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Abstract: Vegetation dynamics in arid and semi-arid regions have an important impact on carbon
cycle, water cycle, and energy exchange at local, regional, and global scales. Therefore, it is of great
significance for scientists to grasp the changes of vegetation cover in arid and semi-arid regions
timely and accurately. Based on this, the applicability of ESTARFM model in the complex terrain
area of arid and semi-arid Xinjiang was explored using Landsat and MODIS data fusion, and the
overall change characteristics of vegetation cover (FVC) and the distribution and change patterns of
different terrains in the study area in the past 15 years were analyzed by combining the dimidiate
pixel model, unary linear regression and digital elevation model. The results show that: (1) the
NDVI data fused by ESTARFM Model has high consistency with the real NDVI data, and it can be
used for subsequent FVC estimation. (2) From 2006 to 2020, the inter FVC was at a high level as a
whole, and the average annual FVC showed a weak increasing trend in fluctuation; there are obvious
differences in spatial distribution, which is characterized by high distribution in the north and low in
the south. (3) The improved area of vegetation cover in the study area is greater than the degraded
area, accounting for 52.3% and 47.7% respectively; (4) In the elevation range of 2000 to 3500 m, the
FVC showed a slight degradation trend on 25◦ to 45◦ slopes and south and southeast slopes, and the
rest showed a slight improvement trend. ESTARFM-based model enables monitoring of vegetation
cover changes in complex terrain areas of the arid and semi-arid regions in Xinjiang over a long time
series. The overall FVC level in the study area is high, and there both are serious degradation and
improvement phenomena.

Keywords: remote sensing; ESTARFM; arid and semi-arid region; FVC; time-series

1. Introduction

Vegetation is an important component of terrestrial ecosystems and plays an irreplace-
able role in global material and energy cycling, regulating carbon balance, and maintaining
climate stability [1–4], as well as an “indicator” of global ecosystem changes [5,6]. The
monitoring of dynamic changes of vegetation has long been important and studied by
many scholars at home and abroad [7–10]. Vegetation cover (FVC) is the percentage of
the vertical projected area of the above-ground part of vegetation (including leaves, stems,
and branches) on the ground to the total area of the statistical area [11], which is a compre-
hensive quantitative indicator describing the growth of vegetation on the ground and an
important indicator of the regional ecosystem environment [12,13].

Two methods are mainly used to study FVC: ground survey method and remote
sensing monitoring method [14,15]. The traditional ground survey method has problems
such as large workload, high labor intensity, and difficulty in achieving monitoring of long
time series. With the continuous development of remote sensing technology, the use of
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remote sensing technology to monitor vegetation changes has become a feasible means
and has been widely used [16,17]. Some scholars have estimated and analyzed the FVC
change trends in Tianshan or North Tianshan for the past 16 years based on 3–5 Landsat
TM images, respectively [18–20]. Some scholars have also studied the changes in vegetation
cover or grassland cover and their influencing factors in Xinjiang and even in a larger
region based on MODIS data [21,22]. Another group of scholars studied the vegetation
growth trends in China (Northwest) based on the GIMMS dataset and analyzed to expose
the influencing factors [23–25].

From the above studies, it can be found that MODIS and GIMMS data are time-
sensitive and can better express the time-series changes of FVC, especially for the monitor-
ing of abrupt change years; by contrast, Landsat data have higher spatial resolution and
can achieve finer monitoring of vegetation change information, but it is difficult to find
abrupt change information in time-series change monitoring due to the limitations of data
re-simulation period and cloud volume [18,21]. Gao et al. [26] first proposed the spatial
and temporal adaptive reflection fusion model (STARFM) in 2006 to achieve the fusion of
Landsat images and MODIS images. This model can accurately predict reflectance values
with high spatial and temporal resolution. However, the STARFM model also has limita-
tions, and the method does not fuse well in areas with high heterogeneity. In view of this
limitation, Zhu et al. [27] proposed the enhanced spatio-temporal adaptive reflection fusion
model (ESTARFM) in 2010. This model improved the con-version coefficient based on the
STARFM model to improve the accuracy of image fusion in heterogeneous regions. It was
shown that the model has higher fusion accuracy in complex surface mountainous areas.

