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Abstract: The spatial pattern of color patches plays a crucial role in affecting the visual quality of peri-
urban forests dominated by Cotinus coggygria var. cinerea Engl. in autumn. The impact mechanism has
been studied to facilitate algorithm-based automatic visual quality estimation. The color patterns of
120 photographs were calculated after color quantization and automatic color substitution. The scenic
beauty of the forest was estimated by 698 respondents. Multiple correlations between visual quality
and color pattern metrics were explored with stepwise regression. Principal component analysis
(PCA) was also employed to investigate the impact mechanism of color patterns on visual quality.
Number of patches (NP), largest patch index (LPI), mean patch area (AREA_MN), patch size standard
deviation (AREA_SD), and Shannon’s evenness index (SHEI) were the main factors affecting the
visual quality of the Cotinus coggygria forest. AREA_MN correlated positively with visual quality,
while NP, LPI, AREA_SD, and SHEI correlated negatively. Moreover, AREA_SD had the most
significant impact on the visual quality of the landscape, while SHEI, LPI, and AREA_MN had the
second-highest impact. The evenness and the size of color patches significantly affected the visual
quality of the forest landscapes. Balancing the diversity and evenness of color patches plays a decisive
role in creating a forest landscape with high visual quality.

Keywords: aesthetic preference; color patch; spatial pattern; visual perception; urban forestry

1. Introduction

The living environment has to face urgent challenges with global urbanization, and the
life-quality of urban residents has been declining with the city population increasing
yearly [1]. Peri-urban forests near cities are becoming necessary for people to experi-
ence nature due to the satisfactory ecological conditions, excellent recreational facilities,
and beautiful scenery. It has become an effective way to meet the residents’ urgent demand
to enjoy ecological products and handle the living environment crisis [2]. As cities expand,
peri-urban forests draw close to the city’s edge, and townspeople could easily see it from
a distance. Due to difficulty in identifying details such as tree shapes, peri-urban forests
are typically presented as a whole picture. Improving the scenic quality of forests viewed
from intermediate distances is, therefore, of the most significant interest for recreational
development in peri-urban forests.

Leaves of autumn-color trees turn yellow, red, or orange from September to October
in China, and the red autumnal leaves become bright spots in peri-urban forests. As the
most visually striking feature, color produces about four times the intensity of visual
stimulation than other elements, such as texture [3] and has a significant bearing on the
scenic beauty. In recent decades, the colors of urban forest landscapes have been explored
from several perspectives. The color of the leaves of most trees in Sweden was determined
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by the NCS (natural color system) [4], and coleus plants suitable for different areas were
listed, which made a valuable reference for improving the visual quality of urban forest
landscapes. Serpa and Mubhar [5] analyzed the relationship between colors and residents’
perceptions of the scenic quality of the trees in urban parks. Lev-Yadun et al. [6] revealed
the correlation between the leaf color of trees in spring and autumn after conducting a
comparative analysis of forest communities in Finland, Japan, and Israel. Through field
investigation and in-depth interviews, Hoyle et al. [7] found that the aesthetic preference
reached the highest level when the coverage rate of coleus plants in urban public spaces
exceeded the critical threshold of 27%. Mu et al. [8] proposed a method to improve the
visual quality by optimizing tree species configuration after investigating the relationship
between visual quality and percentage of hue of natural slope forests.

In mixed coniferous forests, trees of different species are planted next to each other.
As the spatial position of trees varies, resulting in a variety of color patterns, the visual
quality of different color patterns varies considerably when the color ratios are the same [9].
However, the relationship between color patterns and visual quality has barely been
studied, and little mature theory or method to improve the visual quality of established
peri-urban forest parks has been developed yet.

Beijing, the capital of China, is a typical international metropolis with a resident
population of 21,886,000 at the end of 2021. In the past 20 years, the Beijing government
has proposed a series of policies to increase the planting area of coleus plants in peri-urban
forests. The Mountain Beautification Project was proposed by the Beijing Government and
the Capital Afforestation Commission in 2002, which accelerated the planting of coleus
plants on mountain road sides, scenic spots and other places in the city, to expand the
area of red autumnal leaf scenery before the 2008 Beijing Olympic Games. The scientific
and technological innovation project of “color enhancement and green extension” plans to
promote more than 80 new species and build a livable city of “colorful in three seasons and
evergreen in four seasons” from 2015 to 2022. However, the lack of mature and targeted
scientific management techniques after afforestation and the mismatch of tree species, color,
and mingling intensity considerably reduces the scenic beauty [10-13]. After extensive
planting practices, Cotinus coggygria has become a rational autumn color tree species in
Beijing. Red, orange, yellow, and green become the prominent hues in an autumn forest
landscape and keep relatively stable.

The typical peri-urban forests dominated by Cotinus coggygria in Beijing, China,
were studied. Moreover, the forest landscape’s color patterns and visual quality were
comprehensively analyzed. In the study, we focused on solving the following problems:

1. To solve the low efficiency and poor stability of manual visual interpretation of color
patches, an automatic and rapid method for calculating the spatial color pattern of
extensive peri-urban forests was explored.

2. Tostudy the correlation between spatial color patterns and visual quality of peri-urban
forests and provide theoretical support for optimizing forest management strategies.

3. To analyze the possibility of improving the aesthetic quality by changing the spa-
tial color pattern of peri-urban forests through planting and replanting trees on
a small scale.

The visual quality of peri-urban forests is affected by various factors, and only spatial
color patterns were investigated in this study. To avoid interference by additional factors,
we based the research on the following three fundamental assumptions:

4. In the established urban forest park, adjusting the spatial color pattern through
replanting trees on a large scale would be resource-intensive, which would not be
accepted by forest managers.

5. The autumnal leaves were dominated by colors such as red, yellow, green, and gray.
Moreover, only a tiny fraction of new colors could be seen.

6.  During the normal evolution of urban forests, birth, aging, illness, and death of trees
make much-needed space for planting and replanting some current tree species.
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2. Materials and Methods
2.1. Study Area

The study was conducted in Beijing (40°20'46.01” N, 116°0'52.20" E), a typical urban-
ized metropolis located in northern China, with a total area of 16,410,54 hectares. The terrain
in Beijing is elevated in the northwest and low in the southeast, with an average altitude of
43.5 m. The mountainous area with an altitude between 1000 m and 1500 m accounts for
62% of the total area, and the plain with an altitude between 20 m and 60 m accounts for
38%. Beijing experiences a continental monsoon climate zone with semi-humid and warm
temperate climates. Compared with areas on the same latitude, the temperature in summer
is higher, and in winter, it is lower. A mean 12.3 °C annual temperature occurs with a
160-day frost-free period and 572 mm average annual precipitation, mainly concentrated
from June to August.

Cotinus coggygria var. cinerea Engl. is a short deciduous tree of Cotinus in the family
Anacardiaceae. It is light-loving (mainly planted on sunny or semi-sunny slopes), cold-
tolerant, drought-resistant, tolerant of infertile and alkaline soils, and not tolerant of water
and moisture [14,15]. With branching and stemming habits and low branching points, it is
an ideal autumnal color tree species for landscape planting in northern and southwestern
China. In late autumn, the leaves of Cotinus coggygria shift from green to red, which are
bright and eye-catching. Therefore, spatial color pattern plays a dominant role in affecting
the scenic quality of the Cotinus coggygria forest.

