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Abstract: Walnut (Juglans regia L.) is widely used in wood furnishings, and machinability is a key
factor for improving product quality and enterprise benefits. This work focused on the influence of
the rake angle, depth of cut, and cutting speed on the cutting force and machined surface roughness
during the straight-tooth milling of walnut. On the basis of the experimental findings, a mathematical
model was created using a response surface methodology to determine the relationship between the
cutting force and the cutting conditions, as well as the relationship between the surface roughness
and the cutting conditions. Variance analysis was used to study the significant contributions of the
interactions of various factors and two-level interactions to the cutting force and surface roughness.
The optimized combination of milling conditions, resulting in lowest cutting force and surface
roughness, was determined to be a rake angle of 5◦, a depth of cut of 0.6 mm, and a cutting speed of
45 m/s.

Keywords: machining quality; cutting forces; RSM; ANOVA; optimization; wood machining

1. Introduction

Walnut (Juglans regia L.) is a diffuse porous hardwood [1]. Due to its favorable me-
chanical properties, machinability, and appearance [2,3], walnut has been widely used in
furniture such as flooring, cabinets, doors, and windows [4–6]. In 2021, the total value
of the walnut imported to China reached 259 million USD. With the high demand for
machined walnut, improving the efficiency of the machining and the smoothness of the
machined surface is key to improving the product quality and enterprise efficiency.

In the manufacturing of wood products, wood logs must undergo multiple machining
processes. Material removal is the most commonly used process, e.g., milling, turning,
and sawing [7]. Therefore, the material processing field has customarily focused on the
machinability of wood, including the cutting force, surface quality, chip formation, power,
etc. Lucic et al. [8] explored how the cutting depth and cutting speed impact the particle
size distribution of the chips produced during walnut planing. When the feed speed is
increased, the percentage of bigger chips produced goes up, while the percentage of smaller
chips goes down. Lucic et al. [9] reported the changes in cutting power that occur during
walnut planing. The findings indicated that the machining power of the radial planing
plates was lower than that of the tangential plates and the semi-radial plates. Doumbia
et al. [10] established a numerical model for the laser cutting of walnut veneer. They found
that the kerf width decreased significantly with increased cut speed or laser output power.
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Çakıroğlu et al. [11] developed models using artificial neural networks with the purpose of
enhancing the surface quality of walnut. Their research showed that a high spindle speed
and low feed speed are conducive to reducing the roughness of the machined surface, and
the following optimal cutting parameters were determined: a tool diameter of 3 mm, a
spindle speed of 18,000 rpm, and a feed rate of 3.8 m/min. They also found that the surface
roughness increased with a greater milling depth.

Based on the field research in walnut industrial machining, high energy consumption
and poor product quality have always been the critical problems that must be solved
by enterprises. Cutting force is a key parameter in evaluating energy consumption, and
surface smoothness is a crucial factor in determining the quality of the final product [12–14].
Thence, clarifying the impact of the cutting parameters on the cutting force and quality, and
optimizing the cutting conditions, are important approaches to improving walnut machin-
ability. There are many methods for the optimization of the cutting parameters, including
response surface methodology (RSM), the genetic algorithm, and the neural network. RSM
is a statistical method widely used for result prediction and parameter optimization, and
regression models can be developed using RSM to determine the relationship between
input variables and output results. To improve energy efficiency in the milling process,
Zhu et al. [15] built a mathematical model using RSM to explore the relationship between
energy efficiency and milling conditions. Meanwhile, Li et al. [16] used RSM to investigate
the influence of input parameters on the comparative cutting energy in the process of the
spiral milling of medium density fiberboard. These studies all demonstrated that the RSM
model can be used for parameter optimization and result prediction.

The objective of this study was to characterize the machinability of walnut with
straight-tooth cylindrical cutters. To this end, we determined the changes in cutting forces
and surface quality for different milling conditions, i.e., rake angle, depth of cut, and cutting
speed, supported by RSM. This research was intended to provide a theoretical foundation
for the industrial machining of walnut.