Xinjiang is a typical arid and semi-arid region with an extremely fragile internal
ecological environment, and the West Tianshan forest region within its territory is one of
the areas rich in vegetation resources and plays the role of an ecological barrier in western
China [28]. The topography in this region is complex and undulating, and each topographic
factor has a complex and integrated influence on the vegetation growth environment, so
it is important to carry out vegetation change research with high spatial resolution for
ecological environmental protection in complex topographic areas. On the other hand, the
ecological environment in this area is complex and extremely sensitive to climate change
and human activities, so monitoring vegetation change in time series can help to discover
the year of sudden vegetation change, and then analyze the change factors to achieve
ecological environmental protection more accurately. However, there is no research on
the analysis of vegetation change in this region based on long time series remote sensing
data with high spatial resolution. In this paper, based on Landsat data and MODIS data,
the ESTARFM model was used to fuse the high spatial resolution time series normalized
vegetation index (NDVI) data of each growing season in the study area from 2006 to 2020,
and the image dichotomy model was used to estimate the FVC. The distribution and change
characteristics of FVC under different topographic factors were revealed by combining with
digital elevation model (DEM), in order to provide reference for ecological environment
improvement in semi-arid areas of Xinjiang.

2. Materials and Methods
2.1. Study Area

Tekes Forest Farm, Qapqal Forest Farm and Zhaosu Forest Farm of the State-owned
Forest Administration Bureau in the Western Tianshan Mountains of Xinjiang Uygur Au-
tonomous Region are selected as the study areas in this study. They are mainly located in
Ili Region, with a geographical location of 42◦15′26′′–43◦33′38′′ N, 80◦12′19′′–82◦37′52′′ E,
with a total area of about 14,656 km2 (Figure 1). The overall terrain is high in the north
and south and low in the middle with an altitude of about 919~6170 m, an average sea
wave of 2725 m, and undulating terrain. The study area is deeply inland and belongs to a
temperate continental semi-arid climate. The annual and daily temperature range is large.
The average annual temperature in the mountain area is 2.8 ◦C, and the average annual
temperature in the river valley is 5.3 ◦C; on the other hand, it has more precipitation than
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surrounding areas due to its location in the mid latitude westerly belt and the influence of
mountains as well as water vapor from the Atlantic Ocean. It is the precipitation center
in the arid region of Central Asia, with an annual precipitation of 550~700 mm. The soil
vertical zones in the study area are relatively complete, including mountain chestnut soil,
mountain chernozem, mountain leaching taupe forest soil, mountain common taupe forest
soil, and mountain grass taupe forest soil.
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Figure 1. The location and topographic features of the study area, (a) in China, (b) in Xinjiang Uygur
Autonomous Region and (c) are topographic features of the study area, and elevation data were
obtained from ASTER Global Digital Model.

2.2. Data Source and Pre-Processing

To avoid errors in monitoring results caused by seasonal changes in cloud cover and
vegetation, the selected remote sensing data are Landsat series data and MOD09A1 data
from July-August, the peak vegetation growth season each year. The cloud amount is
less than 10% and the data source is the United States Geological Survey (USGS) (https:
//earthexplorer.usgs.gov/, accessed on 28 May 2021). The interval between MOD09A1
data collection time and Landsat data is not more than 4 days. Please refer to Appendix A
Tables A1 and A2 for specific information of remote sensing data. There are 11 years of
directly available Landsat data from 2006 to 2020, and the years to be predicted are shown
in Table 1, where the predicted data for 2007 and 2019 are correlated with Landsat TM data
for 2007 and Landsat OLI data for 2019 to verify the feasibility of the ESTARFM algorithm.
The auxiliary data include the administrative map of the Tianxi Bureau and the DEM data
with a spatial resolution of 30 m from the USGS.

Table 1. Study Area Demand Forecast Data 2006–2020.

Year Forecast Date Year Forecast Date

2007 (Experiment) 08.13 2015 08.13
2009 08.13 2017 08.13
2010 08.13 2019 (Experiment) 08.13

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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The Landsat data are radiometric calibrated, atmospheric corrected, mosaic, and
cropped by ENVI software to obtain the image map of the study area. MRT (MODIS
Reconstruction Tool) Tool is used for splicing MOD09A1 data, converting the projection
into the same projection as that of Landsat. The infrared band and near-infrared band
were selected as the bands, and the nearest neighbor sampling method was used for re-
projecting the data to the same 30 m spatial resolution as Landsat data, and was outputted
in GEOTIFF format. ENVI software is used for cutting the processed MOD09A1 data to
ensure that the boundary range and pixel size are consistent with the Landsat data after
cutting. Pre-processing was carried out, such as splicing, re-projection and clipping of DEM
data, and altitude, slope and slope direction were extracted using ArcGIS software and
spatial analysis tools.