Consistent with the growth habit, most Cotinus coggygria are planted in high terrain
areas in Beijing. Only a few sites are located in southeastern Beijing where the terrain is
gentler. Mixed with conifer and broadleaves, most Cotinus coggygria were planted in the
1960s and 1970s, and some have been replanted in recent years. The 1966 ~ 1970 Urban
Greening Plan formulated by the Beijing Landscape Bureau proposed to plant trees in order
to achieve universal urban greening in 4~5 years, “from the need of war preparedness,
rectify the needs of the city appearance, and increase the needs of production”. In 1974,
the Beijing Landscape Bureau proposed to carry out greening adjustment according to
the principle of “combining deciduous trees with evergreen trees, combining arbors with
shrubs, combining fast-growing trees with slow-growing trees, and combining gardens
with production”, and began to renew roadside trees [16]. Red dots in Figure 1 represent
the sites where Cotinus coggygria trees were planted (Table 1).

Figure 1. Relief map of Beijing. Red dots represent the sites where Cotinus coggygria var. cinerea Engl.
were planted.
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Table 1. Main sites to plant Cotinus coggygria var. cinerea Engl. forest in Beijing.

Municipal District Distribution Location Municipal District Distribution Location
Xiangshan Park Youlanshan Pofengling Scenic Area
Xishan National Forest Park Fangshan District Shangfangshan National Forest Park

o L Yangtaishan Natural Scenic Area Shidu Scenic Area
Haidian District
Fenghuangling Natural Scenic Area Yanaing District Badaling National Forest Park
Baiwangshan Forest Park 4me Yudushan Scenic Area
Jiufeng National Forest Park Daxing District Daxing New City Riverside Forest Park
Yunxiugu Hunting Natural Scenic Area Niantan Park

Miyun District Miyun Reservoir Huairou District Mutianyu Section of the Great Wall
Bailongtan Natural Scenic Area uatrou Lastric Labagou Original Forest Scenic Area
Simatai Great Wall Fengtai District Beigong National Forest Park
Shuanglongxia Scenic Area Qianlingshan Scenic Area
Mentougou District Xiaolongmen National Forest Park Changping District Mangshan National Forest Park
Baihuashan National Nature Reserve Pinggu District Jinhaihu Scenic Area
Miaofengshan Forest Park Shunyi District Gongqing Riverside Forest Park
Shijingshan District Badachu Park Tongzhou District Grand Canal Forest Park

2.2. Photograph Acquisition

Chen et al. [17] indicated that most visitors viewed the landscape along roads and
paths. Thus, the photographs used in the study were taken along roads during the best
ornamental period of the Cotinus coggygria landscape from 2018 to 2020 in the planting
sites in Beijing. Under different lighting conditions, the color, shape, surface, contours,
and boundaries of the same landscape shift to some degree [18], which the human visual
system can easily perceive. To reduce the influence of weather, visibility, light intensity, light
direction, and other factors such as photographic equipment, we selected the points where
the landscape can be viewed positively to take photographs and objectively recorded the
actual situation of the scenery from a normal viewing angle. Additionally, some principles
were followed during photograph acquisition. (1) All photographs were taken from 8:00 am
to 11:30 am with clear weather and visibility more significant than 10 km; (2) All photographs
were taken using a Nikon D3S camera and a Nikon AF-S 24-70 mm {/2.8 ED lens with
35 mm focal length; (3) All photographs were taken from the best viewpoint under front
lighting conditions with a tripod. (4) Efforts were made to avoid non-landscape factors in
the frame. Some could not be avoided, such as the sky and the Great Wall, and walking trails
should be under 20% of the field. (5) The distance between the camera and landscape was
kept greater than 100 m, which the Nikon 550 AS laser rangefinder could measure. Finally,
we selected 120 well-focused photographs with no color deviation from 304 photographs to
create a questionnaire to estimate the scenic beauty of the Cotinus coggygria forest landscape.
Three randomly selected example photographs are shown in Figure 2.

@) (b) (©)
Figure 2. Randomly selected example photographs. (a—c) The photographs of Cotinus coggygria var.

cinerea Engl. forest.
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2.3. Assessment of Visual Quality

The visual quality of forest landscapes is the subjective estimation after visual percep-
tion, which is a comprehensive combination of people’s judgment and visual characteristics.
Scenic beauty estimation (SBE) [19] is a reliable technique for landscape perception as-
sessment, which is widely accepted. In the study, questionnaires [20-23] were employed
to acquire people’s visual perceptions of the forest landscape and it is a pretty reason-
able method to qualitatively process people’s attitudes towards the quantitative visual
characteristics of a forest landscape.

The survey was conducted on a professional form-making website and spread ran-
domly to undergraduates, army soldiers, and tourists by the project team with a QR code.
Of course, it was open to people from all walks of life. First of all, a total of 18 experts,
including professors, researchers and experienced landscape forest managers in urban
forestry were selected randomly and the Delphi method [24] was employed to choose
12 photographs with mean visual quality from 120 photographs as the “baseline”. In every
questionnaire, 27 normal photographs and 3 “baseline” photographs were randomly se-
lected from 120 photographs. Furthermore, each photograph was shown for 8 seconds to
give enough time for the respondents to perceive the scene in the photograph. To prevent
repeat participation, the users with the same IP address, the same computer, or the same
account would receive a newly generated questionnaire with photographs different from
the ones that had appeared in the previous questionnaires and could not get more than
four questionnaires in total. A 7-point scale [25] was used in the questionnaires. Consistent
with people’s habits, the positive and negative numbers were used to indicate degree of
preference. In detail, —3, —2, —1, 0, 1, 2, and 3 were used to indicate the perceptions
of landscape as least preferable, not preferable, relatively not preferable, no preference,
relatively preferable, preferable, and most preferable, respectively. After 30 days, landscape
photographs were evaluated by 698 respondents. We sorted and checked the filled forms,
eliminated invalid ones and finally obtained 678 valid questionnaires. Then, the data
collected in the survey were statistically processed.

Although the differences in landscape aesthetic perception caused by economic con-
ditions, living environment, educational background of respondents [26] are not statis-
tically significant [27], some certain less technically skilled groups may have been un-
derrepresented in the online survey. To reduce the influence of background of respon-
dents, the scores of all photographs in the questionnaire minus the average scores of the
“baseline” photograph was performed to obtain the adjusted scores for each photograph.
After adjusting all the questionnaires, the SBE of each photograph was calculated with
Formulas (1) and (2) for all respondents [28].

1 m
MZ; = mk;f(cpik) 1
SBE; = (MZ; — BMMZ) x 100 2)

where MZ; is the average Z score of the photograph i; cpj is the frequency at which the
participator gives a rating of k or greater than k to photograph i; f(cpj) is the cumulative
frequency normal function distribution; m is the total scale of the rating; k is the rating scale;
SBE; is the original SBE value of photograph i, and BMMZ is the average Z score of the
“baseline” photograph.

2.4. Color Pattern of Forest Landscape and Metrics Selection

Based on the meaning of patches in landscape ecology, we referred to color patches to
represent a relatively homogeneous non-linear area composed of similar colors that differ
from the surroundings. Color patches form various color spatial patterns when area, shape,
and combination change. With a complex spatial pattern, the Cotinus coggygria landscape
forest mainly presents red, brown, and green colors, with scattered purple, yellow, and gray
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patches [29]. The color of leaves, species, location, and density of trees, as well as the
exposed soil in the forest affect the spatial color patterns.

As landscape metrics describe the characteristics of spatial patterns could accurately
quantify spatial color patterns [30], we chose six metrics with intense sensitivity to color
pattern changes by a sensitivity ranking method [29], which screened metrics with lin-
ear correlated and overlapping meanings. The selected metrics were mean patch area
(AREA_MN), largest patch index (LPI), patch size standard deviation (AREA_SD), num-
ber of patches (NP), patch richness (PR), and Shannon’s evenness index (SHEI). PR and
SHEI were used to depict the composition characteristics quantitatively; AREA_MN and
AREA_SD were used to depict the patch area characteristics quantitatively; NP was used
to analyze the degree of patch fragmentation, and LPI was used to analyze the shape
characteristics (Table 2).

