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Abstract: Forest restoration and soil structure stabilization are the focus of forestry and ecology.
However, the combined mechanisms of soil microorganisms and organic and inorganic aggregate
binding agents on soil aggregation is unclear. In order to explore the effects of subtropical forest
restoration types on soil aggregates and the underlying mechanisms, we collected soil samples
from subtropical natural forests and coniferous and broad-leaved plantations that are commonly
used for forest restoration. The mean weight diameter (MWD) of the soil aggregate was used to
indicate the aggregates’ stability. The soil microbial diversity and structure, the organic and inorganic
aggregate binding agents including the mycorrhizal density, the glomalin-related soil protein and
the Fe and Al oxides were investigated. Results showed that the Shannon and Simpson indices of
soil microbial communities in the coniferous plantations were both significantly higher than those in
the natural forests. At the annual level, compared with the natural forests, the plantations decreased
the proportion of 0.25–1 mm aggregates while the MWD significantly increased. The forest type also
significantly affected the mycorrhizal density, the easily extractable glomalin-related soil proteins
(EEG) and the Fe oxide. A variance decomposition analysis showed that soil microbial communities,
organic and inorganic binding agents, and their interactions together contributed to the aggregates’
composition and stability by 75.07%. The MWD was positively correlated with the microbial diversity,
mycorrhizal density and Fe oxide. We therefore suggest that the combined effects of the soil microbial
communities and the organic (mycorrhizal density) and inorganic binding agents (Fe oxide) can
be the main mechanisms of soil aggregation in the study area, resulting in a higher soil aggregate
stability in the subtropical coniferous plantation than in the natural forest.

Keywords: soil aggregate stability; soil microbial community function; metal oxides; glomalin-related
soil protein; forest restoration type; subtropical forests

1. Introduction

Many forests have been degraded in recent years, and forest restoration is a widespread
global concern in forestry and ecological research [1]. According to the Food and Agricul-
ture Organization of the United Nations (FAO), natural disasters and human activities have
reduced the area of old-growth forests by 81 million hectares worldwide since 1990 [2].
Different approaches including a variety of coniferous and/or broad-leaved pure and/or
mixed plantations have been used to restore degraded forests [3,4]. Many scholars have
reported on the impacts of forest restorations on the plant community’s composition,
diversity, structure and succession [5–7].

A forest’s soil is the basis for maintaining the health of the forest’s ecosystem and the
growth and development of the trees [8]. Its fertility and quality can reflect the ability of
soil to provide nutrients and water for plant growth [9,10]. As the most basic structural
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unit of soil, soil aggregates are the reservoirs of nutrients and the habitats of various
microorganisms, and thus the quantity and quality of the aggregates determine the soil
properties and fertility [11,12]. Some scholars have studied the impacts of different forest
restorations and soil conservation techniques on soil and water conservation capacity [13–16].
Exploring the effects of forest restorations on the composition and stability of aggregates
can provide new insights to develop effective forest restoration measures.

The soil aggregate’s stability is usually expressed by the mean weight diameter (MWD)
of the aggregate that is calculated based on the proportion of aggregates with different sizes
in the soil [9]. Therefore, the formation of the aggregates directly affects the aggregate’s com-
position and stability. Among the factors that contribute to the formation of aggregates, soil
microorganisms are the most important biological factors [12,17]. Previous studies show that soil
microorganisms participate in the formation of the aggregates [17,18], and that the aggregate’s
stability is closely related to the diversity of the microbial communities [9,19,20]. Soil microor-
ganisms can decompose the soil’s organic carbon [21] to promote the formation of large
aggregates [22]. In addition, plant roots and their symbiotic fungal hyphae mechanically
entangle with the soil particles to form large aggregates [23,24]. Thus, mycorrhizal density
can also affect the aggregate’s composition and stability [25]. In addition, the glomalin-
related soil protein (GRSP) secreted by the arbuscular mycorrhizal fungus [26] is also an
important organic aggregate binding agent. The type of GRSP affects the MWD [27,28],
while some other studies claim that the MWD is not affected by the mycorrhizal or the
GRSP [29,30]. The mechanisms on the aggregate’s stability maintenance and the specific
aggregate binding agents are uncertain.