2.3. Research Methods
2.3.1. ESTARFM Spatiotemporal Fusion MODEL

ESTARFM Model requires two pairs of high-resolution and low-resolution images ac-
quired in the same period, and a set of low-resolution images used for predicting dates [27].
The Model sets a sliding window of a certain size around the predicted pixel, and convo-
lutes the pixels in the window with the weight function to obtain the predicted value of
the central pixel. The sliding window moves one by one on the whole image to obtain the
predicted image. The calculation Formula is as follows:
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where, L represents Landsat data; M represents MODIS data; w is the size of the sliding
window; (xw/2,yw/2) represents the center position of the pixel to be measured; B represents
the band of the image; L(xw/2,yw/2,tp,B) is the predicted high-resolution pixel value at time
tp; L(xw/2,yw/2,t0,B) is the high-resolution pixel value at t0; N is the number of similar pixels
including predicted pixels; (xi,yi) is the position of the ith similar pixel; Wi is the weight of
the ith similar pixel jointly determined by the distance of space, time and spectrum; Vi is
the conversion coefficient of similar pixels.

In Equation (1), the following aspects need to be noted:
(a) Determining the window size. The window size w is set to 25 according to the

recommended parameters used by Zhu [27].
(b) Searching for similar image elements, which are obtained based on the spectral

similarity of Landsat NDVI data to the central image element (xw/2,yw/2) using a sliding
window w search.

(c) Calculation of weights. To calculate the weights, we first calculate the correlation
coefficient Ri between Landsat NDVI and MODIS NDVI data, and then find the geographic
distance di between the similar image element and the central image element, and finally
find the weight Wi of the similar image element to the central image element based on the
correlation coefficient and geographic distance.

Ri =
E[(Li − E(Li))(Mi − E(Mi))]√

D(Li)×
√

D(Mi)
(4)

Li = {L(xi, yi, Tb, B1), ···L(xi, yi, Tb, Bn), L(xi, yi, Te, B1), . . . , L(xi, yi, Te, Bn)} (5)

Mi = {M(xi, yi, Tb, B1), ···M(xi, yi, Tb, Bn), M(xi, yi, Te, B1), . . . , M(xi, yi, Te, Bn)} (6)
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In Equations (4)–(6), the correlation coefficient is found for each similar image element,
i represents the ith similar image element. Li/Mi is the ith similar image element data set of
Landsat/MODIS image, respectively. b is the number of bands, e is the mean value, and
d is the variance. The value of correlation coefficient R is in the range of (−1, 1), and the
value of R is positively correlated with the spectral similarity.

di = 1 +

√
(xw/2 − xi)

2 + (yw/2 − yi)
2

w
2

(7)

where di is the geographic distance between the similar image element and the central
image element, and the larger di is, the farther the geographic distance is.

Based on the above, the weighting formula is as follows.

Di = (1− Ri)× di (8)

wi =
1/Di

∑N
i=1(1/Di)

(9)

where the range of the weight wi values is (0, 1) and the sum of the weights of all similar
image elements is 1.0.

(d) Calculate the conversion coefficients.

Vi =
Lib − Lie

Mib −Mie
(10)

where Lia, Lie, Mia, and Mie are the image element values of Landsat and MODIS data
corresponding to different periods (Tb and Te) respectively, i.e., different image elements
correspond to different conversion factors.

Through Formula (1), MODIS data of two different periods (tb and te) are selected
for calculating the high-resolution image reflectance of the prediction date Tp, which is
recorded as Lb (xw/2,yw/2,tp,B) and Le (xw/2,yw/2,tp,B). Combining the two prediction results,
the predicted central pixel reflectance is more accurate. The weight is calculated as Formula
(2) with higher weight closer to the prediction period as the criterion. The high-resolution
reflectance data of the final prediction time is calculated by Formula (3) [27].

Based on different fusion sequences, the ESTARFM model has two schemes. Fusion
then Index (BI) and Index then Fusion (IB). BI first simulates the reflectance of the predicted
date image and then calculates the vegetation index based on the pre-predicted reflectance;
IB calculates the vegetation index first and then uses these vegetation index data to simulate
the vegetation index of the predicted date. According to Jarihani et al. [29], the IB scheme
has lower computational cost and less error compared with the BI scheme. On this basis, in
this paper, continuous normalized vegetation index data with high spatial resolution are
obtained by fusion of IB schemes.

2.3.2. FVC Estimation

Methods for measuring FVC based on remote sensing data chiefly include the regres-
sion model method, vegetation index method, and pixel decomposition model [30]. Among
them, the pixel dichotomous model in the pixel decomposition model is commonly used.
Its principle is that, assuming that the surface corresponding to each pixel only contains
two components, vegetation and bare land, the proportion of vegetation in the pixel is the
FVC of the pixel. The calculation formula is [31]:

FVC =
S− Ssoil

Sveg − Ssoil
(11)

where FVC denotes the vegetation cover, S is the remote sensing information reflected
by each image element, Ssoil is the remote sensing information reflected by pure bare
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ground cover image element, and Sveg is the remote sensing information reflected by pure
vegetation cover image element. Rundquist [32] showed that NDVI has a good correlation
with FVC, which is in line with the conditions of pixel binary model. Li [33] established a
FVC estimation model based on NDVI, and the calculation formula is:

