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Abstract: Soil water status and fine-root characteristics are the foundation for implementing forest
water-management strategies in semiarid forest plantations, where rainwater is always the sole
source of water for plant growth. Rainwater management and utilization are effective strategies to
alleviate water scarcity in semiarid areas as ground water is always inaccessible there. Through the
implementation of an in situ rainwater collection and infiltration system (IRCIS), we investigated
the effects of IRCIS on soil water and fine-root distributions in the 0–5 m soil profile in a wet (2015,
815 mm) and a dry year (2016, 468 mm) in rainfed Robinia pseudoacacia forests in the Loess Plateau
region of China. The results showed drought significantly decreased plant water availability and
hydraulic conductivity of roots and branches, but strongly increased soil moisture deficits and fine-
root (<2 mm diameter) biomass. With the implementation of IRCIS, soil profile available water and
plant hydraulic conductivity can be significantly increased, but soil moisture deficits and fine-root
(<2 mm diameter) biomass can be significantly decreased. Drought also significantly influenced the
root distribution of Robinia pseudoacacia. The maximum depth of Robinia pseudoacacia roots in the dry
year was significantly greater than in the wet year. Therefore, Robinia pseudoacacia can absorb shallow
(0–1.5 m) soil water in wet years, while utilizing deep (>1.5 m) soil water in dry years to maintain
normal growth and resist drought stress. The results of this study will contribute to the formulation
of appropriate strategies for planning and managing rainwater resources in forest plantations.

Keywords: fine-root distribution; plant-available water; hydraulic characteristics; Robinia pseudoacacia;
Loess Plateau

1. Introduction

In drylands, large-scale afforestation and reforestation activities have been imple-
mented to combat desertification, biodiversity loss and poverty, as forests are vital to
preventing desertification and providing local residents with wood [1,2]. For instance, ap-
proximately 49 billion hectares of dryland were reforested between 2000 and 2010, resulting
in a 0.8% increase in forest cover worldwide [3,4]. As forest plantation area increases, the
amount of water consumed by these planted trees will also increase [5]. Then there may
also be an increase in soil moisture deficits and a decrease in soil availability for plants.
A severe soil moisture deficit will inhibit plants from growing normally (e.g., fine roots,
hydraulic conductivity, etc.), and even result in the death of plants and the degradation
of forest plantations [6]. Therefore, the development of these large-scale afforestation and
reforestation projects will only be sustainable if adequate water resources are available. In
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these water-limited arid and semiarid regions, however, discrete rainfall is always the only
source of soil water replenishment; therefore, regulating and utilizing rainwater rationally
may be the only effective way to combat drought and alleviate forest degradation [6].

When it rains, some rainwater enters the shallow soil and is absorbed subsequently
by the roots of the plants, while another part of the rainwater infiltrates into the deep soil
and is stored and finally utilized by the deep roots, particularly during dry conditions in
semiarid regions. Plant roots, especially fine roots, are important organs for absorbing
water and nutrients from the soil [7]. Therefore, understanding the distribution of fine
roots is fundamental to understanding the soil water-use pattern [8]. As a water deficiency
detection sensor, fine roots are influenced by a variety of external factors, among which
drought stress is the most significant. Recently, the response of fine roots of trees to drought
stress has received much attention [9–13], but research on rainfed forest trees in semiarid
regions is still lacking [8]. A better understanding of the distribution characteristics of
rainfed plant roots, as well as their response to drought stress, is essential to understanding
the water-use patterns of plants and is also important to address a number of fundamental
problems in forest ecosystems, particularly in areas affected by severe droughts.