Table 2. The selected metrics for describing the characteristics of spatial color patterns.

Metrics Abbr. Definition Comments
Number of The number of patches in NP conveys .the same information as pétch density or
a NP mean patch size, if total landscape area is held constant.
Patches the landscape. . :
It is used as a measure of landscape fragmentation.
Largest Patch The percentage of the landscape Largest patch index at the class level qqantlﬁes the
a LPI .. percentage of total landscape area comprising the largest
Index comprising the largest patch. e .
patch. As such, it is a simple measure of dominance.
Mean Patch The sum of the patch area divided AREA_MN expresses the legibility of color patterns.
a AREA_MN by the total number of patches, When AREA_MN is large, it is easier for people to see
Area . .
across all patches in the landscape.  the color of each patch, and to form a better perception.
Patch Size Standard deviation of patch area AREA_SD is a measure of absolute variation; it is a
Standard AREA_SD . P ’ function of the mean patch size and the difference in
e a across all patches in the landscape. .
Deviation patch size among patches.
Patch The number of different types of High-richness values indicate a high number of different
Richness P PR patches, independent of the number patches. It can, therefore, be referred to as the
of patches of each type. compositional dimension of landscape diversity.
Shannon’s This measures the distribution of Shanrllon.s evenness index is expressed such that an
. even distribution of area among patch types results in
Evenness SHEI areas among patch types and is . .
a . g maximum evenness. As such, evenness is the
Index independent of richness.

complement of dominance.

2 Cited from https:/ /github.com/kmcgarigal /Fragstats (accessed on 15 October 2022). P Cited from [31].

2.5. Color Quantization and Color Pattern Calculation

Taking advantage of the inertia of the human visual system, the color quantization
process combines similar colors that are less significant in the original image into one to
reduce the total number of colors, which facilitates automatic color processing by computer
programs. The HSV (hue, saturation, value) model in Munsell’s color system [32] quantifies
the color with hue, saturation, and value components consistent with the color perception
in the brain. Therefore, this study used the HSV model to quantize and classify colors.

Regarding the results of previous studies [33-35], the color space was quantized
into 256 colors, shown in Figure A1l in Appendix A. Considering the color similarity and
characteristics of Cotinus coggygria forest, the 256 colors are combined into 25 categories [29]
(Table Al in the Appendix A).

A Python program (version 1.0, Yujuan Cao, Beijing, China) for automatic interpre-
tation of color patches was developed to facilitate the spatial color pattern calculation,
the specific details of which could be found in Appendix B. All the 120 photographs were
compressed to 400 x 600 resolution respectively, and the color of each pixel in every photo-
graph was replaced with the color of the highest ratio in the classification. Then the patches
with similar colors were fused, and some detail information was discarded so that the size,
edge, shape, richness, and uniformity of color patches became evident. The processed pho-
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tographs were used to interpret the color patches and calculate the metrics. We randomly
selected one photograph and visualized it, as shown in Figure 3.

(@) (b)

Figure 3. Visualization of Cotinus coggygria var. cinerea Engl. forest photograph. (a) The original

landscape photograph; (b) the photograph after color quantization.

As the Python program was used for automatic color substitution, the pixel was
represented by the classification number to generate a rasterized file in IDF_ASCII for-
mat. Moreover, the six selected metrics of each photograph were calculated by Fragstats
(version 4.2, McGarigal, University of Massachusetts, USA) for every 120 photographs,
which were used to statistically analyze the overall color patterns of the Cotinus coggygria
landscape forest.

2.6. Mechanisms of Color Patterns on Visual Quality

The SBE of each photograph was treated as the dependent variable, and the six
color pattern metrics were treated as the independent variables. Using the stepwise
regression, multiple correlations between visual quality and the color pattern metrics were
explored by IBM SPSS Statistics (version 26.0, IBM, Chicago, IL, USA). The correlation
coefficients, complex correlation coefficients, and residual standard deviations of each
metric were calculated, and the correlation coefficient test was also conducted. Finally,
principal component analysis (PCA) was employed to further explore the effect of color
patterns on visual quality. Normalization and equalization were performed on the variables
to eliminate the effects of dimensionality and order of magnitude. Then, the eigenvectors,
eigenvalues, principal components and contribution rates of the correlation coefficient
matrix were calculated on the normalized metrics. After that, all the principal components
were ranked by their contribution rate, and ones with eigenvalues greater than 1.0 were
selected. We scattered the SBE of each photograph with the selected principal components
and fitted the surface with a locally weighted regression (Lowess) algorithm to express
the influence mechanism of color patterns on visual quality. As PCA is a mature method
commonly used for data compression and dimension reduction, its specific calculation and
analysis processes can be found in the relevant literature [36,37].

3. Results
3.1. Color Patterns of Cotinus coggygria Forest

After carrying out color quantification and pattern metric calculations, we performed a
statistical analysis of each metric. The general color pattern of a Cotinus coggygria landscape
in Beijing is summarized in Table 3. The p values of Kolmogorov-Smirnov test were larger
than 0.2, which indicated that values of all six metrics were subject to a normal distribution.

The color patches of the Cotinus coggygria forests in Beijing were relatively rich, as the
mean of NP was 467. The range of NP was extensive, and the CV (coefficient of variation)
reached 42.54%, indicating that the number of color patches varied a lot in different sites.
As for PR, the minimum was 13.00, the mean was 19.52, and the CV was only 15%, which
indicates that the color patch types of the Cotinus coggygria forest in Beijing were abundant,
and the color patch richness of different sites was kept on a specific scale.
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Table 3. Metrics values of landscape color structure of the Cotinus coggygria var. cinerea Engl. forest.

Metrics

Mean

Max. Min. Standard Deviation  Coefficient of Variation Sig. of K-S Test ?

AREA_MN
LPI
AREA_SD
NP
PR
SHEI

0.34
21.34
3.56
221.92
19.52
0.65

0.69 0.08 0.12 36.08% 0.463
41.05 7.68 8.58 40.21% 0.552
8.90 0.36 2.28 63.92% 0.470
467.00 74.00 94.40 42.54% 0.788
24.00 13.00 297 15.00% 0.326
0.84 0.55 0.06 8.67% 0.523

2 The significance of Kolmogorov-Smirnov test.

As for the size of color patches, the mean of LPI was 21.34, and the maximum was
1.9 times the mean. Additionally, the CV reached 40.21%, indicating that the distribution
of the largest color patch remained relatively concentrated in Cotinus coggygria forests.
Moreover, the largest color patch accounted for 40% of photographs in some sites. The mean
of AREA_MN was 0.34, and the maximum was 8.6 times the minimum, but the standard
deviation was tiny, and the CV was 36.08%. Meanwhile, the mean of AREA_SD was
3.56, and the CV was 63.92%, indicating that the areas of different color patches varied
significantly in most sites. What is more, the mean of SHEI was 0.65, and the CV was only
8.67%, indicating that most of the area of the Cotinus coggygria forest was composed of
several major color patches.

3.2. Multiple Correlations between Visual Quality and Color Spatial Pattern Metrics

As spatial pattern metrics quantified the number, size, extent, shape, and other specific
aspects of the spatial arrangement of color patches [38], the overall features of color patterns
used to be described by various metrics from different aspects. Based on the relation
between the visual quality of a forest landscape and the overall color pattern, we calculated
the correlation between the SBE of photographs and the above six metrics by stepwise
regression. Moreover, the procedure is given in Table 4. In the first run, PR was removed
due to a negligible correlation with visual quality. Moreover, in the second run, NP, LP],
AREA_MN, AREA_SD, and SHEI had significant multiple correlations with R = 0.915 on
the aesthetic quality.