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(12)

where NDVIsoil is the NDVI value of pure bare ground cover image elements and NDVIveg
is the NDVI value of pure vegetation cover image elements. Due to the influence of
meteorological elements, vegetation types, and spatial and temporal differences, NDVIsoil
and NDVIveg will vary in different images. Based on the experience of previous studies [33],
combined with the histogram of NDVI frequency distribution in this experiment, the
cumulative frequency values of 5% and 95% were selected to represent different NDVIsoil
and NDVIveg in different years, respectively, and the FVC was classified into five levels with
reference to the Soil Erosion Classification and Grading Standard and related studies [34].
The very low FVC is <10%, the low FVC is 10%–30%, the medium-low FVC is 30%–50%,
the medium-high FVC is 50%–70%, and the high FVC is >70%.

2.3.3. Accuracy Verification

In this paper, we use the subimage comparison method based on the comparison
of high-resolution images of the same period to validate the vegetation cover estimated
based on Landsat data in the Western Tian Shan [35,36]. The pretreated 18 August 2019
Gaofen-1 Image (2 m) and 11 August 2019 Landsat Image were randomly selected for
verification, 100 sample points on the Landsat Image were evenly selected and mapped to
the Gaofen-1 Image, and the 225 Gaofen-1 pixels corresponding to each sample point were
directly manually digitized to calculate the actual FVC. Then, the FVC estimated by the
pixel binary model was compared and analyzed, and the model accuracy was judged by
the Root Mean Square Error (RMSE). The RMSE Calculation Formula is:

RMSE =

[
n

∑
i=1

(Xi −Yi)
2

n

] 1
2

(13)

where Xi is the FVC estimated by the Model; Yi is the actual FVC; n is the number of samples.

2.3.4. Annual Variation Trend of FVC

The univariate linear regression trend analysis method was used, whilst the least
square method was used for fitting the slope of the annual average FVC pixel by pixel,
simulating the change trend of each grid [37,38]. The Calculation Formula is as follows:

θslope =
n×∑n

i=1(i× FVCi)− (∑n
i=1 i)(∑n

i=1 FVCi)

n×∑n
i=1 i2 − (∑n

i=1 i)2 (14)

where θslope is the slope of the change trend of the FVC in the multi-year time series, i
is the serial number of the study year, n is the length of the study time series, and FVCi
is the FVC value in the ith year. If θslope > 0 indicates that the change trend of FVC is
increasing, θslope < 0 indicates that the change trend of FVC is decreasing. The significance
test of the trend adopts F test, and the significance indicates the reliability of the change
trend. According to the test results, the change trend is divided into five grades: extremely
significant decrease (θslope < 0, p ≤ 0.01); significantly reduced (θslope < 0, 0.01 < p ≤ 0.05);
there was no significant change (p > 0.05); significant increase (θslope> 0, 0.01 < p ≤ 0.05);
and extremely significant increase (θslope > 0, p ≤ 0.01).
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3. Results
3.1. ESTARFM Model Fusion Results

In order to verify the fusion results of ESTARFM Model, TM NDVI was taken in this
paper on 21 June 2007 and 25 September 2007, as well as OLI NDVI on 30 May 2019 and
14 October 2019 and the corresponding MODIS NDVI as an input data. The NDVI data
was fused on 13 August 2007 and 13 August 2019, and then compared with the real NDVI
data in the corresponding period. Figure 2 is a comparison of the fusion results of the
ESTARFM Model. It can be found that compared with MODIS NDVI data through visual
interpretation, the spatial resolution of the fused NDVI data is significantly improved; the
two data have good consistency compared with TM / OLI NDVI data. Meanwhile, it is
found from Figure 2b,c that the NDVI data fused by ESTARFM restores the original spectral
information of the cloud cover area.
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To further analyze the fusion effect, five typical 100 × 100 image subsets (Figure 3)
were selected in this paper, and the fused NDVI data were compared with the real Landsat
NDVI data, and a scatter plot was obtained (Figure 4). From Figure 4, it can be seen that
the scatter points are basically distributed on both sides of the contour 1:1, indicating that
the fused NDVI data are similar to the real NDVI data, and the determination coefficients
of the fused NDVI data and the real NDVI data in the two scenes are 0.86 and 0.88, and the
root mean square errors are 0.15 and 0.12, respectively, with high correlation. Therefore, the
NDVI data obtained by fusion based on the ESTARFM model can be used for the estimation
of secondary vegetation.