Water transfer in the roots and branches is one of the most critical aspects for ensuring
plant survival. Studies have indicated that water transport within the roots and branches of
plants is affected by a variety of factors, with drought stress being one of the most significant
ones. When plants are subjected to drought, hydraulic failure can occur, which negatively
impacts the growth and photosynthesis of plants and may lead to plant mortality as the
drought persists [14,15]. In the past few decades, many studies have been conducted to
determine the mechanisms causing drought-related tree mortality, and several mechanisms
have been proposed [14,16], among which hydraulic failure of plants has been widely
acknowledged. The hydraulic failure hypothesis states that high xylem tension induced
by drought can cause air bubbles to enter the xylem and block the transport of water
through the it, resulting in the plant’s inability to move water and eventual desiccation [16].
Studies have been conducted to test the hydraulic failure hypothesis, and a comprehensive
understanding of the water-transport characteristics of plants from the roots to the leaves
has been formalized, but the roots are lagging behind compared to the branches. A
better understanding of how plants adjust their water-transfer characteristics through their
root systems, especially under drought conditions, will be helpful for us to adequately
understand the hydraulic characteristics of plants, as well as to formulate reasonable
management strategies.

In recent years, in situ rainwater collection and infiltration systems (IRCIS) have
been developed and applied by farmers to harvest rainwater for sustainable plant growth,
especially for orchards, in the semiarid Loess Plateau region of China [6,8]. These systems
are designed to increase soil water quantity during the dry season by reducing surface
runoff as well as improving rainwater-harvesting efficiency. In many studies, the effects of
IRCIS have been discussed in relation to orchards [8,17]; however, very few studies have
examined the effects of IRCIS on soil water content and root distribution for commonly
planted trees on the Loess Plateau. However, understanding the effects of in situ rainwater
collection and infiltration systems on soil moisture and vegetation growth (such as root
distribution characteristics, plant hydraulic conductivity, etc.) of forest plantations under
drought stress is of significant importance to develop reasonable plantation management
measures and promote the healthy and sustainable development of these plantations.

The objectives of this study were (i) to determine the effects of drought on the dis-
tribution of soil moisture and fine roots (0–5 m) as well as plant hydraulic conductivity
of a commonly planted tree species in the semiarid region of the Loess Plateau and (ii) to
explore the effects of IRCIS on soil moisture, fine root distribution and plant hydraulic
conductivity of a commonly planted tree species under drought. In order to investigate
the effects of drought on soil moisture and plant growth (fine roots and plant hydraulic
conductivity), a wet year with higher-than-average rainfall (2015) and a dry year with
lower-than-average rainfall (2016) were chosen. The tree species Robinia pseudoacacia, which
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has been widely planted on the Loess Plateau to control soil and water erosion, prevent
desertification and produce timber and fuel wood, was selected for this study.

2. Materials and Methods
2.1. Site Description

The study was conducted at Yeheshan Forestry Station (YFS; 34◦33′ N, 107◦54′ E,
1090 m a.s.l) in the National Natural Reserve of Fufeng County in Shaanxi Province, China.
The area has a semiarid continental monsoon climate that is characterized by hot, humid
summers (June–August) and cold, dry winters (December–February). According to the
Fufeng meteorological station (which is located <10 km from the study area), average annual
precipitation and air temperature are 580 mm and 12.7 ◦C, respectively. The precipitation
mainly falls from May–October (~80% of annual precipitation). The main soil type in the
region is silt loam, with a homogeneous texture along the 0–500 cm soil profile and mean
sand, silt and clay contents of 5.8%, 73.4% and 20.9%, respectively [18]. The mean soil bulk
density (BD), field capacity (FC) and permanent wilting point (PWP) of the silt loam are
1.30 g cm−3, 0.304 cm3 cm−3 and 0.072 cm3 cm−3, respectively [19].

YFS is a hilly-gully region with an elevation range of 449–1662 m a.s.l and area of
110 km2. Forest cover in the region is ~90% and is dominated by Robinia pseudoacacia
planted since the 1980s to control soil erosion. Robinia pseudoacacia plantation covers an area
of 86.7 km2 and has a dense understory that is a mix of Stipa bungeana, Humulus scandens
and A. codonocephala.

2.2. Experimental Plot

Six Robinia pseudoacacia experimental plots (20 × 20 m2) with an age of 13 years and
density of 2000 trees/ha were selected and established on hills with slopes of 5–10◦ (middle
slope facing south) where rainfed crops (such as maize and winter wheat) were previously
cultivated. Three experimental plots (treated plots) were randomly chosen to install the in
situ rainwater collection and infiltration systems (IRCIS), and another three experimental
plots were used as the control plots (without IRCIS). Each plot was constructed with an
aluminum composite panel ridge of 30 cm above the ground around the borders and an
H-flume applied to measure surface runoff. Previous cropland (predominantly maize
and winter wheat) that had been abandoned for 13 years was used as a control site for
monitoring soil moisture changes.