Table 4. Stepwise regression process and partial correlation coefficient.

Factors

The First Run The Second Run

Partial Correlation Coefficient Sig. Partial Correlation Coefficient Sig.

NP
LPI
AREA_MN
AREA_SD
SHEI
PR

—0.912 0.059 —0.514 0.047
—-0.976 0.026 —0.496 0.009
0.911 0.021 0.186 0.003
—0.983 0.004 —0.733 0.001
—-0.991 0.011 —-0.579 0.004
0.721 0.312

In the results of multiple correlation analysis (Table 5), NP, LPI, AREA_MN, AREA_SD,
and SHEI affected the visual quality to different degrees. We performed normalization
and equalization on the variables to eliminate the effects of dimensionality and order
of magnitude. Moreover, we presented the standardized coefficients for each metric to
compare the magnitude of their effect on visual quality. The standardized coefficients for
AREA_MN, NP, LPI, AREA_SD, and SHEI were 0.116, —0.303, —0.298, —0.797, and —0.337,
respectively, indicating that AREA_SD had the most significant impact on landscape quality,
while AREA_MN had the most negligible impact relatively. Moreover, the visual quality
was negatively correlated with NP, LPI, AREA_SD, and SHEI and positively correlated
with AREA_MN.
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Table 5. Analysis of multiple correlations coefficients of Cotinus coggygria var. cinerea Engl. forest.

Unstandardized Regression Coefficients Standardized Regression Coefficients

Factors t Sig.
B Standard Error Beta

Constant 4.764 0.418 11.405 0.001
NP —0.002 0.000 —0.303 —6.870 0.001
LPI —0.025 0.004 —0.298 —6.093 0.001
AREA_MN 0.673 0.333 0.116 2.020 0.046
AREA_SD —0.251 0.022 —0.797 —11.492 0.001
SHEI —4.259 0.562 —0.337 —7.581 0.001

3.3. Impacts of Color Patterns on Visual Quality

NP, LPI, AREA_MN, AREA_SD, and SHEI were significantly correlated with the
visual quality of the Cotinus coggygria forest, suggesting that differences in the color pattern
may account for the visual quality variations. The values of metrics were numerically
continuous, and it was difficult to represent them in terms of order. To explore the impact
mechanism of each metric on visual quality, we divided the metric into four intervals
by the quartiles, therefore, every interval included 30 photographs. We depicted a box
plot to represent the distribution of the SBEs and the red dots represented the mean of
SBEs in each interval. The line connecting the red dots across all the boxes expressed the
correlation between the color pattern metrics and visual quality. The p values of mean
comparisons of the SBE in each quartile was plotted above the boxes. All the p values
shown in the figures were less than 0.05, which indicated that the means of the SBEs in the
different quartiles were significantly different. Some p values that were larger than 0.05 are
not shown in the figures, indicating that the means of the SBEs in two quartiles were not
significantly different.

As shown in Figure 4, NP was negatively correlated with the SBE of the photographs.
When the NP was small, its effect on the visual quality was not apparent, but a large NP
resulted in a significant reduction in the visual quality. The correlation between LPI and
SBE was similar to that between NP and SBE. In the first quartile the difference in the SBE
was the most prominent, and in the fourth quartile, the difference in the SBE decreased
a bit. When the LPI was small, the visual quality changed a lot, but a large LPI caused a
sharp drop in the visual quality.

AREA_MN was positively correlated with the SBE. The SBE of most of the photographs
in each box increased with AREA_MN. However, except for the outliers, the minimum
value of the SBE significantly increased, indicating that enlarging AREA_MN for low-visual
quality forests was considerably more effective in improving scenic beauty. AREA_ SD was
negatively correlated with SBE. In the fourth quartile the difference in SBE was the most
prominent. As AREA_SD accounts for the difference in the size of the color patches across
the photographs, its impact mechanism on the visual quality was somewhat different from
that of LPI. The effect of SHEI on the visual quality was insignificant. However, the median
of SBE was significantly improved in the second and third intervals, and the mean of the
SBE was also slightly increased, also in the fourth quartile the difference in SBE was the
most prominent, indicating that harmonious color patch patterns typically permit superior
visual quality.

3.4. Comprehensive Effects of Spatial Color Pattern on Visual Quality

The color pattern metrics correlated to each other to some degree, and all the metrics
subsequently changed when the pattern varied. The correlation between an individual
metric and visual quality cannot sufficiently reveal the influence mechanisms of color
patterns on the visual quality of Cotinus coggygria forest. Therefore, principal component
analysis (PCA) was employed to further explore the effect of color patterns on visual quality,
and the results are presented in Table 6.
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Figure 4. Correlation between color pattern metrics and visual quality of the Cotinus coggygria var.
cinerea Engl. forest. The 25%, 50%, and 75% of the coordinate on the horizontal axis of each subplot
represent the 1st quartile, median, and 3rd quartile of each metric. (a) Correlation between number
of patches (NP) and SBE; (b) correlation between largest patch index (LPI) and SBE; (c) correlation
between mean patch area (AREA_MN) and SBE; (d) correlation between patch size standard deviation
(AREA_SD) and SBE; (e) correlation between Shannon'’s evenness index (SHEI) and SBE.

The first principal component (PC1) mainly characterized the color patches in terms
of evenness, with the most significant factor loading of AREA_SD (0.918) and a negative
factor loading of SHEI with an absolute value of 0.686. Moreover, the factor loadings of
LPI and AREA_MN were more prominent than 0.5. The second principal component (PC2)
primarily characterized the color patches in terms of area, with the most significant factor
loading of NP (0.633) and a negative factor loading of LPI with an absolute value of 0.719.
Moreover, AREA_MN had a factor loading of 0.609. The top two principal components
had eigenvalues greater than 1.0, and the cumulative contribution of both was 71.47%.
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Therefore, the first and second principal components were chosen as the two variables
to analyze the mechanism of impact on the visual quality. The factor loadings of each
principal component are shown in Figure 5d.

Table 6. Principal component analysis of color pattern metrics of the Cotinus coggygria var. cinerea

Engl. forest.

Ttem 1st Principal 2nd Principal 3rd Principal 4th Principal 5th Principal
Component Component Component Component Component
NP 0.099 0.633 0.607 —0.421 0.210
LPI 0.634 —0.719 0.241 0.098 0.118
AREA_MN 0.671 0.609 —0.196 0.302 0.220
AREA_SD 0.918 0.258 0.131 —0.006 —-0.272
SHEI —0.686 0.210 0.496 0.483 —0.081
Eigenvalue 2.175 1.399 0.728 0.511 0.187
Contribution Rate 43.50% 27.97% 14.56% 10.22% 3.75%
Accumulated o o o o o
Contribution Rate 43.50% 71.47% 86.03% 96.26% 100.00%
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Figure 5. The influence trend of color pattern metrics and visual quality of the Cotinus coggygria var.
cinerea Engl. forest. (a) The scattered plot and fitted surface of SBE with the first principal component
(PC1) and the second principal component (PC2); (b) the projection of the fitted surface in the plane
of PC1 and SBE; (c) the projection of the fitted surface in the plane of PC2 and SBE; (d) the factor
loadings of metrics on PC1 and PC2.
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We analyzed the spatial patterns of the color patches and SBE of 120 photographs,
as well as scattered SBE with PC1 and PC2. The fitted surface is shown in Figure 5.
As revealed by the trend of surface, the visual quality of Cotinus coggygria landscape
increased sharply and then decreased slowly as the two principal components increased
(Figure 5a). We obtained the lowest SBE when the PC1 was close to 0 and the PC2 was
minor, indicating a large LPI, a minor NP, and a moderate SHEI. That is, the landscape
had few color patches and consisted mainly of a limited number of color patch types with
relatively dull colors.