There are also some inorganic aggregate binding agents, mainly consisting of Fe and Al
oxides [31]. They bond clay minerals with soil particles to form stable soil aggregates [32].
Although there have been many studies on the mechanisms of microbial [17], organic and
inorganic aggregate binding agents on the formation of aggregates [25,33], their combined
effects are rarely studied. In particular, it is still unclear whether the forest restorations
affect the aggregates’ compositions and stability through these factors.

Subtropical forests in China have unique vegetation types and structures among
global forest ecosystems. Evergreen broad-leaved forests are the zonal vegetation [34].
The degradation of forests has profoundly impacted the ecosystem’s structure and func-
tion [7,35]. The degradation of forest ecosystems caused by commercial logging, climate
change, forest fires and engineering destruction has reduced the ecosystem’s stability [36],
biodiversity [36] and vegetation productivity [37], and also greatly weakened the material
cycle and energy flow in the ecosystem [1]. However, the impacts of different forest types
(especially the different plantations used in forest restoration) on soil aggregates and the
underlying mechanisms are still unclear. Therefore, we selected subtropical zonal natural
forests and coniferous and broad-leaved plantations that are used in regional forest restora-
tions. Our objectives were to explore the effects of the type of forest restoration on the soil
aggregates and the underlying mechanisms. Our hypotheses were: (1) the stability of the
soil aggregates in the plantations was higher than that in the natural forests, and (2) the soil
microbial communities and the organic and inorganic aggregate binding agents would be
combined to affect the composition and stability of the aggregates.

2. Materials and Methods
2.1. Study Site

The research site was located in the Jinzi State-owned Forest Farm (30◦17′ E–30◦24′ E,
109◦04′ N–109◦23′ N) at Lichuan City, Hubei Province, China (Figure 1). The area is
representative of a typical subtropical monsoon climate. The annual average temperature
is 15.5–16.2 ◦C, the absolute high temperature is 39 ◦C, the absolute low temperature is
−17.1 ◦C, the annual average precipitation is 1475–1700 mm, the annual average relative
humidity is 80%–82%, and the frost-free period is 270–279d. The soil in the study sites is
Ferric Luvisols according to the Soil Taxonomy classification (USDA, 2012).
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Figure 1. Location of the study site and forests. (Source: Google® Maps®).

The study area has a forest coverage rate of over 95%, which is mainly covered by
well-preserved natural forests and secondary forests. There are many types of plantations
and all of the plantations originate from secondary forests. Coniferous plantations mainly
include Cunninghamia lanceolata and Pseudolarix amabilis, and the main broad-leaved tree
species are Liriodendron chinense and Castanea henryi. The plantations are protected from
anthropogenic disturbances by the prohibition of harvesting, fuel wood collection, and
domestic grazing, but were subjected to regular plantation management.

2.2. Experimental Design and Sampling

Natural forests (NF), C. lanceolata plantations (coniferous plantations, CP) and
L. chinense (broad-leaved plantations, BP) were selected in this study. There were three repli-
cated stands set for each forest type (Figure 1). There were three fixed plots of 20 × 20 m
(more than 50 m away from each other and the stand edges, surrounding roads and vari-
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ously aged or other forests) set in each stand. A total of five complete soil profiles were
dug around each plot to determine the soil development and soil thickness. The average
density of the NF, CP and BP was 1673, 1658 and 1439 trees/hm2, respectively, the average
tree height was 18.67, 22.78 and 21.52 m, respectively, and the average diameter at breast
height (DBH) was 13.97, 16.60 and 18.56 cm, respectively. All the plantations were subjected
to silvicultural treatments only once in their first 3–4 years, including the tending and
thinning of the understory vegetation. The overview of each stand is shown in Table 1.

Table 1. Overview of each stand.