2. Materials and Methods
2.1. Materials and Testing Equipment

The up-milling was conducted in a commercial computerized numerical control (CNC)
machining center (MGK01, Nanxing Machinery Co., Ltd., Guangzhou, China) under dry
conditions. The walnut wood (Table 1, Shanghai Yida Wood Co., Ltd., Shanghai, China)
was machined by diamond cutting tools with constant diameters of 140 mm (Table 2, Leuco
Precision Tooling Co., Ltd., Suzhou, China), and the cutting direction was parallel to the
fiber direction of the walnut. The cutting forces produced during milling, denoted by Fx
and Fy, were measured by a three-component piezoelectric dynamometer (9257B, Kistler
Group, Winterthur, Switzerland) with a measuring range of −5.0 to ~ +5.0 kN and a charge
amplifier (5070A, Kistler Group, Winterthur, Switzerland) with a sampling rate of 7100 Hz.
The dynamic cutting force values were processed and analyzed using Dynoware software
(2825D-02, Kistler Group, Winterthur, Switzerland). To better understand how the cutting
force varies depending on the various conditions, the resultant force was adopted and
calculated by Equation (1) [17].

FR =
√

Fx2 + Fy2 (1)

where FR denotes the resultant force in N, and Fx and Fy are the component forces parallel
and perpendicular to the feeding direction in N, respectively.

Table 1. Material properties of walnut.

Density Moisture Content Modulus of
Elasticity Modulus of Rupture

0.72 g/cm3 10.5% 12.11 GPa 104.24 MPa
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Table 2. Parameters of cutting tools.

No.

Tool Geometry Material Properties

Rake Angle Wedge Angle Clearance
Angle

Coefficient of
Thermal Expansion

Thermal
Conductivity Hardness

1 5◦ 72◦ 13◦

1.18 × 10−6 K−1 560 W·m−1K−1 8000 HV2 10◦ 72◦ 8◦

3 15◦ 72◦ 3◦

The surface roughness, Ra, was taken as the evaluation index for the smoothness of
the machined surface, which was measured by using a surface profiler (S-NEX001SD-12,
Tokyo Seimitsu Co., Ltd., Tokyo, Japan).

2.2. Materials and Testing Equipment

In this work, RSM was used to analyze the influence of various factors on the ex-
perimental outcomes by using Design-Expert software (Version 12, Stat-Ease Inc., USA.
Minneapolis, MN, USA). As shown in Table 3, the ranges of the cutting parameters were
selected based on walnut industrial machining, and the rake angle, depth of cut, and cutting
speed were defined as γ, h, and vc, respectively. The level of each experimental variable
was coded as −1, 0, or 1. A three-level factorial design by RSM is given in Table 4.

Table 3. Cutting factors, levels, and experimental responses.

Experimental Factors
Factor Level

Experimental Responses
−1 0 1

Rake angle (◦) γ 5 10 15 Resultant force (N)
Surface roughness (µm)Depth of cut (mm) h 0.2 0.4 0.6

Cutting speed (m/s) vc 30 37.5 45

Table 4. Experimental design and results.

No. γ (◦) h (mm) vc (m·s−1) FR (N) Ra (µm)

1 5 0.2 30 52.89 11.4
2 10 0.2 30 66.75 8.12
3 15 0.2 30 86.17 6
4 5 0.4 30 71.06 7.4
5 10 0.4 30 75.28 10.91
6 15 0.4 30 75.8 5.75
7 5 0.6 30 73.88 5.94
8 10 0.6 30 73.28 7.02
9 15 0.6 30 72.74 7.32
10 5 0.2 37.5 49.23 5.32
11 10 0.2 37.5 63.61 6.72
12 15 0.2 37.5 83.42 5.35
13 5 0.4 37.5 70.41 7.66
14 10 0.4 37.5 72.74 4.95
15 15 0.4 37.5 73.23 7.67
16 5 0.6 37.5 73.22 4.42
17 10 0.6 37.5 72.44 5.56
18 15 0.6 37.5 72.54 6.26
19 5 0.2 45 42.4 8.93
20 10 0.2 45 55.8 6.88
21 15 0.2 45 76.13 10.74
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Table 4. Cont.

No. γ (◦) h (mm) vc (m·s−1) FR (N) Ra (µm)

22 5 0.4 45 67.48 4.35
23 10 0.4 45 69.64 6.3
24 15 0.4 45 69.78 9.52
25 5 0.6 45 70.3 4.26
26 10 0.6 45 69.92 5.36
27 15 0.6 45 69.94 9.26

To accurately explore the influence of cutting on the surface roughness and the resul-
tant force, the quadratic mathematical regression shown in Equation (2) [18] was used to
establish the relationship between the results and the cutting conditions:

Y = b0 +
k

∑
i

bixi +
k−1

∑
i=1

k

∑
j=i+1

bijxixj +
k

∑
i=1

biixi
2 (2)

where Y is the experimental output of the resultant force in N and the surface roughness
in µm, b0 is the free term, bi, bij, and bii are the term coefficients, and x is the dependent
variable of the rake angle in degrees, the depth of cut in mm, and the cutting speed in m/s.