In the treated experimental plots, IRCIS was constructed upslope of individual trees
and consisted of a semi-circular ridge of radius 1.0 m and height 0.2 m. During the
construction of the ridge, soil was excavated and moved in such a manner that the tree
trunk formed the apex of the semicircular ridge and the soil surface within the semicircle
area was relatively level. From above, the ridges formed an upslope pattern resembling a
fish scale along each row in the Robinia pseudoacacia forest plots. Within the semicircular
ridge, an 80 cm × 80 cm × 80 cm soil pit was dug. In this pit, the down-slope wall was
100 cm away from the tree trunk. This storage pit was lined with permeable geotextiles
and filled with soil, weeds, branches and forest debris. The surface of this storage pit was
then covered with black plastic film and a 3 cm diameter hole was drilled in the center of
the plastic film. Rainwater collected from the fish-scale ridge would infiltrate into the filled
material through the hole in the plastic film. Rainwater collected in the pit could then be
directed laterally and downward into the surrounding soil. The design slows the flow of
runoff, resulting in a reduction in sedimentation and loss of soil-pit storage capacity.

The experimental plots treated with IRCIS in 2015 and 2016 were designated, respec-
tively, as RC2015 and RC2016. The control plots without IRCIS in 2015 and 2016 were
designated as WT2015 and DT2016, respectively.

2.3. Fine-Root Measurement

The vertical distribution of fine roots in the controlled and treated Robinia pseudoacacia
stands was investigated using the soil auger method [20]. In each plot, soil core samples
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were collected using a cylindrical metal corer (9 cm wide and 10 cm long) with one sharp
edge. A total of 8 sample points was selected in each forest stand. Samples were taken
between 10 and 20 May, 10 and 20 July, and 10 and 20 September at the beginning, middle
and end of the growing season. Soil cores were collected at 20 cm intervals to a depth of
100 cm and then at 40 cm intervals to a depth of 500 cm where fine roots were not observed,
and the width of the tree canopy. The collected soil samples were stored in polythene
plastic bags at 4 ◦C for later analyses. In the laboratory, the root samples were separated
from the soil by a two-stage process. In the first stage, soil samples were washed carefully
over a sieve (5 mm). Then grass roots and other organic debris were discarded and tree
roots were placed with tweezers into petri dishes containing water. In the second stage,
the tree roots were separated by physiological status and diameter classes (d > 2 mm and
d ≤ 2 mm). Then separation was performed using a microscope (10–40 ×magnification).
The Robinia pseudoacacia tree roots were identified based on color and morphology. The
root samples were then digitally scanned using an Epson Perfection v700 photo scanner at
600 dpi (Seiko Epson Corporation, Naga-no-ken, Japan). Root lengths were measured using
the WinRhizo image analysis software (pro 2009c, Regent Instruments Inc., Quebec City,
QC, Canada). The fine-root (<2 mm) length density (FRLD, cm dm−3) was calculated as:

FRLD =
L

Vs
(1)

where L is fine-root length and Vs is soil volume. We also calculated the cumulative
fine-root length density (CFRLD, % of total) for each experiment plot in each soil layer.

2.4. Soil Water Content and Rainfall Measurement

Volumetric soil water content was automatically measured using soil water probes.
At each forest stand, 10 Hydra-Probes (Stevensons Water Monitoring Systems, Portland,
OR, USA) were installed at soil depths of 5, 15, 30, 50, 80, 120, 180, 250, 350 and 500 cm
below the ground surface. Soil water content was sampled every 10 min and recorded by a
CR1000 datalogger (Campbell Scientific Inc., Logan, UT, USA). Before the study, all soil
water probes were calibrated.