Forest Forest Type Longitude
(E)

Latitude
(N)

Elevation
(m)

Slope
Aspect Stand Age

NF1 Natural forest 109◦4′3.41′′ 30◦17′30.31′′ 1485 19◦ E Mature forest
NF2 Natural forest 109◦4′4.03′′ 30◦17′31.44′′ 1482 18◦ NE Mature forest
NF3 Natural forest 109◦4′2.33′′ 30◦17′32.29′′ 1468 23◦ NE Mature forest
CP1 Coniferous plantation 109◦3′53.48′′ 30◦17′44.08′′ 1382 17◦ N Near-mature forest
CP2 Coniferous plantation 109◦3′54.15′′ 30◦17′43.75′′ 1394 16◦ N Near-mature forest
CP3 Coniferous plantation 109◦3′54.78′′ 30◦17′43.35′′ 1393 20◦ NE Near-mature forest
BP1 Broad-leaved plantation 109◦3′42.83′′ 30◦17′27.07′′ 1560 10◦ NE Near-mature forest
BP2 Broad-leaved plantation 109◦3′51.12′′ 30◦17′29.82′′ 1534 17◦ NW Near-mature forest
BP3 Broad-leaved plantation 109◦3′52.56′′ 30◦17′30.55′′ 1541 10◦ N Near-mature forest

The soil samples (0–10 cm) were taken in March 2021 (when the precipitation was low)
and October 2021 (when the precipitation was high), respectively (Figure 2). During each
sampling, 4 undisturbed soil samples were randomly collected from each plot to determine
the soil’s bulk density. An HH2 moisture meter (Delta-T Devices Ltd., Cambridge, UK)
was used to determine the soil’s moisture and temperature while soil sampling. In each
plot, six 10-cm-deep soil cores were collected randomly using a stainless steel soil auger
(diameter = 8.7 cm) and combined into one composite soil sample. Each soil sample was
split into three parts: (1) was passed through a 2-mm sieve to measure the soil microbial
community’s properties immediately after sampling, (2) was air-dried and passed through
a 2-mm sieve to determine the soil’s physicochemical properties, and (3) was separated
from the remaining undisturbed air-dried samples along the natural grain and was passed
through an 8-mm sieve for the aggregate’s classification and determination.
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2.3. Measurements
2.3.1. Soil Physicochemical Properties

The soil’s pH was determined by a digital pH meter from a 1:2.5 (weight to volume)
suspension of soil and distilled water. The soil’s organic carbon (SOC) and total nitrogen
(TN) contents were determined by an elemental analyzer (Vario Macro Cube, Elementar
Analysensysteme GmbH, Hanau, Germany). The total phosphorus (TP) was measured
using the molybdenum antimony blue colorimetric method. The available phosphorus
(AP) was measured using the ammonium acetate extraction method [38].

2.3.2. Soil Microbial Analysis

The soil’s microbial DNA was extracted using a PowerSoil DNA Isolation Kit (MO BIO
Laboratories, Carlsbad, CA, United States) within one week of its collection and was then
used for metagenomic sequencing. The methods for the metagenomic library construction,
sequencing, quality control, non-redundant gene sets construction and annotation processes
were carried out as described in a previous study [39]. Briefly, the metagenomic libraries
were sequenced on NovaSeq. The sequence assembly was performed using IDBA-UD and
Newbler (https://ngs.csr.uky.edu/Newbler) (accessed on 18 January 2022), and contigs
(≥300 bp) were predicted with MetaGene. A non-redundant gene catalog was constructed
using CD-HIT with 95% identity and 90% coverage. All high-quality reads were then
aligned (95% identity) against the gene catalog via SOAPaligner. To obtain the taxonomic
information, BLASTP (Version 2.3.0) was employed to compare representative sequences
with the NCBI NR database. The taxonomic alpha diversity was calculated by Shannon
and Simpson diversity indices using QIIME software. We used percentages to express the
relative microbial abundance.