The projection of the fitted surface in the plane of PC1 and SBE is shown in Figure 5b.
It mainly remained stable, showing a specific downturn trend. When PC1 was around
—0.6, the SBE reached its maximum; when PC1 was around —0.1, the SBE achieved the
minimum; when PC1 was larger than 0.6, the SBE decreased dramatically. This indicates
that the color patch area and uniformity had a more significant impact on the visual quality
of the Cotinus coggygria forest. As PC1 increased, the degree of fluctuation in the visual
quality first increased and then decreased. The visual quality was significant when the
patch size and uniformity were moderate. However, the visual quality decreased when the
patch size was too large and the main color patch was overly abrupt.

In the projection of the fitted surface in the plane of PC2 and SBE (Figure 5c), with the
increase in PC2, the SBE showed a moderately upward trend, and the SBE obtained the
minimum value when PC2 was near 0, and the degree of fluctuation gradually increased.
It indicated that the visual quality would be high when the number of color patches was
coordinated with the patch size. In contrast, the patch layout began to fragment when
the number of patches was large, and at this time, the visual quality showed a significant
difference due to the different patch areas. Therefore, keeping the diversity and uniformity
of color patches coordinated and balanced with each other, while properly reducing the
number of tiny miscellaneous color patches is key to improving the visual quality of the
landscape of Cotinus coggygria forests. It is not easy to comprehensively improve the visual
quality only by changing one metric.

4. Discussion
4.1. Pattern Metrics and Visual Attributes

Countless spatial metrics have been proposed to quantitatively characterize the land-
scape’s spatial and temporal variability and current state [39-41]. Studies have shown that
some of the ecological spatial metrics could be used as indicators for evaluating visual
quality [42,43]. In this paper, NP, LPI, AREA_MN, AREA_SD, SHEI, and PR were selected
to quantify the pattern of color patches from different aspects.

Because landscape composition metrics were more closely related to scenic values
than the configuration metrics [44], and considering the stability of the color composi-
tion of autumn Cotinus coggygria forests and the immutability of tree planting locations,
we ignored the metrics expressing the spatial configuration of patches and selected only
the composition metrics quantifying the proportion, richness, evenness, and diversity of
color patches [31].

Together with NP, PR expresses the diversity of color patches and the complexity of
color patterns. SHEI expresses the diversity of patch arrangement styles, and AERA_SD
expresses the diversity of patch area variations, both of which characterize the diversity
of color patterns from different perspectives. Variety and complexity, as one of the most
influential predictors of visual preference [45,46], show a significant correlation with the
variety of elements in the landscape [47]. Heterogeneity, variety, diversity, and complexity
are attributes consistently interpreted by subjects similarly [45,48,49]. However, since the
color of the autumn Cotinus coggygria forest mainly covers red, brown, green, and purple,
and the minimum value of color patch richness at the site of this study is 13, and 13 color
patch types could combine to form a rich and diverse landscape color pattern, resulting in
PR being screened out in the first run of multiple linear regression.
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The LPI expresses the dominance of the largest color patch and the overall coher-
ence. The more significant the LPI, the more prominent the largest color patches are,
and the less the overall coherence is. AREA_MN expresses the legibility of color pat-
terns. When AREA_MN is large, it is easier for people to see the color of each patch,
and to form a better perception. Both coherence and legibility reflect the viewer’s percep-
tion of the landscape and play a crucial role in interpreting the landscape structures [50].
Herzog and Leverich [51] argued that landscapes with higher legibility tend to be preferred
in many studies.

4.2. Relationship between Pattern Metric and Visual Quality

The results suggested that the visual quality could be expressed to some extent by
the spatial pattern of the color patches when the Cotinus coggygria forest was seen at
intermediate distances. Moreover, this is consistent with previous studies related to agricul-
ture [52,53] and rural landscapes [54]. The results of the multiple correlations showed that
five landscape metrics, NP, LPI, AREA_MN, AREA_SD, and SHEI, were the main factors
affecting the visual quality of the landscape.

NP was negatively correlated with visual quality, indicating that as the number of
color patches increases, the complexity of spatial color structure increased sharply while
the legibility of the color patches decreases [46,55]. The minimum NP in this study was
74, and the probability of an overly dull color pattern was low; however, when it was too
complex to be discernible [46], it caused a fragmented and confusing spatial structure and
a sharp decline in visual quality. Color patterns with great complexity may suffer from low
legibility when multiple color patches failed to form a periodic structure [31].

LPI was negatively correlated with visual quality. When the LPI is small, the unifor-
mity of the whole picture increase, there are no apparent dominant color patches, and the
picture has strong coherence. The landscape quality is less affected by the LPI at this
time. Hunziker and Kienast [52] showed that the uniformity of landscape patches was
positively correlated with visual quality. However, the visual quality would be sharply
reduced when the uniformity decreases to a certain threshold. In this study, when the
LPI exceeded a certain threshold, the dominant color patches occupied a more significant
proportion of the picture, the color patterns became monotonic and less coherent, and the
visual quality decreased dramatically. The present results suggested that although the
uniformity of the color pattern had a positive effect on preference [56,57], the relationship
was not purely linear.

AREA_MN was positively correlated with visual quality. Color patches with large
average areas tend to be noticed at intermediate distances. The human visual system is
much more efficient at processing clear and concise pictures than processing pictures full
of details, especially when the details are overly complex. People find it easy to perceive
pictures with patches of considerable size. That is, the SBE appears high.

AREA_SD was negatively correlated with visual quality. When the patch area remains
relatively homogeneous, the complexity of the spatial pattern is low, and the AREA_SD is
modest. As the minimum value of SHEI in the study was 0.55, there were no oversimplified
color patterns at the sites. Different color patches were distributed relatively uniformly,
so the SBE stayed high. With the increase in AREA_SD, the heterogeneity and complexity
of pictures increased. According to Kaplan and Kaplan [50], significant heterogeneity is
commonly thought to be negatively related to scenic value [54].

The correlation between SHEI and visual quality was not apparent. In this study,
the visual quality of the landscape photographs did not change significantly as the SHEI
of the photographs within a narrow range, with a CV of only 8.3% of the SHEI. When the
SHEI was around 0, the inhomogeneous distribution of the color patches led to confusion
in the landscape graph. However, when the SHEI was around 1, the uniform distribution
of color patches led to monotony of the graph and the lack of natural dynamism. Both of
these scenarios led to a drop in visual quality. This was consistent with that more fantastic
perceived scenic beauty attributed to landscapes with greater spatial evenness [54].
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Overall, the spatial patterns of color patches are correlated with people’s perception of
the scenic beauty of a landscape forest. From the results presented in this paper, the spatial
pattern of color patches was a dimension of the autumn Cotinus coggygria seen at interme-
diate distances, which affected the perception of autumn-colored leaves to a certain extent.

4.3. Influence Intensity of Visual Attributes and Optimal Color Pattern

The degree to which different color patterns affect visual quality varied. In terms
of the standardized coefficients, AREA_SD and SHEI had the most significant impact
on visual quality. These two metrics express both the complexity and diversity of color
patterns. Since the selected sites were natural landscapes with minor human intervention,
the probability of entirely homogeneous or unusually heterogeneous patterns was relatively
small, and heterogeneity in patch regions was more easily perceived at intermediate
distances. Moreover, the complexity and diversity of the color patches remained the most
influential factors for visual perception.

The influence of NP and LPI on visual quality remained essentially the same and
slightly less than SHEI on landscape quality. In landscapes with NP > 74 and PR > 13,
the color pattern had a certain complexity that increased significantly with increasing NP,
while increasing LPI decreased global coherence, which simultaneously degraded visual
quality. Similar parallels exist between the effects of uniformity and diversity [55] and
order and complexity [58] on visual quality.