Plant-available water storage (PAMS) is the amount of water storage that can be
released into the root zone at any point in time. It is defined as the difference between in
situ field water content and permanent wilting point (PWP) and is calculated as:

PAMSi,j = (SWCi,j − PWP)× BDi,j × ∆Zi,j (2)

where SWCi,j is soil water content of the jth soil layer under the ith treatment (stand age);
PWP is permanent wilting point; BDi,j is soil bulk density at depth j and sampling site i;
and ∆Zi,j is soil depth increment.

Soil moisture storage deficit (SMSD), relative to the values of the abandoned cropland,
was used to assess the feasibility of ecological restoration [8]:

SMSDt,i =
SWSt,i − SMSc,i

SMSc,i
(3)

where SMSt,i and SMSc,i are soil moisture storage in the ith soil layer in the treated experi-
mental plot and the abandoned cropland, respectively. SMSD≥ 0 indicates no soil moisture
storage deficit, while SMSD < 0 represents soil moisture storage deficit in the specified soil
layers, where the magnitude of the value is indicative of the severity of the deficit.

Rainfall was measured using both automatic and manual rain gauges. Three manual
funnel-type rain gauges (30 cm orifice diameter) were installed near (<30 m away) each
forest stand at a sufficiently open place. Due to financial limitations, only one T-200B
weighing bucket rain gauge (Geonor, Eiksmarka, Norway) was used in this study. The
automatic rain gauge was connected to a CR1000 data logger (Campbell Scientific Inc.,
Logan, UT, USA) and installed in a sufficiently exposed nearby place (<30 m) in the middle
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of the watershed. The manual rain gauges were read immediately after each rainfall
event. Using the long-term yearly rainfall data (1958–2016), we constructed a rainfall
frequency curve. Each year was categorized as either a wet year, a normal year or a dry
year, depending on the frequency of gross rainfall (<25% are wet years; >75% are dry years;
remainder are normal years) [21].

To exclude the effect of rainfall on soil water movement, seven successive days without
rainfall (rain-free period) were set in this study as the investigation period. Moreover, leaves
were completely unfolded and canopies remained stable during summer and therefore
6 rain-free periods (8–14 June, 25–31 July and 25–31 August in 2015 and 16–22 June, 2–8 July
and 10–16 August in 2016) were ultimately used for investigation (Figure 1).
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2.5. The Percent Loss of Hydraulic Conductivity (PLC)

In this study, one-year-old branches at the middle-upper canopy on the sunny side
(the south side) of the plant, as well as roots from shallow soil layers (0–100 cm), were
used to determine the percent loss of hydraulic conductivity (PLC). To measure the PLC, a
low-pressure flow meter was used following the approach proposed by Sperry et al. [22].
During the dawn or noon period of the fine-root collection, approximately 30–40 cm long
samples of branches with a basal diameter of approximately 1.0 cm and roots in soil depths
of 50 cm were collected. To avoid embolisms induced by cutting, all plant samples were
cut under water. Afterwards, all the samples were wrapped in plastic bags and taken back
to the lab for PLC analysis. The PLC was determined by averaging three segments (4 cm
long) across three biological replicates. To determine the flow rate through the segment,
the solution was collected and weighed using a balance. By measuring the flow rate of
the KCl solution at a pressure differential of 4 kPa, the initial hydraulic conductivity (Ki)
was determined gravimetrically. The stem segment was flushed for a period of 10 min at a
pressure of 0.175 MPa in order to remove any air embolisms. Afterwards, the hydraulic
conductivity of the fluid was determined again at a pressure differential of 4 kPa and
was set as the maximum hydraulic conductivity (Kmax). The PLC was then calculated as
PLC (%) = (1 − Ki/Kmax).