2.3.3. Classification of Soil Aggregate and Possible Influencing Factors

The water-stable aggregates were fractionated using the wet sieving method with an
aggregate analyzer (DIK-2001, Daiki Co., Saitama, Japan) [40]. A total of four aggregate
size fractions (including >2 mm, 1–2 mm, 0.25–1 mm and <0.25 mm) were obtained. The
fractions collected from each sieve were dried at 70 ◦C and weighed to calculate the
aggregate’s stability, as expressed by the mean weight diameter (MWD):

MWD = ∑n

i
d×mi (1)

where mi is the percentage mass fraction of aggregates remaining on the ith sieve, d is the average
aperture of the ith and (i + 1) th mesh (mm) and n is the total number of aggregates (n = 4).

The Fe and Al oxides in each soil sample were extracted using dithionite–citrate–
bicarbonate (DCB) under normal conditions that included a heating process (at 75–80 ◦C in
a water bath) and a physical disturbance (15 min of stirring). The solution after the reaction
was collected by centrifugation to determine the contents of the soil’s Fe and Al oxides by
an ICP–OES (ThermoFisher, Waltham, MA, USA) [40].

Mycorrhizal density was determined using the Trillium blue staining-squared cross
method [41]. The GRSP, including the total glomalin-related soil protein (TG) and the
easily extractable glomalin-related soil protein (EEG), was extracted and measured based
on previous studies [42,43].

2.4. Statistical Analysis

To compare the samples and examine the effects of forest and sampling time on the
soil’s microbial alpha diversity and other properties of the soil, repeated-measures analysis
of variance (ANOVA) with Tukey HSD were performed. The normality (Shapiro-Wilks)
and homogeneity of variances tests (Hartley’s F test) were performed before the ANOVA.
Nonmetric multidimensional scaling (NMDS) and principal coordinate analysis (PCoA)
were employed for graphically exploring differences in the microbial comunities' structures

https://ngs.csr.uky.edu/Newbler
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between forests according to the Bray–Curtis dissimilarity using the microbial operational
taxonomic unit (OTU) dataset.

Variance decomposition analysis (VPA) was performed to examine the relative contri-
butions of the soil’s microbial communities and the organic and inorganic binding agents
to the soil’s aggregates. The Pearson correlation coefficient was used to evaluate the re-
lationships among the soil’s microbial alpha diversity, the organic and inorganic binding
agents, and the soil aggregate’s composition and stability.

R (v.4.1.3) was used for statistical testing. The NMDS, PCoA and VPA were performed
using the “vegan” package (v.2.6–4). All tests were performed with the significance at
p < 0.05, unless otherwise stated.

3. Results
3.1. Soil Physicochemical Properties

The soil temperature, pH, bulk density, SOC, TN, TP and AP were significantly
different among the forests (p < 0.05, Table 2), and the significance varied with time. On
the whole, compared with the natural forests, the coniferous and broad-leaved plantations
significantly decreased the bulk density (p < 0.05), but significantly increased the TP and
AP (p < 0.05). The SOC showed a trend of BP > NF > CP.

3.2. Composition and Diversity of Soil Microbial Communities

Proteobacteria, Actinobacteria and Firmicutes were the top three taxa in the soil’s
microbial communities in the study area, accounting for more than 95% in total (Table 3).
However, the forest type had no significant effect on their relative abundances (p > 0.05).
Among the top 10 phylum, only the relative abundances of Verrucomicrobia and Nitrospirae
were significantly affected by the forest type. They showed a trend of CP>BP>NF, and the
difference between the CPs and the NFs was significant (p < 0.05).

The forest type significantly affected the Shannon and Simpson indices of the microbial
communities (p < 0.05, Figure 3). The Shannon and Simpson index of the CPs was signifi-
cantly increased by 7.7% and 1.3% compared with those of the NFs (p < 0.05), while those
of the BPs were not significantly different from those of the NFs or the CPs (p > 0.05). In
addition, the NMDS and PCoA showed consistent results (Figure 4), that is, there were cer-
tain differences in the soil’s microbial communities’ structure between the forests, especially
between the natural forests and the plantations. The contribution rate of the first and second
component of the PCoA to the difference was 38.87% and 23.25%, respectively.
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Table 2. Effect of forest type on soil physicochemical properties. NF, natural forest; CP, coniferous plantation; BP, broad-leaved plantation. Different superscripted
letters indicate significant differences between forests (p < 0.05).