3.2. FVC Accuracy Verification

The accuracy verification results (Figure 5) show that the RMSE between the estimated
value of the pixel binary model and the real value is 0.10, whilst the R2 is 0.90, indicating
that the FVC estimation results of Landsat data using the pixel binary model have a high
accuracy and meet the requirements of this study.
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3.3. Temporal and Spatial Variation Characteristics of FVC

Figure 6 shows the inter annual difference of FVC, which is the average of the differ-
ence of FVC every two years in the study time series to analyze its inter annual change
degree. As can be seen from Figure 6, FVC showed an increasing trend from 2006 to 2010;
except for 2012, FVC showed a decreasing trend from 2011 to 2014; except for 2017, FVC
showed an increasing trend from 2015 to 2019; and in 2020, it showed a decreasing trend
again. Among them, the largest increases and decreases were in 2007 (0.028) and 2013
(−0.040), respectively.
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As shown in Figure 7, through statistical analysis of FVC at all levels in the study area,
it can be found that from 2006 to 2020, the proportion of high FVC area in the study area
showed a law of increase-decrease-increase, reaching a minimum of about 38% in 2006 and
a maximum of about 49% in 2012; the proportion of medium high and medium FVC area
showed a trend of decrease-increase- decrease, with the minimum proportions of 13% in
2013 and 9% in 2007, and the maximum proportion of 18% in 2019 and 14% in 2014; the
area proportion of low and very low FVC changes in a wave pattern, and is stable between
14~16% and 12~14%, respectively. The high, medium high, medium, low and extremely
low FVC accounts for 45%, 18%, 11%, 14% and 12% of the total area of the study area
respectively according to the 15 years of average FVC. In general, the proportion of high
FVC area is the largest and shows an increasing trend, the proportion of medium, high and
medium FVC area shows a fluctuating and decreasing trend, and the proportion of low
and very low FVC area shows a wavy change.
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As shown in Figure 8, it can be found that the regional difference of average FVC in
the study area is significant. The overall FVC in the north and central Tex River Valley is
high, while the overall FVC in the southern mountainous area is low, and only the river
valley has a high FVC. This is because the overall altitude of the southern mountainous
area is high, and there are glaciers and snow, which are inhospitable to vegetation growth.
The vegetation cover was counted in the forestry administrative district, and the results
showed that: the best vegetation cover was in Tex, with an average FVC of 0.62; the second
best vegetation cover was in Qapqal, with an average FVC of 0.6; and the vegetation cover
in Zhaosu was relatively poor, with an average FVC of 0.47.
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3.4. Slope Change Trend of FVC

The change trend of FVC in the Western Tianshan Mountains from 2006 to 2020 is
analyzed at the pixel scale, and the results are tested for significance (Figure 9, Table 2)
based on the univariate linear regression model. The average change trend of FVC in
the Western Tianshan region is 0.3%/10A, indicating that the overall FVC in the Western
Tianshan Region is increasing, but the growth rate is relatively slow. The proportion of
areas with positive and negative slope is 52.3% and 47.7%, respectively. Among the pixels
with decreasing FVC, the proportion of pixels with larger decreasing trend (slope < −0.01)
is 28%, and the proportion of pixels with larger increasing trend (slope > 0.01) is 27%. The
results of significance test (Figure 9b) show that the FVC in the Western Tianshan Mountains
shows extremely significant decrease, significant decrease, no significant change, significant
increase and extremely significant increase, accounting for 43%, 2.1%, 6%, 3.3% and 45.6%,
respectively. It can be found that there is a large area and a high degree of vegetation
improvement and degradation in the Western Tianshan Region, and its area proportion and
change degree are basically the same as the degradation phenomenon. This also makes the
vegetation change in the Western Tianshan Region show an insignificant trend generally,
but its internal changes are quite different.

Table 2. Vegetation cover change and significance statistics.

Slope Percentage/% Significance Percentage/%

Slope < −0.02 3.7% Extremely significant decrease 43%
−0.02 < Slope < −0.01 9.7% Significant decrease 2.1%
−0.01 < Slope < 0 34.3% Insignificant change 6%
0 < Slope < 0.01 38% Significant increase 3.3%

0.01 < Slope < 0.02 10.4% Extremely significant increase 45.6%
Slope > 0.02 3.9%
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Figure 9. Trends (a) and significance (b) of vegetation cover changes in the western Tian Shan region
in the last 15 years, where A is a extremely significant decrease; B is a significant decrease; C is no
significant change; D is a significant increase; and E is a significant increase. This is the same in
Table 2.

Compared with Figure 8, it can be found that the insignificant changes are mainly
in the extremely low FVC area, which is also the glacier snow coverage area, and the
interference of human activities is small; the extremely significant increase mainly occurs
in the low and medium FVC areas, and the extremely significant decrease mainly occurs in
the medium high and high FVC areas, which changes are mainly affected by global climate
change and human disturbance.