2.6. Statistical Analysis

The data were analyzed using a one-way analysis of variance (ANOVA) using SPSS
Version 25.0 (Chicago, IL, USA) after verifying the assumptions of normality and homo-
geneity. Ducan’s multiple range tests were performed at p < 0.05 and p < 0.01 for significant
differences between the treatments for PAMS, SMSD, FRLD and PLC between treated
and control forest plots: WT2015, RC2015, DT2016 and RC2016. Origin software 2022
(OriginLab Corporation, Hampton, MA, USA) and Excel 2022 (Microsoft Corporation,
Redmond, WA, USA) were used to fit curves and plot graphs.
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3. Results
3.1. Plant-Available Moisture Storage (PAMS)

Plant-available moisture storage (PAMS) in Robinia pseudoacacia forest stands was
significantly affected by the in situ rainwater collection and infiltration system (IRCIS) in
both wet and dry years (Figure 2). In general, the average PAMS profile decreased with
increasing soil profile, but the decrease under the treatment of IRCIS was relatively gradual,
whereas it was relatively rapid under the control treatment (Figure 2A). Furthermore, IRCIS
increased the average PAMS in soil profiles (0–5 m) of Robinia pseudoacacia forest stands
in both study years, but the increase was greater in the dry year 2016 than in the wet year
2015. IRCIS increased average PAMS in soil profiles by 4.6% in the wet year 2015 and 10.0%
in the dry year 2016 (Figure 2B).
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Figure 2. Vertical distribution (0–5 m, A) and the content (B) of plant-available moisture storage
(PAMS) in a wet year of higher-than-average rainfall (2015) and a dry year of lower-than-average
rainfall (2016) in Robinia pseudoacacia forest stands of different treatments. WT2015 is wet year of 2015
without in situ rainwater collection and infiltration system; RC2015 is wet year of 2015 with in situ
rainwater collection and infiltration system; DT2016 is dry year of 2016 without in situ rainwater
collection and infiltration system and RC2016 is wet year of 2016 with in situ rainwater collection and
infiltration system. Different letters indicate a statistically significant difference at p < 0.05 between
treatments. Error bars represent ±1 SD.

3.2. Soil Moisture Storage Deficit (SMSD)

The soil profile SMSD is shown in Figure 3. Overall, shallow soil profiles (0–1.5 m) suf-
fered greater soil moisture deficits during the dry year of 2016, but little or no deficit during
the wet year of 2015 relative to abandoned cropland (Figure 3A,B). In deep soils (>1.5 m),
almost all forest treatments displayed soil moisture deficits. The vertical distribution of
the profile soil moisture deficits was significantly affected by IRCIS treatment (Figure 3C).
On the whole, IRCIS treatment alleviated the soil profile deficit, but the alleviation in
the shallow soil (0–1.5 m) was much greater than that in the deep soil profile (>1.5 m)
(Figure 3A,B). In the two study years, the amount of alleviation was similar, but slightly
higher in the dry year of 2016 (decreased by 0.06) than in the wet year of 2015 (decreased
by 0.05).
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Figure 3. Vertical distribution (0–5 m, A,B) and content (C) of soil moisture storage deficit (SMSD) in
a wet year of higher-than-average rainfall (2015, A) and a dry year of lower-than-average rainfall
(2016, B) in Robinia pseudoacacia forest stands of different treatments. Negative and positive values
represent, respectively, a negative and positive soil moisture deficit relative to the control (abandoned
cropland). Different letters indicate a statistically significant difference at p < 0.05 between treatments.
Error bars represent ±1 SD. WT2015 is wet year of 2015 without in situ rainwater collection and
infiltration system; RC2015 is wet year of 2015 with in situ rainwater collection and infiltration system;
DT2016 is dry year of 2016 without in situ rainwater collection and infiltration system and RC2016 is
wet year of 2016 with in situ rainwater collection and infiltration system.

3.3. Fine-Root Distribution (FRLD)

The vertical distribution of fine-root length density (FRLD) is shown in Figure 4. In
general, the FRLD decreases with increasing soil depth, primarily in the 0–1.5 m soil profile
(Figure 4A). Fine roots were mainly concentrated in the top 0–1.5 m soil: WT2015 and
RC2015 had 82.9% and 93.9% of total FRLD, respectively, in the wet year of 2015; DT2016
and RC2016 had 67.4% and 75.3% of total FRLD, respectively, in the dry year of 2016.
Drought strongly increased the amount of FRLD: DT2016 and RC2016 had 31.1% and 23.8%
higher total FRLD, respectively, than WT2015 and RC2015 (Figure 4B). IRCIS significantly
reduced the FRLD: RC2015 and RC2016 had 7.4% and 12.7% lower total FRLD, respectively,
than WT2015 and DT2016 (Figure 4B).