Property SM (%) ST (◦C) pH BD (g/cm3) SOC (g/kg) TN (g/kg) C/N TP (g/kg) AP (mg/kg)

March
NF 41.96 ± 3.24 a 10.00 ± 0.30 a 5.21 ± 0.22 b 1.12 ± 0.13 a 17.64 ± 0.97 ab 2.60 ± 0.24 b 6.87 ± 0.64 a 0.28 ± 0.04 b 1.23 ± 0.26 b

CP 60.10 ± 2.68 a 9.61 ± 0.07 a 6.39 ± 0.31 a 0.73 ± 0.02 a 14.78 ± 0.49 b 2.49 ± 0.03 b 5.95 ± 0.25 a 0.89 ± 0.09 a 1.25 ± 0.21 b

BP 36.06 ± 5.49 a 9.22 ± 0.17 a 5.67 ± 0.11 ab 1.12 ± 0.12 a 18.32 ± 0.89 a 3.63 ± 0.15 a 5.05 ± 0.14 a 0.86 ± 0.10 a 3.01 ± 0.38 a

October
NF 63.95 ± 6.42 a 20.23 ± 0.30 a 4.12 ± 0.01 a 1.20 ± 0.24 a 14.88 ± 0.33 a 4.23 ± 0.22 a 3.52 ± 0.10 a 0.43 ± 0.04 b 1.41 ± 0.14 b

CP 60.52 ± 8.08 a 19.37 ± 0.25 a 4.19 ± 0.04 a 0.83 ± 0.06 a 12.70 ± 0.41 a 3.43 ± 0.22 a 3.72 ± 0.16 a 0.64 ± 0.08 ab 1.66 ± 0.12 b

BP 71.24 ± 5.70 a 18.13 ± 0.17 b 4.15 ± 0.02 a 0.96 ± 0.04 a 16.43 ± 1.73 a 4.16 ± 0.38 a 3.94 ± 0.16 a 0.90 ± 0.11 a 3.22 ± 0.36 a

Whole

NF 52.96 ± 5.88 a 15.12 ± 2.30 a 4.67 ± 0.26 a 1.16 ± 0.12 a 16.26 ± 0.77 ab 3.42 ± 0.39 a 5.20 ± 0.80 a 0.36 ± 0.04 b 1.32 ± 0.14 b

CP 60.31 ± 3.81 a 14.49 ± 2.19 a 5.29 ± 0.51 a 0.78 ± 0.04 b 13.74 ± 0.54 b 2.96 ± 0.23 a 4.83 ± 0.51 a 0.76 ± 0.08 a 1.45 ± 0.14 a

BP 53.65 ± 8.63 a 13.68 ± 2.00 a 4.91 ± 0.34 a 1.04 ± 0.07 b 17.37 ± 0.97 a 3.90 ± 0.22 a 4.49 ± 0.27 a 0.88 ± 0.07 a 3.12 ± 0.24 a

p values in ANOVA
Forest 0.213 0.004 0.027 0.012 0.020 0.039 0.190 0.008 0.003
Time 0.013 <0.001 <0.001 0.952 0.027 <0.001 <0.001 0.176 0.117
F × T 0.106 0.034 0.033 0.639 0.890 0.056 0.018 <0.001 0.799

* SM, soil moisture; ST, soil temperature; BD, bulk density; SOC, soil organic carbon; TN, total nitrogen; C/N, ratio of SOC to TN; TP, total phosphorus; AP, available phosphorus. F × T,
Forest × Time.
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Table 3. Effect of forest type on soil microbial relative abundance (%) at phylum level (top 10).
Different superscripted letters indicate significant differences between forests (p < 0.05).

