by *); Heatmap (B); and relative expressions (C) of genes encoding SOD and POD enzymes in
P. mume in response to cold. B, D, and X in axis X refer, respectively, to BY, DF, and XR, and 1–5 refer to
different stages of cold treatment: 1 is control, at which the ambient temperature was 25 ◦C; 2 is 4 ◦C
treatment for 8 h; 3 is 4 ◦C treatment for 5 d; 4 is temperature drop to −5 ◦C; and 5 is temperature
increase to 15 ◦C after cold treatment. A rate of 1 ◦C per hour was maintained throughout the rise
and fall stabilization process.

To further comprehensively investigate PmSOD and PmPOD functions in low temper-
atures, the four genes were detected with qRT-PCR experiments in which the stems of P.
mume experienced chilling treatment (4 ◦C for 8 h and 5 d) and freezing treatment (−5 ◦C
for 1 h). The expressions were distinct in the three varieties of P. mume (Figure 6C). All four
genes were significantly elevated in XR during cold acclimation, which was consistent with
the trends in changes for SOD and POD, positively regulating enzyme activity.

4. Discussion

The evaluation of cold tolerance has an important role in the selection and breeding
of plant varieties. Previous researchers have assessed the degrees of low-temperature
stress in plants during overwintering through field observations and indoor programmed
cooling experiments [56], including the tolerance of Carex [57], Prunus persica [58], Prunus
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mume [1,7], Berberis thunbergii [58], and Lily [59]. The cold tolerance abilities of 38 varieties
representing the P. mume system, classes and types were already compared by Zhang in
1985 [6]. Based on the former, we added a cold tolerance analysis of the new varieties
in the field. The cold tolerance of the apricot mei DF was higher than that of BY, which
is consistent with Zhang’s tolerance results [6,26]. Additionally, the tolerance of the new
variety XR was in the middle of the parental results. An infrared dynamic observation of
icing and freezing revealed that XR was the same as DF for freezing-point temperature,
with relatively low results in the stem but higher in the bud. An even better finding was
that the cold acclimation ability of XR was particularly impressive.

Monitoring the freezing of water in different tissues of plants at low temperatures
can help explain the mechanisms of freezing tolerance in different varieties. There were
significant differences in the freezing-point temperatures of water in the stems and buds of
different varieties of mei under low-temperature treatments. The freezing-point temper-
atures of the three varieties were measured using infrared technology and tree moisture
detection, which is a newly developed monitoring technique. The freezing-point temper-
atures of one-year-old stems of the apricot mei varieties XR and DF ranged from −4 ◦C
to −6 ◦C, which were lower than that of true mume BY (between −3 ◦C and −4 ◦C). As
the temperature can vary up to 15 ◦C over a day in Beijing [60], the apricot mei DF could
resist cold temperatures by avoiding ice formation in the branches, but the true mume BY
was prone to irreversible mechanical damage from repeated freezing and thawing. The
bud freezing-point temperature of BY ranged from −7 ◦C to −8 ◦C,and was significantly
lower than the two apricot mei varieties (between −6 ◦C and −7 ◦C). The reason for the
difference could be that the mechanism of water subcooling in the buds of the true mume
was different from that of the apricot mei varieties.

Oxidative stress and cellular antioxidant capacity are assumed to be essential factors
in the aging process of plants [19] Our study confirmed that improving antioxidant capacity
during low-temperature acclimation could stimulate a strong cold tolerance in XR, which
may help its open-field cultivation in the north. In addition, most apricot mei varieties are
missing the characteristic aroma of mei, while XR is one of the few apricot mei varieties
that has the genotype of apricot mei with the characteristic aroma of true mume [10,61]. It
has great potential for development and distribution in the market.

5. Conclusions

Based on the results of this study, we presented a preliminary schematic diagram of
changes in the response of XR stem cells at low temperatures in a cellular anthropomorphic
manner (Figure 7). The stem cells were in a normal state of life in the temperature range
of 15–25 ◦C. In the process of gradual cooling from 15 ◦C to 0 ◦C, the cells felt cold
and increased the expressions of SOD- and POD-related genes through cell membrane
phase change, calcium ions, and other signal regulation. This change further regulated
the SOD and POD enzyme activities, as well as other antioxidant secondary metabolites.
The increase in enzyme activity enhanced the antioxidant capacity of XR to avoid cell
decay. Signals such as cell membrane phase change and calcium ions also regulated the
accumulation of osmoregulatory substances to keep intracellular water in a liquid state
at temperatures below 0 ◦C. Ambient temperatures below the freezing-point temperature
(−6 ◦C) caused the cells to gradually freeze, but cells experienced rupture and death once
the temperature increased again. This process of change at low temperatures is only a
summary and speculation based on the results of this study, and the specific regulatory
mechanism remains to be further investigated.
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