3. Results and Discussion
3.1. Subsection

Equation (3) shows an RSM model of the resultant cutting force based on the experi-
mental results from Table 4 as follows:

FR = 72.37− 8.17γ + 6.38h− 1.39vc + 2.04γh
−2.43γvc + 2.09hvc − 3.94γ2 − 0.47h2 − 0.55v2

c
(3)

where FR is the resultant cutting force in N, γ is the rake angle of cutting tool in degrees, h
is the depth of cut in mm, and vc is the cutting speed in m/min.

Table 5 displays the fit statistics for the cutting force model. The values of R2, adjusted
R2, and predicted R2 are near to one. Moreover, the difference between predicted R2

and adjusted R2 values is less than 0.2, indicating that the cutting force model has high
accuracy [19]. In addition, the standard deviation and coefficient of variation percentage
values were 2.62 and 3.8, suggesting a low relative dispersion of data points from the mean,
further proving that the model fit well. The Adequate Precision measures the signal-to-
noise ratio and has a value greater than four, which indicates the model can accurately
predict observed or real values [20].

Table 5. Fit statistics for resultant force model.

Model R2 Adjusted R2 Predicted R2 Standard
Deviation

Coefficient of
Variation

Adeq.
Precision

Cutting force 95% 92% 0.87 2.62 3.80 23.91

Figure 1 illustrates the correlation between the actual and predicted values of the
resultant cutting force. It shows that the developed model has high accuracy with no
observed outliers, and that it can therefore be used to predict the resultant force and
optimize the cutting conditions [21].
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3.2. Analysis of Variance for Resultant Force

The primary assumption for conducting a one-way analysis of variance (ANOVA) is
normality. ANOVA assumes that the data are normally distributed. Therefore, the normal
distribution of resultant force is checked via scatterplots, as shown in Figure 2. Figure 2a
shows that results of resultant force are concentrated in the set range, indicating that the
data have the characteristics of a normal distribution. Furthermore, Figure 2b reveals that
the prediction data correspond to the residual in a scattered and irregular manner. As a
result, ANOVA can be used for further analysis.
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Table 6 provides the ANOVA results for the resultant force with a 5% (or 0.05) signifi-
cance level. According to Valarmathi et al. [22], if the p-value is less than 0.05, the model is
significant; otherwise, it is insignificant. The findings suggest that the resultant force model
is significant, as the p-value is less than 0.05 (F = 36.18, p < 0.05). They imply a 0.01 percent
probability that an F-value this large could occur due to noise. Furthermore, the rake angle
(γ), depth of cut (h), cutting speed (vc), two-level interactions of γ × h, γ × h, and h ×
vc, and products of γ2 have a statistically significant effect on the resultant force, as their
p-values are less than the 0.05 significance level. However, the products of h2 and vc

2 make
an insignificant contribution to the resultant force.
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Table 6. Variance analysis of resultant force.

Source Sum of Squares % Cont df Mean Square F-Value p-Value

Model 2145.67 95.04 9 248.95 36.18 <0.0001 *
γ 658.60 51.01 1 1202.46 174.77 <0.0001 *
h 286.88 31.11 1 733.32 106.58 <0.0001 *
vc 177.10 1.48 1 34.86 5.07 0.0379 *

γ × h 890.62 2.13 1 50.18 7.29 0.0152 *
γ × vc 0.1220 3.01 1 70.86 10.30 0.0051 *
h × vc 39.39 2.23 1 52.63 7.65 0.0132 *

γ2 2.54 3.95 1 93.14 13.54 0.0019 *
h2 81.11 0.06 1 1.30 0.1886 0.6696
vc

2 9.33 0.08 1 1.83 0.2654 0.6131
Residual 201.18 4.96 17 6.88 \ \

Total 2357.54 100 26 \ \ \
Note: * indicates p < 0.05.

In Table 6, % Cont refers to the percentage of the source sum of squares relative to the
total sum of squares. A higher % Cont value means a greater impact on the results. The %
Cont value of γ is 51.01, indicating that it has the greatest influence on the resultant cutting
force, followed by h with a value of 31.11 and vc with a value of 1.48.