Kingdom Phylum Natural Forest Coniferous
Plantation

Broad-Leaved
Plantation

Bacteria Proteobacteria 80.75 ± 1.00 a 82.06 ± 0.73 a 82.25 ± 0.59 a

Bacteria Actinobacteria 14.32 ± 0.58 a 12.70 ± 0.83 a 12.88 ± 0.84 a

Bacteria Firmicutes 1.90 ± 0.55 a 1.68 ± 0.51 a 2.14 ± 0.64 a

Bacteria Bacteroidetes 0.17 ± 0.05 a 1.21 ± 0.80 a 0.20 ± 0.02 a

Bacteria Acidobacteria 1.68 ± 0.28 a 1.23 ± 0.11 a 1.42 ± 0.24 a

Fungi Ascomycota 0.48 ± 0.32 a 0.11 ± 0.02 a 0.11 ± 0.05 a

Bacteria Verrucomicrobia 0.24 ± 0.02 b 0.35 ± 0.03 a 0.32 ± 0.03 ab

Bacteria Nitrospirae 0.02 ± 0.01 b 0.13 ± 0.03 a 0.07 ± 0.01 ab

Bacteria Chloroflexi 0.11 ± 0.01 a 0.14 ± 0.04 a 0.21 ± 0.03 a

Bacteria Planctomycetes 0.15 ± 0.02 a 0.17 ± 0.01 a 0.19 ± 0.03 a
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Figure 4. Nonmetric multidimensional scaling (NMDS) and principal coordinate analysis (PCoA) of
soil microbial communities based on Bray–Curtis dissimilarity.

3.3. Soil Aggregate Properties and Influencing Factors

The soil in the study area mainly consisted of >2 mm aggregates (more than 90%,
Figure 5). In March, only the proportion of 1–2 mm aggregates was significantly different
among the forests (p < 0.05). It was not significantly different in the NFs from in the CPs
(p > 0.05), while both were significantly higher than in the BPs (p < 0.05). In October, the
proportion of >2 mm aggregates in the CPs was significantly higher than those in the NFs
and the BPs, while that of the 1–2 mm aggregates was the opposite (p < 0.05). On the whole,
the proportion of 0.25–1 mm aggregates in the two plantations was significantly lower than
that in the NFs (p < 0.05). However, no matter in which time period, the forest type had no
significant effect on the proportion of <0.25 mm aggregates (p > 0.05).

The forest type significantly affected the MWD (p < 0.05, Figure 6). The MWD of
the CPs and of the BPs in March and October were both significantly higher than that of
the NFs (p < 0.05). On the whole, the CPs significantly increased the MWD by 4.5% as
compared with the NFs (p < 0.05), while there was no significant difference between the
BPs and the NFs (p > 0.05).

The mycorrhizal density in the soil in the CPs and the BPs was significantly higher
than that in the NFs (p < 0.05), while the TG was not significantly affected by the forest
(p > 0.05, Figure 7). Although the EEG in the NFs and the BPs were significantly higher
than the CPs in October (p < 0.05), there was no significant difference between them at the
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annual level (p > 0.05). For the inorganic aggregate binding agents, the contents of the soil’s
Fe oxide in the plantations were higher than those of the natural forests in March and the
whole year, while no significant difference was detected in the Al oxide content among the
forests (p > 0.05).
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Figure 6. Effect of forest type on the stability of soil aggregates shown as mean weight diameter.
Different letters indicate significant differences between forests (p < 0.05).

The soil’s microbial communities and the organic and inorganic aggregate binding
agents explained 75.07% of the variation of the aggregates’ composition and stability
(Figure 8). They contributed 12.56%, 11.34% and 21.45%, respectively. The interactions be-
tween the microbial communities and the organic and inorganic binding agents accounted
for 9.76% and 8.67%, respectively, and the interaction between the organic and inorganic
binding agents accounted for 6.73%.