Due to the correlation between color pattern metrics, each metric changed accordingly
when the color pattern changed. In the principal component surface plot, the SBE reached
its maximum at PC1 = 0.6 and PC2 = —0.6. At this time, SHEI was large, NP and LPI
were moderate, and AREA_SD was tiny. The color patches were uniformly distributed,
and the number of color patches was just right. This was consistent with color harmony
theory. In a natural environment, deliberately creating a landscape that conforms to the
optimal color pattern could be severely costly and unstable. Computer modeling software
(such as Blender) can be used to determine whether the landscape design is reasonable.
In built-up urban landscapes, landscape color layouts could be altered by interleaving and
replanting a modest number of different trees. Additionally, it indicated the reasonability
to improve the aesthetic quality by changing the spatial color pattern of peri-urban forests
through planting and replanting trees on a small scale. At this point, feasibility simulations
could also be performed with the help of computer modeling to reduce the transition
risk effectively.

At intermediate distances, it is difficult to accurately distinguish the visual forms
such as crown width, height, and crown length of trees in the landscape. Moreover,
the heterogeneity of tree height, crown width, and forest stand density is easily overlooked
or obscured. However, the effect of these features on the color pattern and visual quality
cannot be ignored entirely in practice. In a follow-up, we will continue to investigate the
mechanisms of influence between individual trees, stands, and landscape color structures
as well as the overall mechanisms of influence on the visual quality of landscape forests.

5. Conclusions

This study focused on spatial color patterns of the forest while other aspects such as
voice and smell that are connected to real forest experiences were not considered. Based on
120 photographs of the Cotinus coggygria forest and six color pattern metrics, we explored
the spatial patterns of color patches in terms of composition, area, shape, and degree
of fragmentation. Following the SBE approach, a questionnaire on scenic beauty was
conducted, and 678 valid questionnaires were used to analyze the multivariate correlation
between color pattern metrics and visual quality. NP, LPI, AREA_MN, AREA_SD, and SHEI
were found to be the main factors affecting the visual quality of the Cotinus coggygria forest.

AREA_MN was positively correlated with visual quality, while NP, LPI, AREA_SD,
and SHEI correlated negatively with visual quality. Moreover, AREA_SD had the most
significant impact on the visual quality of the landscape, while SHEI, LPI, and AREA_MN
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had the second-highest impact. In other words, the area of color patches and uniformity
of color pattern had a more significant impact on the visual quality of the landscape,
especially when the patch area was large and the dominant color patch was overly abrupt,
the quality of the landscape was significantly reduced. NP had minimal impact on the
visual quality, and the visual quality of the landscape was higher when the number of
patches was coordinated with the patch area. However, if the number of patches was overly
considerable, the layout of color patches became highly fragmented and the visual quality
decreased. Thus, keeping the diversity and uniformity of color patches in the landscape in
harmony with each other while appropriately reducing the number of minor miscellaneous
color patches plays a decisive role in creating a forest landscape with high visual quality.

Author Contributions: Conceptualization, Y.C.; data curation, Y.C.; formal analysis, Y.C.; investiga-
tion, Y.C.,, Y.L, XW,, Z.D., M.D,, R X,, S.Z., X.L. (Xiuping Liu), ].L. and J.X.; methodology, Y.C.; project
administration, Y.C., Y.L. and X.L. (Xinyu Li); resources, X.L. (Xinyu Li); software, Y.C.; supervision,
X.L. (Xinyu Li); validation, Y.C. and X.L. (Xinyu Li); writing—original draft, Y.C.; writing—review
and editing, Y.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the special programs for research and establishment of multi-
scales greening ecological benefit evaluation system against the background of cities in northern
China, grant number D171100007117001.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to confidentiality.

Acknowledgments: Special thanks to the Beijing Forestry University and Chengyang Xu who helped
supporting and guidance the study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The process of color quantization, substitution, and classification in the study was
carried out as follows.

First, the hues were non-uniformly quantized into 16 categories, labeled H1 to H16.
The saturation and the value were quantized into four categories, marked as S1~54 and
V1~V4, respectively, so that the color space was quantized into 256 (16 x 4 x 4) colors
(Figure Al).

Moreover, supervised color substitution and classification were performed to quantize
the photograph into 256 colors. The images were converted from the RGB color model to
the HSV color model, and the colors of each pixel were tallied. Based on the frequency
of each color appearing in the 120 photographs, some colors with visual similarity were
combined into one category.

In Figure A1, the colors corresponding to V1 had low values and were mainly com-
posed of tree shadows and tree trunks in the forest. These were grouped in the black
category. The colors corresponding to S1 had low saturation and were organized into the
gray category, except those already classified as black. Moreover, the grey category shows
mainly the color of the leafless crowns of shrubs, herbs, and trees and the exposed soil
of forests. The red, yellow, and green colors with high frequencies were grouped into
21 categories, except for the black and gray categories. The colors with low frequency
(0.1%~0.5%) were merged into the 21 categories with similar visual appearances. Colors
with tiny frequencies (less than 0.1%) were classified into the additional category. It was
not easy to keep all non-experimental factors out of the range, so the sky and the Great
Wall appeared in some photographs. These perturbed colors were replaced by colors with
frequency 0 and treated as background colors, which were neglected in the calculation of
pattern metrics. As shown in Table A1, 256 colors were divided into 25 categories.
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Figure A1. Non-uniform quantization of color in the HSV model.

Table Al. The classification of 256 colors.

Category . . Hex of

Number Colors in The Category Color Code Main Color Main Color
1 7 #DFATA2
2 23 #DFB6A2
3 B 11 B #DF5F5E
4 | 10, 14 B #923E3E
5 N | 5,25,9,13 B #463233
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Table Al. Cont.

95,106, 107, 109, 110, 111, 119, 121, 122,
123,125,126, 127,139, 141, 142, 143, 174,
175, 186, 187, 189, 190, 191, 199, 202, 203,
205, 206, 207, 218, 219, 221, 222, 223, 233,

Category . . Hex of
Number Colors in The Category Color Code Main Color Main Color
6 e 30,31 B #923E12
7 B 27 B #DESASE
8 B 6,246 B #926A6A
9 ] 22,245, 229,213, 181 B #937769
10 39,55 #DFC5A0
11 ] 43,59, 47 #DFABSF
12 B 58,71 B #93853E
13 B 57 B #453F1D
14 N N | 74,73, 86, 85 B #87933F
15 ] 70, 54 B #3D946B
16 e 53, 69 B #454231
17 N | 26,29 B #935A3D
18 'R 42,46, 62 B #92713E
19 B 38 B #928269
20 H B 41,45,61 B #45351C
21 ] 21,37 B #463931
34, 66,50, 2, 18, 65,33, 1, 161, 49, 17, 162,
81,82, 177,97, 225, 209, 242, 241, 226, 19,
2 35,3,51,67,83,98,99,113, 114,115,129, [ #919388
130, 131, 145, 146, 147, 163, 179, 193, 194,
195,210,211, 227, 243
165,36, 68, 0,4, 8,12, 16, 20, 24, 28, 32,
40,44, 48, 52, 56, 60, 64, 72, 76, 80, 84, 88,
92,96, 100, 104, 108, 112, 116, 120, 124,
23 128,132, 136, 140, 144, 148, 152, 156, 160, B #14100D
164, 168, 172, 176, 180, 184, 188, 192, 196,
200, 204, 208, 212, 216, 220, 224, 228, 232,
236, 240, 244, 248, 252
24 N 155, 158, 159 N #5FASDF
149,178, 101, 89, 249, 197, 151,90, 77, 75,
133,117, 150, 169, 166, 230, 153, 63, 15,
78,217,250, 214, 167, 182, 198, 253, 154,
87,185,157, 173, 201,134, 102, 170, 171,
237,93, 118, 234, 137, 247, 135, 79, 254,
25 H 183,231, 91, 105, 138, 251, 94, 103, 215, B #3D4509

235, 238, 239, 255
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Appendix B

The Python program for automatic interpretation of color patches was developed to fa-
cilitate the spatial color pattern calculation, which could be accessed at https://github.com/
chunhv/color-patches-automatic-interpretation/, accessed on 14 October 2022. The proce-
dure steps and how them works were explained as follows.