Figure 3 represents the 3D response surface maps and contour maps for the various
interactions of cutting conditions with the resultant force. According to the density of the
contour map, the resultant force is mainly impacted by the rake angle in the interaction of
rake angle and depth of cut (Figure 3a), and the rake angle in the interaction of rake angle
and cutting speed (Figure 3b), whereas, the cutting force is primarily affected by the depth
of cut in the interaction of cutting speed and depth of cut (Figure 3c).
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3.3. Influence of Cutting Variables on the Resultant Force

Figure 4 shows the impact of cutting parameters on the resultant force, revealing that
there is a negative correlation between the resultant force and the cutting speed and rake
angle, but a positive correlation with depth of cut. It means that an increase in the rake
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angle in straight-tooth cylindrical milling allows it to cut off wood fiber more easily, with
the sharper cutting edge leading to a low resultant force. Meanwhile, the changes in the
resultant force were determined by the quantity of material removed. With an increase in
cutting speed and a reduction in depth of cut, a lower quantity of material will be removed
by the cutter. Hence, the resultant force shows an increasing trend with the decrease of the
cutting speed and the increase of the depth of cut.
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3.4. Regression Model of Surface Roughness

Equation (4) shows a regression model for determining the relationship between the
input variables and output results of surface roughness:

Ra = 8.17− 1.56γ + 0.82h− 0.17vc − 0.33γh
+1.04γvc + 0.21hvc − 0.75γ2 + 0.07h2 + 0.008v2

c
(4)

where Ra is the surface roughness in µm, γ is the rake angle of cutting tool in ◦, h is the
depth of cut in mm, and vc is the cutting speed in m/min.

Table 7 displays the fit statistics of the surface roughness model. The values of R2,
adjusted R2, and predicted R2 are near to one. Meanwhile, as the difference between
predicted R2 and adjusted R2 values is less than 0.2, it can be deduced that the surface
roughness model has reasonable accuracy. Moreover, the Std. Dev. and C.V.% values are
0.50 and 6.46, suggesting a low relative dispersion of data points from the mean, further
proving that the model fit well. The Adequate Precision has a value greater than four,
which indicates the model can accurately predict the observed values. Finally, Figure 5
shows the correlation between the actual and predicted values of the surface roughness. It
reveals that the developed model has high accuracy with no observed outliers, and that
it can be utilized to make accurate surface roughness predictions and optimize cutting
parameters [21].

Table 7. Fit summary of the surface roughness model.

Model R2 Adjusted
R2

Predicted
R2

Standard
Deviation

Coefficient
of

Variation

Adeq.
Precision

Surface
roughness 94% 90% 0.82 0.50 6.46 17.11
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3.5. Regression Model of Surface Roughness

Figure 6a shows that the effective data points for surface roughness are concentrated
within the setting range, indicating that the data have the characteristics of a normal
distribution. In addition, Figure 6b shows that the distribution of the residual and predicted
values of the surface roughness is irregular, thereby proving that the model has a good
fit and that the regression model can be used to predict the surface roughness of the
finished work.
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this large could occur due to noise. Furthermore, the rake angle (γ), the cutting speed (vc), 

Figure 6. (a) Normal distribution of experimental data (b) predicted value with residuals.

Table 8 provides ANOVA results for surface roughness with a 5% (or 0.05) significance
level. The findings suggest that the surface roughness model is significant, as the p-value
is less than 0.05 (F = 27.55, p < 0.05). It implies a 0.01 percent chance that an F-value this
large could occur due to noise. Furthermore, the rake angle (γ), the cutting speed (vc), the
two-level interactions of γ × h, and the products of γ2 have a statistically significant effect
on the surface roughness, as their p-values are less than the 0.05 significance level. However,
the depth of cut (h), the two-level interactions of γ × vc and h × vc, and the products of h2

and vc
2 make insignificant contributions to the surface roughness [23]. The % Cont value of

γ is 66.71, indicating that it has the greatest influence on the surface roughness, followed
by h with a value of 18.01 and vc with a value of 0.83.



Forests 2022, 13, 2126 9 of 12

Table 8. Variance analysis of surface roughness.