A Pearson correlation analysis (Figure 9) showed that there was a significant posi-
tive correlation between the soil’s microbial diversity indices (p < 0.001), and they both
significantly and positively correlated with the Fe oxide (p > 0.05). Meanwhile, the MWD
was positively correlated with the microbial diversity indices, the mycorrhizal density and
the Fe oxide (p < 0.05). However, there were significant negative correlations between the
proportion of >2 mm aggregates and that of aggregates with other sizes (p < 0.01).
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Figure 9. Correlation between soil microbial community diversity, organic and inorganic binding
agents, and aggregate composition and stability. TG, total glomalin-related soil protein; EEG, easily
extractable glomalin-related soil protein; SOC, soil organic carbon; >2 mm, 1–2 mm, 0.25–1 mm,
<0.25 mm, the proportion of different soil aggregates. * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

In this study, the soil MWD in the coniferous plantations was significantly higher
than that in the NFs, while that of the broad-leaved plantations was only significantly
higher than the NFs in March (Figure 6). This suggests that the restoration of degraded
forests by coniferous plantations is more helpful than by NFs to improve the aggregate’s
stability [9,44]. This partially confirms our hypothesis 1. However, our study only lasted
one growing season, and thus long-term research is needed to obtain a precise conclusion.
The MWD of the broad-leaved plantations was significantly lower than the NFs in October,
and this caused the generally insignificant difference of the MWD between the BPs and the
NFs. According to the relationship between the MWD and the proportion of aggregates
(Figure 9), the MWD is positively correlated with the proportion of >2 mm aggregates and
negatively correlated with the proportion of <2 mm aggregates. That is, the increase in
the MWD should be limited by an increase in the proportion of >2 mm aggregates and a
decrease in the proportion of <2 mm aggregates. However, in October, the mean value
of each <2 mm aggregate’s proportion in the BPs was higher than that in the NFs (not
significant), which also led to the fact that the aggregates’ stability of the BPs was not always
higher than the NFs. The reason for the change of each aggregate with a different size can
be explained by the microbial communities and the various organic and inorganic binding
agents, which will be discussed below. Meanwhile, the lower bulk density (Table 1) of the
coniferous and broad-leaved plantations resulted in higher porosity [16,45], which makes it
easier for plant roots to penetrate the soil [46], and more roots will intertwine with the soil
particles to form aggregates [21]. Another result of this study on the fine root biomass (i.e.,
the fine root biomass of the coniferous forests (10.21 g/m2) and the broad-leaved forests
(9.73 g/m2) was significantly higher than that of natural forests (4.40 g/m2)) confirmed our
inference from the other side. However, our study differs from some studies showing the
significantly higher fine root biomass in natural forests than that in plantations [45,47]. This
is most likely due to our different environmental conditions (particularly the tree species)
which easily affect soil properties and root characteristics [48].

As so far, the function of the forests’ soil microorganisms has become a research
hotspot [49,50]. We were surprised to find that the soil microorganisms play an important
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role in the formation of aggregates. This is seen from the interaction between the microbial
communities and other factors revealed about 36% variation in the aggregates’ composition and
stability (Figure 8), and the microbial communities’ diversity indices were significantly positively
correlated with the MWD (Figure 9). This is consistent with previous research [12,17,51]. This
is because stable aggregates provide habitats for microbial communities, and the location of
the microbial communities in the aggregates affects their function. Therefore, the diversity
of the microbial communities was significantly positively correlated with the MWD.

Furthermore, the organic binding agents that are closely related to the microorganisms,
usually including mycorrhizal density and the GRSP, directly affect the stability of the
aggregates through the hierarchical formation process of the aggregates [17,25,52]. On
the one hand, the mycorrhizal density was significantly positively correlated with the
MWD, and the correlation with the large aggregates was stronger than with the small
aggregates (Figure 9). This indicates that the mycorrhiza preferentially affects the formation
of large aggregates [25]. This is because the mycelia in the microbial community play a
winding role on the soil particles [53,54]. The mycorrhizal density in the plantations’ soil
was significantly higher than that in the NFs’ (Figure 7), and the plant roots and their
mycorrhizal symbionts could intertwine with mycelia to form a huge network, creating
forming conditions for the large aggregates [26]. On the other hand, the GRSP secreted by
the microbial community (mainly arbuscular mycorrhizal fungi, AMF) during the metabolic
process can act as a “glue” to increase the number of aggregates [23,24]. However, the
effects of the TG and the EEG on the MWD in this study were not significant (Figure 9).
Except for the EEG in the CPs being significantly lower than in the NFs and in the BPs
in October, there was no significant difference in the TG or the EEG among the forests
(Figure 6). This may be due to the fact that the TG is a stable and difficultly-decomposed
component of the GRSP as compared to the EEG [29,30]. Under a high soil temperature
and humidity (Table 2, Figure 2), the EEG released by the AMF in a short time is extremely
easy to be degraded and transformed [42]. However, although the microbial community’s
structure and composition were investigated in this study, the abundance and diversity of
the AMF were not analyzed in detail. This hinders the further study on the relationship
between the GRSP and the aggregates. However, the aggregates’ composition and stability
were not affected by the GRSP in this study, and so no evidence from the AMF had little
impact. Further analysis can be made in the future.