3.5. Distribution and Variation Characteristics of FVC with Terrain

The growth and spatial distribution of vegetation are affected by climate, topography,
and human activities, among which the topographic factors affect the growth of vegetation
by changing the vegetation habitat elements such as water, heat, and soil in local areas.
In this study, concerning desertification land and plain forest resources investigation, the
altitude, slope and aspect are divided into 7, 6 and 9 grades according to the classification
standard of the data dictionary of Xinjiang desertification, and then the distribution and
change of FVC in the study area in the past 15 years under different terrain conditions are
statistically analyzed. The results are shown in Figures 10–12.
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3.5.1. Distribution and Variation Characteristics of FVC with Altitude

As shown in Figure 10a, the vegetation was mainly distributed in the area from 1500 to
4000 m, accounting for 86% of the total vegetation area in the study area. Among them, the
area of high FVC increases with altitude below 3000 m and is absolutely dominant; in the
area from 3000 to 4000 m, the area of very low and low FVC shows an increasing trend, and
in the area above 4000 m, the vegetation decreases rapidly and is dominated by very low
FVC, which is mainly influenced by natural conditions. As shown in Figure 10b, the change
of vegetation cover is mainly in the area below 4000 m, which is related to the vegetation
distribution. In the area from 2000 to 3500 m, the proportion of decrease in vegetation
cover is greater than the proportion of increase, indicating a slight degradation trend of
vegetation cover in this elevation range; in the remaining elevations, the proportion of
increase in vegetation cover is higher than the proportion of decrease, indicating a slight
improvement trend of vegetation cover in this elevation range. The area above 4000 m is
less affected by human activities, and is mainly an insignificant change.

3.5.2. Distribution and Variation Characteristics of FVC with Slope

As shown in Figure 11a, the vegetation was mainly distributed in the area from 5◦

to 45◦, accounting for 88% of the total vegetation coverage in the study area. In each
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slope class, the proportion of high and medium-high FVC area gradually decreases and
the proportion of very low and low FVC area gradually increases as the slope increases;
except for >45◦ slope class, high FVC occupies absolute dominance in all slope classes. As
shown in Figure 11b, corresponding to the distribution of vegetation in different slope
grades, the changes of FVC are also mainly distributed in the area from 5◦ to 45◦. In
each slope class, significant decrease, insignificant change and significant increase were
basically maintained in low proportions. In the slope range from 25◦ to 45◦, the proportion
of decrease in vegetation cover was greater than the proportion of increase, indicating a
slight degradation trend of vegetation cover in this slope range; in the rest of the slope
classes, the proportion of increase in vegetation cover was greater than the proportion of
decrease, indicating a slight improvement trend of vegetation cover in this slope range.

3.5.3. Distribution and Variation Characteristics of FVC with Direction

As shown in Figure 12a, the vegetation cover of flat slopes only accounted for 0.05%
of the total vegetation cover in the study area, and the difference in the proportion of
vegetation distribution in the remaining slope directions was small. Among the slope
directions, the vegetation distribution area is higher on the north slope than on the south
slope, and higher on the west slope than the east slope. This is because the north and
west slopes are windward slopes in the western Tian Shan region, which have more
precipitation and a more humid environment suitable for the growth of vegetation. As
shown in Figure 12b, the distribution of vegetation change in the flat slope area is the least,
and the difference of the distribution ratio of vegetation change in the remaining slope
directions is small, which is closely related to the distribution of vegetation. Among the
slopes, the decrease proportion of vegetation in the south and southeast slopes is larger
than the increase proportion, which indicates that the vegetation cover in the south and
southeast shows a slight trend to degradation; the increase proportion of vegetation in the
rest of the slopes is larger than the decrease proportion, which indicates that the vegetation
cover in these slopes shows a slight trend to improvement.

4. Discussion

In studies related to vegetation cover change in arid and semi-arid areas of Xinjiang, China,
low spatial resolution time series data such as MODIS NDVI (16 d/250 m/500 m) [21,22] and
GIMMS NDVI (15 d/8 km) [23–25] are mostly used. Among them, MODIS data are used in
vegetation cover change studies after 2000, and longer time scale data are dominated by
GIMMS data. Other scholars have used Landsat data for vegetation cover change studies
with higher spatial resolution in a 5-year span [18,19]. However, studies based on the above
data require a trade-off between temporal continuity and spatial resolution, and cannot
achieve long time series to monitor vegetation change trends with high accuracy. In a study
by Cai et al. [21] based on MODIS data, vegetation degradation occurred in the Tianshan
region of Xinjiang in 2013 and 2014, and vegetation grew rapidly again in 2015, while no
abrupt change years were found in a study by Wen et al. [18] with a 5-year span of Landsat
data. In this paper, the time-series data obtained based on ESTARFM model can also detect
the vegetation degradation in 2013 and 2014 years while having high spatial resolution.
On the other hand, in the West Tianshan region, where the topography is complex and
the terrain is undulating, low-resolution remote sensing data often produces large errors
when analyzing the influence of each topographic factor on vegetation cover [39]. In this
paper, we effectively obtained the high-spatial resolution time-series NDVI data based on
ESTARFM model for the complex terrain area in the western Tianshan Mountains, which
provides data support to realize the dynamic monitoring of cover change in the complex
terrain area in the western Tianshan Mountains.