Step 0: Image prepossessing. The perturbed colors in the images were replaced by the
colors never appeared in all photographs by Adobe Photoshop manually. The processed
images were the inputs to the programs of automatic interpreting color patches.

(a) (b)

Figure A2. The sample of original photograph and processed one. (a) The original landscape
photograph; (b) the photograph after color replacement.

In programming, the original photograph was treated as a three-dimensional matrix
of 6000 x 4000 x 3, where 6000 x 4000 was the width and height of the photo, and 3 repre-
sented the values of RGB of pixels. Therefore, an original photograph was represented as
an orderly combination of 6000 x 4000 x 3 numbers.

Step 1: Image compression. To improve the processing speed, we resample and
compress the photograph using pixel area relation with resolution of 600 x 400 x 3, which
could reduce the processing time by 100 times.

Step 2: Color space conversion. The color space of photograph was converted from
RGB to HSV based on the algorithm Al~A4.

R’ = R/255
G' = G/255
B’ = B/255
Conax = max(R', G, B') (A1)
Cmin = min(R’, G', B')
A = Crax — Cmin
0° A =0
60° x (SE 4 0), Conax = R/
Hue = B ’ A2
YT 600 x (B5E 12), Cooax = G (A2)
60° x (B5& +4),Cnax = B/
. 0 /Cmax =0
Saturation = A3
aturation { ﬁrcmax#o (A3)

Value = Cax (Ad)


https://github.com/chunhv/color-patches-automatic-interpretation/
https://github.com/chunhv/color-patches-automatic-interpretation/
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Step 3: Compress the color space. Each pixel in the photograph was compressed into
256 colors from full color (16,777,216 colors) based on the algorithm A5~A7.

0, H<750rH>1725
10, 7.5 < H < 125
18, 12.5 < H < 225
25,225 < H <275
34,275 < H < 40
47,40 < H < 54
62, 54 < H < 70
76, 70 < H < 82.5
89, 82.5 < H < 95 (A5)
103, 95 < H < 110
119, 110 < H < 127.5
133, 127.5 < H < 1375
141, 137.5 < H < 145
151, 145 < H < 157.5
161, 157.5 < H < 165
169, 165 < H < 172.5

Hl

19, 0 < S <3825
70, 38.25 < S < 102
147, 102 < S < 191
223, 191 < S <255

(A6)

19,0 <V <3825
70, 38.25 < V < 102
147, 102 <V < 191
223,191 <V <255

V' = (A7)

Step 4: Further compression of the color space. Replace the color of every pixel with
the highest ratio color in the classification which were listed in Table Al. The photograph
was compressed into 25 colors from 256 colors. In Figure A3, photograph (a) has 256 colors
and photograph (b) has 25 colors, and some details especially the dark part of the photo
was optimized in photograph with 25 colors.

@ (b)

Figure A3. The sample photograph with 256 colors and 25 colors. (a) The photograph with 256 colors;
(b) the photograph with 25 colors.

Step 5: Gaussian blur. To lower the impact of noises on color patch division, Gaussian
Blur Algorithm was used to smooth the photos. The step size of blurring used in the paper
was 8 x 8, and it should be adjusted according to contents and resolutions of photographs.

Processed from Step 0 to Step 5, the color patches in the photographs had been basically
interpreted as shown in Figure A4.
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Figure A4. The automatic interpreted color patches in photographs.

Step 6: Generate IDF_ASCII files. Fragstats (version 4.2, McGarigal, University of
Massachusetts, Amherst, MA, USA) was used to calculate the metrics of color patches
patterns. The photograph was not supported as the input files, and it should be converted
to the files in IDF_ASCII format. In this step, every pixel was replaced by the number of its
color category, and a two-dimensional matrix formed of 600 x 400 numbers was generated.
As shown in Figure A5, the pattern of patches in IDF_ASCII file was similar to that in
Figure Ab5a, and the IDF_ASCII file was formed by numbers as shown in (b).

(a) (b)

Figure A5. The IDF_ASCII files shown in the text editor. (a) It was the full vision; (b) It was the local part.

Step 7: Calculate the metrics. The landscape scale was selected in the Fragstat, and the
values of metrics of color patterns were calculated.

Step 8: Repeat from Step 0 to Step 7 until all the photographs were processed. And the
metrics were calculated photograph by photograph.

References

1. United Nations. World Urbanization Prospects: The 2018 Revision: Key Facts. 2018. Available online: https:/ /population.un.org/
wup/Publications/Files/WUP2018-KeyFacts.pdf (accessed on 15 July 2021).

2. Chen, W.Y; Li, X. Urban forests’ recreation and habitat potentials in China: A nationwide synthesis. Urban For. Urban Green. 2021,
66, 127376. [CrossRef]

3. Cui, W,; Tan, H.N. Color Composition; China Textile Press: Beijing, China, 2003.

4. Anter, K.F. Nature’s Colour Palette: Inherent Colours of Vegetation, Stones and Ground; Scandinavian Colour Institute: Stockholm,
Sweden, 1996.

5. Serpa, A.; Muhar, A. Effects of plant size, texture and colour on spatial perception in public green areas—A cross-cultural study.
Landsc. Urban Plan. 1996, 36, 19-25. [CrossRef]

6. Lev-Yadun, S.; Yamazaki, K.; Holopainen, J.K.; Sinkkonen, A. Spring versus autumn leaf colours: Evidence for different selective
agents and evolution in various species and floras. Flora 2012, 207, 80-85. [CrossRef]

7. Hoyle, H,; Hitchmough, J.; Jorgensen, A. All about the ‘wow factor’? The relationships between aesthetics, restorative effect and
perceived biodiversity in designed urban planting. Landsc. Urban Plan. 2017, 164, 109-123. [CrossRef]

8. Mu, Y.X;; Lin, WY;; Diao, X.L.; Zhang, Z.; Wang, J.; Lu, Z.].; Guo, W.C.; Wang, Y.; Hu, C.X.; Zhao, C.Y. Implementation of the visual
aesthetic quality of slope forest autumn color change into the configuration of tree species. Sci. Rep. 2022, 12, 1034. [CrossRef]
[PubMed]

9.  Palmer, S.E.; Schloss, K.B. Aesthetic response to color combinations: Preference, harmony, and similarity. Atten. Percept.

Psychophys. 2011, 73, 551-571. [CrossRef]


https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf
https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf
http://doi.org/10.1016/j.ufug.2021.127376
http://doi.org/10.1016/S0169-2046(96)00330-1
http://doi.org/10.1016/j.flora.2011.10.007
http://doi.org/10.1016/j.landurbplan.2017.03.011
http://doi.org/10.1038/s41598-021-04317-1
http://www.ncbi.nlm.nih.gov/pubmed/35058486
http://doi.org/10.3758/s13414-010-0027-0

Forests 2022, 13, 1996 21 of 22

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.
33.

34.
35.
36.
37.
38.

39.
40.

41.

Wu, N.S. Theory and Technology of Ssenic and Recreational Forest Tending in Xishan Beijing. Ph.D. Thesis, Beijing Forestry
University, Beijing, China, 2006.