Over both study years, the cumulative FRLD (CFRLD) was higher in the shallow soil
layer than in the deeper soil layer (Figure 5). IRCIS treatment significantly affected the
distribution of cumulative fine-root length density in Robinia pseudoacacia forests. IRCIS
tended to decrease CFRLD profiles gradually, but control treatment caused them to decline
profoundly (Figure 5), especially in the 0–1.5 m soil layer. IRCIS-treated forest stands
tended to have shallower D95 (the depth above which 95% of the root mass is present) than
the control forest stands, with respective values of 1.2 m for RC2015, 1.8 m for WT2015,
2.8 m for RC2016 and 3.3 m for DT2016.
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Figure 4. Vertical distribution (0–5 m, A) and content (B) of fine-root length density (FRLD, cm/dm3)
in a wet year of higher-than-average rainfall (2015) and a dry year of lower-than-average rainfall (2016)
in Robinia pseudoacacia forest stands of different treatments. Different letters indicate a statistically
significant difference at p < 0.05 between treatments. Error bars represent ±1 SD. WT2015 is wet year
of 2015 without in situ rainwater collection and infiltration system; RC2015 is wet year of 2015 with in
situ rainwater collection and infiltration system; DT2016 is dry year of 2016 without in situ rainwater
collection and infiltration system and RC2016 is wet year of 2016 with in situ rainwater collection and
infiltration system.
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Figure 5. Comparison of cumulative fine-root length density in Robinia pseudoacacia forest stands
of different treatments in a wet year of higher-than-average rainfall (2015) and a dry year of lower-
than-average rainfall (2016). Data points represent average fine-root length densities in the indicated
soil layers. The intersection of horizontal lines (with different colors) and vertical lines D95 indi-
cates soil depth above which 95% of fine-root length density occur. WT2015 is wet year of 2015
without in situ rainwater collection and infiltration system; RC2015 is wet year of 2015 with in situ
rainwater collection and infiltration system; DT2016 is dry year of 2016 without in situ rainwater
collection and infiltration system and RC2016 is wet year of 2016 with in situ rainwater collection and
infiltration system.
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3.4. The Percentage Loss of Hydraulic Conductivity (PLC)

IRCIS strongly affected the percentage loss of hydraulic conductivity (PLC) in branches
and roots of Robinia pseudoacacia forest (Figure 6). Over the two study years, IRCIS reduced
the PLC for all forest stands. In branches, RC2015 and RC2016, were, respectively, 35.6%
and 24.3% lower than WT2015 and DT2016 (Figure 6A). In roots, RC2015 and RC2016,
were, respectively, 35.6% and 24.3% lower than WT2015 and DT2016 (Figure 6B). In general,
IRCIS had a greater impact on the root PLC than on the branch PLC (Figure 6A,B). This
shows that roots have a higher sensitivity to external factors, such as drought and IRCIS,
than branches when it comes to hydraulic conductivity.
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pseudoacacia under different treatments. Different letters indicate a statistically significant difference
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without in situ rainwater collection and infiltration system; RC2015 is wet year of 2015 with in situ
rainwater collection and infiltration system; DT2016 is dry year of 2016 without in situ rainwater
collection and infiltration system and RC2016 is wet year of 2016 with in situ rainwater collection and
infiltration system.

4. Discussion
4.1. Soil Moisture Profile

Over the last few decades, large-scale afforestation efforts have increased forest cover
by 7.6% from 2001 to 2016 in the semiarid Loess Plateau region of China [23]. Due to the
large amount of soil water required by forest vegetation, plant-available soil water is likely
to decline dramatically, and the soil water deficit will be exacerbated, especially in drought
years (Figures 2 and 3). As a result, this will negatively impact the health and stability of the
forest vegetation ecosystem in the semiarid Loess Plateau region, resulting in a reduction
in the normal growth of forest vegetation and even death of forest vegetation [19,24]. As
the climatic and environmental conditions experienced by the forest plots are similar in our
study, rainfall in different years and forest management measures (with or without IRCIS
treatment) are the primary factors determining soil water balance and how soil water is
distributed in the soil profile of Robinia pseudoacacia forests.