Source Sum of Squares % Cont df Mean Square F-Value p-Value

Model 61.54 93.58 9 6.84 27.55 <0.0001 *
γ 43.87 66.71 1 43.87 176.77 <0.0001 *
h 11.84 18.01 1 11.84 47.72 <0.0001 *
vc 0.5478 0.83 1 0.5478 2.21 0.1557

γ × h 1.31 1.99 1 1.31 5.27 0.0347 *
γ × vc 0.0008 0.001 1 0.0008 0.0034 0.9545
h × vc 0.5461 0.83 1 0.5461 2.20 0.1563

γ2 3.40 5.17 1 3.40 13.68 0.0018 *
h2 0.0303 0.05 1 0.0303 0.1223 0.7309
vc

2 0.0004 0.001 1 0.0004 0.0015 0.9699
Residual 4.22 6.42 17 0.2482 \ \

Total 65.76 100 26 \ \ \
Note: * indicates p < 0.05.

Figure 7 shows the 3D response surface maps and contour maps displaying the
interactions of various cutting conditions with the surface roughness. Based on the density
of the 3D surface maps and contour maps, it can be seen that the rake angle of the milling
cutter is responsible the most significant portion of the influence on the milled products’
surface roughness in the interaction of the rake angle and the depth of cut (Figure 7a),
and in the interaction of rake angle and cutting speed (Figure 7b); whereas, the surface
roughness is mainly affected by the depth of cut in the interaction of the cutting speed and
the depth of cut (Figure 7c).
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3.6. Influence of Cutting Variables on Surface Roughness

Figure 8 depicts the impact of the cutting parameters on the surface roughness. The
results indicate a negative correlation between the surface roughness and the cutting speed
and rake angle, but a positive correlation with the depth of cut. This indicates that, with
an increase in the rake angle, the sharper rake angle reduces the chip deformation and
damage on the machined face to improve the final surface quality. With the rise in the
cutting speed and the decrease in the depth of cut, a smaller removal volume improves the
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cutting stability, with respect to lower resistance. Hence, the surface roughness shows an
increasing trend with the decrease of the cutting speed and the increase of the depth of cut.
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3.7. Optimization of Cutting Conditions and Verification

According to related research, cutting force is the key factor affecting energy consump-
tion and tool wear, and surface roughness is the crucial parameter determining the quality
of the final products [24,25]. Meanwhile, in industrial walnut processing, manufacturers
work to improve the material removal rate with a greater depth of cut to achieve higher
machining efficiency. Therefore, for the sake of improving the enterprise benefits and
product quality, it is suggested that the ideal cutting condition for walnut milling is to
produce the minimum cutting force and minimum surface roughness at the greatest depth
of cut possible.

The optimal cutting conditions for the predicted points determined by RSM are
denoted by red dots as follows: a 15◦ rake angle, 45 m/s cutting speed, and 0.2 mm cutting
depth. The results for the resultant force and surface roughness at the optimal cutting
conditions are shown in Table 9. The resultant force (FR) and surface roughness (Ra) were
42.4 N and 4.84 µm, close to the predicted values of 44.6 N and 5.11 µm, with error rates of
5.2% and 5.6% at the optimal conditions for the milling of walnut. Hence, it is concluded
that the created models can be used to guide the selection of an optimal cutting condition
considering the machining efficiency and production costs.

Table 9. Optimization and verification of resultant force and surface roughness.

Tests γ (◦) h (mm) vc (m·s−1) FR (N) Ra (µm)

Prediction 15 0.2 45 42.4 4.84
Verification 15 0.2 42 44.6 5.11

Error / / / 5.2% 5.6%

4. Conclusions

In this paper, the resultant force and surface roughness were analyzed by RSM during
the straight-tooth milling of walnut. The main conclusions are given as follows:

(1) Both the resultant force and the surface roughness have similar tendencies at different
milling conditions. They were all positively related to the depth of cut and negatively
correlated with the cutting speed and the tool rake angle.
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(2) Two regression models with high accuracy were developed, which can be used for the
prediction of the resultant force and the surface roughness, and for the optimization
of the cutting conditions.

(3) Both the cutting tool rake angle and the depth of cut had significant effects on the
resultant force and surface roughness, while the cutting speed only made a significant
contribution to the resultant force. Meanwhile, the rake angle of the cutting tool
made the greatest contribution to both the resultant force and the surface roughness,
followed by the depth of cut and the cutting speed.

(4) The optimal condition, with minimum resultant force, minimum surface roughness,
and the highest machining efficiency, was determined to be a rake angle of 15◦, cutting
speed of 45 m/s, and depth of cut of 0.2 mm. These parameters are suggested for the
industrial manufacturing of walnut, for maximum product quality and enterprise
benefits.
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