In this paper, we conducted a study on vegetation cover change based on ESTARFM
NDVI data and found that the overall FVC in the western Tian Shan showed a weak increas-
ing trend, which was strongly associated with ecological restoration projects implemented
by the Chinese government in recent years, but a degradation trend was observed in the
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years 2013, 2014, and 2020, indicating that the ecological environment is vulnerable to dis-
turbance by natural and human activities [18,19,23]. It was also found that while the overall
FVC in the study area showed an increase, there was a large variation in the internal changes
and a large area of improvement and degradation at the same time, which is basically
consistent with previous studies [18,40–42]. Compared with the study by Wang et al. [43],
the different criteria for classifying the trend level of change and the difference in the
resolution of remote sensing data make the results of the study somewhat different. In the
river valley and pre-mountain plain zone, it is mainly a medium vegetation cover area,
where water and heat conditions and topography are suitable and human activities are
concentrated, presenting a medium vegetation cover with a strong vegetation change trend
at the same time. With the increase of altitude, the increase of snow and ice melt water,
and the decrease of human activities, the vegetation shows high vegetation cover and the
vegetation change trend gradually decreases. The southern part of the study area is the
summit part of Tianshan Mountain, where the vegetation cover is low because of the high
altitude and the snow and glacier cover above the snow line, which is not suitable for
vegetation growth. At the same time, the natural and human influences in this area are less
variable, which makes the vegetation change in this area extremely insignificant.

Influenced by Atlantic water vapor, the West Tianshan region receives more precip-
itation and is one of the regions with rich forest resources in Xinjiang. However, due to
the temperate continental semi-arid climate, the ecological environment is fragile, and
the degradation of vegetation still occurs in some areas under the influence of climate
change and human activities. The elevation range of vegetation degradation is from 2000
to 3500 m, the slope is from 25◦ to 45◦, and the slope direction is south and southeast
slope. Human activities are one of the reasons for the degradation of vegetation in this area.
Early urban expansion and construction of aqueducts destroyed the original landscape
ecology, resulting in a fragile ecological environment with poor self-repair ability, which
in turn led to a long-term trend of weak degradation. On the other hand, the influence of
each topographic factor on the change of vegetation cover is complex and comprehensive,
and the growth and spatial location of vegetation are closely related to the geographical
environment. Elevation, slope, and slope direction determine the distribution of vegetation
in mountainous areas by influencing the distribution of water and heat. In areas with
slopes greater than 25◦, precipitation and ice melt water are not easily stored, soil erosion
is serious, and the soil is infertile, resulting in a more fragile vegetation ecology, and the
ecological management effect is often unsatisfactory, which is the focus of environmental
and ecological management projects [44].

5. Conclusions

Based on the ESTARFM model, this paper fused Landsat and MODIS data to obtain
the time-series NDVI data of the study area for the past 15 years and estimated the FVC.
Through trend analysis and combining with DEM data, the characteristics of FVC changes
in the study area and its response to topographic factors were studied, and the main
conclusions are as follows:

(1) The time-series NDVI data of the study area obtained by using ESTARFM Model
can not only greatly improve the spatial resolution, but also better maintain the original
spectral information. It has high consistency compared with the real NDVI data, indicating
that the ESTARFM Model can better simulate the high spatial resolution NDVI data in the
missing phase, which can monitor and study the dynamic change of vegetation cover in
the complex terrain area of Xinjiang in a long time series.

(2) The overall vegetation cover of the study area was at a high level from 2006 to 2020,
and the average annual vegetation cover showed a weak increasing trend in fluctuation.
Among all FVC levels, the area with high FVC accounts for the largest, with an average
of 45% for many years, and it is generally increasing; the proportion of medium high and
medium FVC area showed a fluctuating and decreasing trend; the area proportion of low
and very low FVC changes in waves. In terms of spatial distribution, there are obvious
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regional differences, showing the distribution characteristics of high in the north and low
in the south.

(3) From the change trend of FVC, the area with improved FVC in the study area in the
past 15 years is larger than the area with degraded FVC, accounting for 52.3% and 47.7%,
respectively. The results of significance test show that the areas with no significant changes
are mainly concentrated in the extremely low FVC area, i.e., the southern part of the study
area is also the glacier snow coverage area with less interference from human activities; the
extremely significant increase mainly occurred in the low and medium FVC areas, and the
extremely significant decrease mainly occurred in the medium high and high FVC areas.