This study highlights the importance of IRCIS for rainfall harvesting in afforestation
planting and management because it can significantly increase the availability of soil water
to the plants and decrease soil water deficits (relative to the abandoned cropland). In line
with our findings, Song et al. (2020) also found that IRCIS treatment can significantly
increase the soil profile water content of orchard plants [8]. It has been shown that shallow
(0–1.5 m) soil moisture is primarily affected by rainfall and vegetation utilization [17,25];
thus, shallow soil (0–1.5 m) has significantly wider variations in soil water content than
deep soil, particularly during dry seasons or years (Figure 2). Our study also found that
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the effect of IRCIS on shallow soil moisture content (0–1.5 m) was greater than it was on
deep soil moisture (>1.5 m), which could be attributed to the fact that the soil moisture
increased by IRCIS was mainly retained and consumed by the shallow (0–1.5 m) root
system of Robinia pseudoacacia (Figures 4 and 5), but could not be substantially replenished
in the deep soils (>1.5 m). As a consequence, the shallow soil moisture content (0–1.5 m) is
highly variable with the implementation of IRCIS, whereas the deep (>1.5 m) soil moisture
content is relatively stable. Additionally, this suggests that deep soil profiles may serve as
an important water source for forest vegetation during extremely dry years [8,26,27].

4.2. Root Distribution Pattern

Fine roots are essential to the growth and development of plants as they extract the
majority of the water and nutrients from the soil. In this study, it was found that Robinia
pseudoacacia increased its biomass of fine roots as well as its distribution depth during dry
years, demonstrating that Robinia pseudoacacia is able to absorb and utilize large amounts of
deep soil water during dry periods. These findings are similar to those of Brunner et al.
2015 [26] and Song et al., 2020 [8]. When Robinia pseudoacacia was treated with IRCIS, its
fine-root biomass and fine-root depth decreased significantly in comparison to the control
group. This may be because IRCIS can increase the water content of the shallow soil in
both dry and wet years (Figure 2), making it easier for Robinia pseudoacacia to absorb water
from the shallow soil instead of allocating more carbon for growing deeper roots to absorb
deep soil water to support its growth and development. Similar results were also found by
Li et al. (2022) [28] and Song et al. (2020) [8].

Additionally, this study demonstrated that the FRLD content in the surface (0–1.5 m)
soil of Robinia pseudoacacia forests was the highest in both dry and wet years, accounting for
more than 80.0% of the total fine-root biomass, among which WT2015, RC2015, DT2016
and CR2016 each had a content of 82.9%, 93.9%, 67.4% and 75.3%, respectively. The results
demonstrated that this structure facilitates the efficient uptake of water from shallow soil
layers, where soil water is greatly affected by rainfall and replenished rapidly [8,17,29].
Although the FRLD content in deep soil (>1.5 m) is relatively low, this part of the fine
roots is critical to the growth of plants. Particularly in drought years, this part of the fine
roots can absorb deep soil moisture in order to aid plants in resisting drought conditions.
There is also evidence from Song et al. (2020) [8] that apple trees in semiarid regions will
increase their water consumption from deep soil in drought years in order to resist drought
stress [8].

A deep root system is one of the most important adaptations for plants in arid and
semiarid environments. Generally, rooting depth determines how much water can be
accessed by plants through transpiration from the soil [30]. In this study, it was found
that, in comparison with the wet year of 2015, the growth of Robinia pseudoacacia fine roots
(maximum depth and D95) was deeper in the dry year of 2016, which may enable them
to switch between shallow and deep water sources, depending on soil water availability.
These findings agree well with reports by [8,25,31]. In addition, this study found that
IRCIS treatment increased plant water availability and reduced soil water deficit, reducing
the risk of plants suffering from drought stress. Similar results were also reported by
Song et al. (2020) [8].