Both the VPA and the Pearson correlation analysis showed that the formation and
stability of the aggregates were achieved through the complex interactions of the soil
microbial communities and the various binding agents (Figures 8 and 9), which confirms
our hypothesis 2. The organic binding agents (mainly mycorrhiza in this study) have
been discussed previously, and the inorganic binding agent in this study was Fe oxide, as
indicated by the correlation analysis. In oxisol, sesquioxide (such as Fe and Al oxide, etc.)
is a key substance for the formation of aggregates [22]. Its charge can be adsorbed on the
surface of clay particles to form an oxide film, which promotes the soil particles’ cohesion
to form aggregates [31]. Some of the literature reported that the stability of the aggregates
was influenced by the Fe and Al oxides [55], and by a single metal oxide, [32] or not by
them [56]. In this study, the Fe oxide rather than the Al oxide affected the aggregates,
which was probably due to the soil type and texture. The state of the Al3+ ion in this
studied soil was not stable, but the Fe3+ ion was stable enough to replace the Al3+ and
to make the inorganic colloids in the soil closer to each other and coagulate to form the
aggregates [55,57]. The higher content of the soil’s Fe oxide in the plantations than in the
natural forests (Figure 7) further enhanced the aggregates’ stability.

At the same time, there was also a significant positive correlation between the microbial
communities’ diversity and the Fe oxide (Figure 8). The relative abundances of the soil’s
microorganisms were affected by the soil’s acidity, aeration permeability and nutrients.
Under acidic environments, the Fe, Al and Mn in the soil could absorb a large amount of
P [55]. On the whole, a better nutrient condition in the plantations than in the natural forests
(Table 2) might help the plantations to fix more metal ions. Higher nutrient and mineral
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contents create favorable conditions for the soil’s microorganisms [34] and they integrate to
affect the soil’s aggregations. Nevertheless, the correlation between the microorganisms
and the metal oxides remains unknown and is an interesting direction for future research.

In summary, the soil’s microbial community composition, structure and diversity
were significantly different among the forests (Table 3, Figures 3 and 4). In particular,
the coniferous plantations had higher microbial community diversity than those of the
natural forests (Figure 3). This not only enhanced the penetration of the roots into the
soil [46], forming higher mycorrhizal density, but also led to greater microbial community
activities [58]. The secretions of the microorganisms may also have participated in the soil
aggregation by bonding with the soil particles [12,17]. Under the combined effects of the
Fe oxide, more and stable aggregates were formed in the subtropical coniferous plantations
than in the natural forests.

5. Conclusions

The type of subtropical forest significantly affects the soil microbial community’s
composition, structure and diversity. The Shannon and Simpson indices of the soil microbial
communities in the coniferous plantations are both significantly higher than those in the
natural forests. This might further affect the mycorrhizal density. In addition, with the
cementation effects from the Fe oxide, the subtropical coniferous plantations have a higher
soil aggregate stability than those of the natural forests. We therefore suggest that coniferous
plantations can be considered to enhance the aggregate structures in the restoration of
subtropical degraded forests. The combined effects of the soil microbial communities, the
organic (mycorrhizal density) and inorganic binding agents (Fe oxide) can be the main
mechanisms of the soil’s aggregation in the study area. Since the microorganisms play
important roles in the soil’s aggregation, future studies on specific microorganisms (such
as AMF) can be strengthened, and long-term research is also necessary.
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