(4) According to different terrain conditions, the main distribution areas of vegetation
cover are 1500–4000 m above sea level, 5◦–45◦ slope and all slope directions except flat
slope; the areas with a slight degradation trend of FVC are mainly 2000–3500 m above sea
level, 25◦–45◦ slope and south and southeast slope, while the FVC in other areas showed a
slight improvement trend.

Author Contributions: Conceptualization, Z.L. and D.C.; Data curation, Z.L., W.F. and N.Z.; Formal
analysis, Z.L., S.L. and W.F.; Funding acquisition, D.C.; Methodology, Z.L. and S.L.; Supervision, D.C.
and H.L.; Visualization, Z.L. and C.Z.; Writing—original draft, Z.L.; Writing—review & editing, D.C.,
F.L. and M.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Major Science and Technology Project of High-Resolution
Earth Observation System (grant no. 76-Y50G14-0038-22/23), Key Research and Development
Program of Anhui Province (grant no. 2021003; 2022107020028), Major Science and Technology Project
of Anhui Province (grant no. 202003a06020002), Collaborative Innovation Project of Universities
in Anhui Province (grant no. GXXT-2021-048), Anhui Provincial Special Support Plan (grant no.
2019), Chuzhou Science and Technology Planning Project (grant no. 2021ZD013), Natural Science
Foundation of Anhui Province (grant no. 2208085QD107), and National Natural Science Foundation
of China (grant no. 42261013).

Data Availability Statement: All data, models, or code generated or used during the study are
available from the author by re-quest (liuzhihong@stu.xjnu.edu.cn).

Acknowledgments: We are grateful for the support of Anhui High Resolution Earth Observation
System Data Products and Application Software R&D Center, and the basic geographic information
data support provided by Tianxi Bureau.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Information about Landsat remote sensing data used in this study.

Date
Acquired Sensor Spatial

Resolution Path/Row Landsat Scene Identifier

14 August 2006 TM 30 m 146/030, 146/031 LT51460302006226IKR00, LT51460312006226IKR00
17 August 2007 TM 30 m 146/030, 146/031 LT51460302007229IKR00, LT51460312007229IKR00
3 August 2008 TM 30 m 146/030, 146/031 LT51460302008216KHC01, LT51460312008216KHC01

11 July 2011 TM 30 m 146/030, 146/031 LT51460302011192IKR02, LT51460312011192IKR02
22 August 2012 ETM+ 30 m 146/030, 146/031 LE71460302012235PFS00, LE71460312012235PFS00
1 August 2013 OLI 30 m 146/030, 146/031 LC81460302013213LGN02, LC81460312013213LGN02

19 July 2014 OLI 30 m 146/030, 146/031 LC81460302014200LGN01, LC81460312014200LGN01
9 August 2016 OLI 30 m 146/030, 146/031 LC81460302016222LGN01, LC81460312016222LGN01

15 August 2018 OLI 30 m 146/030, 146/031 LC81460302018227LGN00, LC81460312018227LGN00
17 July 2019 OLI 30 m 146/030, 146/031 LC81460302019198LGN00, LC81460312019198LGN00

4 August 2020 OLI 30 m 146/030, 146/031 LC81460302020217LGN00, LC81460312020217LGN00
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Table A2. Information about the MODIS remote sensing data used in this study.

Date
Acquired Product Type Spatial

Resolution
Horizontal/Vertical

Tile Number Entity Identifier

13 August 2006 MOD09A1 500 m h23v04 MOD09A1.A2006225.h23v04.006
13 August 2007 MOD09A1 500 m h23v04 MOD09A1.A2007225.h23v04.006
4 August 2008 MOD09A1 500 m h23v04 MOD09A1.A2008217.h23v04.006

12 July 2011 MOD09A1 500 m h23v04 MOD09A1.A2011193.h23v04.006
20 August 2012 MOD09A1 500 m h23v04 MOD09A1.A2012233.h23v04.006

28 July 2013 MOD09A1 500 m h23v04 MOD09A1.A2013209.h23v04.006
20 July 2014 MOD09A1 500 m h23v04 MOD09A1.A2014201.h23v04.006

12 August 2016 MOD09A1 500 m h23v04 MOD09A1.A2016225.h23v04.006
13 August 2018 MOD09A1 500 m h23v04 MOD09A1.A2018225.h23v04.006

20 July 2019 MOD09A1 500 m h23v04 MOD09A1.A2019201.h23v04.006
4 August 2020 MOD09A1 500 m h23v04 MOD09A1.A2020217.h23v04.006
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