4.3. PLC

Xylem water transport is essential for maintaining canopy gas exchange and cell
expansion and, therefore, for plant growth and survival. Studies have shown that xylem
conduits with larger diameters always have greater water transport ability, but are also
more vulnerable to hydraulic failure [16]. This is due to the structural characteristics of
the xylem network: plants are faced with the challenge of transporting as much water as
possible while minimizing the risk of drought-induced embolisms during dry periods [32].
This was also evident in the present study, where the loss of hydraulic conductivity during
drought years was larger in roots (with a larger xylem diameter) than it was in branches
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(with a small xylem diameter). The loss of hydraulic conductivity will affect the growth
processes of plants, such as photosynthesis and transpiration, resulting in slow growth
and possibly even death [32]. In addition, our study found that after the application
of IRCIS treatment, the PLC of the branches and roots decreased in both wet and dry
years. This may indicate that IRCIS treatment plays a significant role in improving plant
resistance to drought and preventing the loss of hydraulic conductivity, especially during
drought conditions.

4.4. Implications for Afforest Management

In this study, we provided evidence that PAMS in shallow soil layers (0–1.5 m) was low
during the rainy season of the dry year 2016, and soil water deficits were observed in most
deep soil layers (>1.5 m) in both 2015 and 2016. This was mainly due to the lower rainfall
and higher water consumption of Robinia pseudoacacia trees in dry years, which eventually
reduced soil water content, increasing soil moisture deficits [19]. Severe soil moisture
deficits in turn resulted in lower hydraulic conductivity, hindered Robinia pseudoacacia
growth and even caused branch dieback and tree mortality [32]. Therefore, for the healthy
development of artificial forests and sustainable ecological construction, effective water-
saving management with the potential to control soil erosion without endangering further
soil water availability should be implemented in the semiarid Loess Plateau region.

A rational collection, management and utilization of rainfall, the only water resource
available for the growth of vegetation in this region, can result in an increase in soil water
content (Figure 2), a reduction in soil water deficit (Figure 3) and an improvement in
artificial forests’ growth (fine roots and plant hydraulic conductivity, Figures 4–6). Diverse
afforestation management strategies for the effective utilization of rainwater to increase
sustainable forest development in the Loess Plateau region are well documented [6,8]. All
these strategies, including engineering measures (e.g., creation of fish-scale pits and mini-
catchments), level furrowing and agronomic measures (e.g., mulching with straw or stone,
application of water-retaining chemicals), have all been tested and are well implemented [6].
In situ rainwater collection and infiltration systems (IRCIS) that divert rainwater and runoff
to deeper soils have been introduced into orchards to optimize rainwater utilization on the
Loess Plateau [8,17,33]. The results of our study also indicate that IRCIS can be used for the
sustainable development of artificial forests to increase the availability of soil moisture for
plants and decrease soil moisture deficits.

5. Conclusions

Afforestation is an effective measure to control soil and water erosion for sustainable
ecological construction in the Loess Plateau of China. However, due to huge water re-
quirements, forest land, such as Robinia pseudoacacia forests in our study, had significantly
lower plant-available water than abandoned cropland, resulting in higher soil moisture
deficits, especially in low rainfall years. The presence of a significant water deficit in soil
will reduce the hydraulic conductivity of the roots and branches of plants, inhibiting the
normal growth of plants and even resulting in their death. Our results indicated that IRCIS
can increase soil water content, decrease soil moisture deficits and increase the hydraulic
conductivity of plants. Moreover, our results revealed that drought significantly influenced
the root distribution of Robinia pseudoacacia. The biomass and maximum depth of Robinia
pseudoacacia roots in dry years were significantly greater than those in wet years, suggesting
that Robinia pseudoacacia can absorb shallow soil water in wet years, while absorbing deep
soil water in dry years to maintain normal growth and resist drought stress. The results
of this study will contribute to the formulation of appropriate strategies for planning and
managing rainwater resources. The use of all these strategies, such as in situ rainwater
collection and infiltration systems, would help counteract the degradation of forest planta-
tions caused by droughts, not only on the Loess Plateau, but also in other similar regions
around the world.
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