Li, X.W. Studies on Tending Technology Model of the Main Scenic and Recreation Forests in Beijing Lower Mountainous Area.
Doctoral Thesis, Beijing Forestry University, Beijing, China, 2008.

Sun, P. Assessment on Forest Health of Planted Cotinus coggygria Scenic Forest in Beijing. Master’s Thesis, Beijing Forestry
University, Beijing, China, 2015.

Zheng, Y. Study and Application on Chemical Controls of the Verticillium Wilt of Smoke Trees in Beijing. Master’s Thesis, Beijing
Forestry University, Beijing, China, 2016.

Li, HL,; Li, D.L. Advances in studies on genus Cotinus (Tourn.) Mill. Shanxi For. Sci. Technol. 2009, 6, 22-27.

Miao, C.Y,; Li, Y,; Yang, J.; Mao, R.L. Landscape genomics reveal that ecological character determines adaptation: A case study in
smoke tree (Cotinus coggygria Scop.). BMC Evol. Biol. 2017, 17, 202. [CrossRef]

Zhang, M. The Afforestation Construction of the Capital from 1949 to 1976 in the Annals of Beijing Garden Greening. In Proceed-
ings of the 10th Annual Conference on National History, Guangzhou, China, 25 September 2010.

Chen, B.; Adimo, O.A.; Bao, Z.Y. Assessment of aesthetic quality and multiple functions of urban green space from the users
perspective: The case of Hangzhou Flower Garden, China. Landsc. Urban Plan. 2009, 93, 76-82. [CrossRef]

Sacks, O. The Mind'’s Eye; Pan Macmillan: London, UK, 2010.

Daniel, T.C.; Boster, R.S. Measuring Landscape Esthetics: The Scenic Beauty Estimation Method; USDA Forest Service Research Paper
RM-167; USA Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins,
CO, USA, 1976.

Hunziker, M,; Felber, P; Gehring, K.; Buchecker, M.; Bauer, N.; Kienast, F. Evaluation of landscape change by different social
groups. Mt. Res. Dev. 2008, 28, 140-147. [CrossRef]

Lindemann-Matthies, P.; Briegel, R.; Schiipbach, B.; Junge, X. Aesthetic preference for a Swiss alpine landscape: The impact of
different agricultural land-use with different biodiversity. Landsc. Urban Plan. 2010, 98, 99-109. [CrossRef]

Schirpke, U.; Holzler, S.; Leitinger, G.; Bacher, M.; Tappeiner, U.; Tasser, E. Can we model the scenic beauty of an alpine landscape?
Sustainability 2013, 5, 1080-1094. [CrossRef]

Junge, X.; Schiipbach, B.; Walter, T.; Schmid, B.; Lindemann-Matthies, P. Aesthetic quality of agricultural landscape elements in
different seasonal stages in Switzerland. Landsc. Urban Plan. 2015, 133, 67-77. [CrossRef]

Grisham, T. The Delphi technique: A method for testing complex and multifaceted topics. Int. |. Manag. Proj. Bus. 2009, 2, 112-130.
[CrossRef]

Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 140, 1-55.

Buhyoff, G.J.; Wellmann, ].D.; Koch, N.E.; Gauthier, L.].; Hultman, S. Landscape preference metrics: An international comparison.
J. Environ. Manag. 1983, 16, 181-190.

Zube, E.H.; Pitt, D.G.; Anderson, T.W. Perception and prediction of scenic resource values of the Northeast. In Landscape Assessment:
Values, Perceptions, and Resources; Zube, E.H., Brush, R.O., Fabos, J.G., Eds.; Dowden, Hutchinson and Ross: Stroudsburg, France,
1975; pp. 151-167.

Yang, X.X. Forest Landscape Change and Aesthetic Quality Evaluation of Jingouling Forest Farm. Master’s Thesis, Beijing
Forestry University, Beijing, China, 2013.

Cao, Y.J.; Xu, C.Y;; Ren, Y.X,; Li, X.R. Selection of Color Pattern Indices of Scenic Forest Based on Sensitivity Ranks. Sci. Silvae Sin.
2021, 57, 1-12. [CrossRef]

Li, Q.Y,; Du, Y; Liu, Y.; Chen, J.; Zhang, X.J.; Liu, J.C.; Tao, ].P. Canopy gaps improve landscape aesthetic service by promoting
autumn color-leaved tree species diversity and color-leaved patch properties in subalpine forests of southwestern China. Forests
2021, 12, 199. [CrossRef]

Fuente de Val, G.; Atauri, ].A.; de Lucio, J.V. Relationship between landscape visual attributes and spatial pattern indices: A test
study in Mediterranean-climate landscapes. Landsc. Urban Plan. 2006, 77, 393-407. [CrossRef]

Smith, A.R. Color gamut transform pairs. ACM SIGGRAPH Comput. Graph. 1978, 12, 12-19. [CrossRef]

Ji, YL. Research and Application about Robust Image Retrieval Approach Based on Content. Master’s Thesis, Southwest China
Normal University, Chongging, China, 2005.

Chen, X.X; Jia, K.B. Application of three-dimensional quantized colour histogram in colour image retrieval. Comput. Appl. Softw.
2012, 29, 31-32+40. [CrossRef]

Cao, Y.J,; Xu, C.Y,; Cui, Y,; Yue, Y.; Ren, Y.X. Effects of viewing distance and light conditions on the color of Cotinus coggygria var.
cinerea forest landscape. |. Cent. South Univ. For. Technol. 2019, 39, 22-29+48. [CrossRef]

Zhou, Z.H. Machine Learning; Tsinghua University Press: Beijing, China, 2016; pp. 229-232.

Du, Z.F. Multivariate Statistical Analysis; Tsinghua University Press: Beijing, China, 2016; pp. 240-241.

Calabrese, ].M.; Fagan, W.E. A comparison-shopper’s guide to connectivity metrics. Front. Ecol. Environ. 2004, 2, 529-536.
[CrossRef]

Gustafson, E.]. Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1998, 1, 143-156. [CrossRef]
O’Neill, R.V,; Krummel, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; DeAngelis, D.L.; Milne, B.T.; Turner, M.G.; Zygmunt, B.;
Christensen, S.W.; et al. Indices of landscape pattern. Landsc. Ecol. 1988, 1, 153-162. [CrossRef]

Turner, M.G.; Ruscher, C.L. Changes in landscape patterns in Georgia, USA. Landscape Ecol. 1988, 1, 241-251. [CrossRef]

’


http://doi.org/10.1186/s12862-017-1055-3
http://doi.org/10.1016/j.landurbplan.2009.06.001
http://doi.org/10.1659/mrd.0952
http://doi.org/10.1016/j.landurbplan.2010.07.015
http://doi.org/10.3390/su5031080
http://doi.org/10.1016/j.landurbplan.2014.09.010
http://doi.org/10.1108/17538370910930545
http://doi.org/10.11707/j.1001-7488.20210801
http://doi.org/10.3390/f12020199
http://doi.org/10.1016/j.landurbplan.2005.05.003
http://doi.org/10.1145/965139.807361
http://doi.org/10.3969/j.issn.1000-386x.2012.09.008
http://doi.org/10.14067/j.cnki.1673-923x.2019.05.004
http://doi.org/10.1890/1540-9295(2004)002[0529:ACGTCM]2.0.CO;2
http://doi.org/10.1007/s100219900011
http://doi.org/10.1007/BF00162741
http://doi.org/10.1007/BF00157696

Forests 2022, 13, 1996 22 of 22

42.
43.
44.

45.
46.

47.
48.
49.
50.
51.
52.
53.
54.

55.
56.

57.
58.

Crawford, D. Using remotely sensed data in landscape visual quality assessment. Landsc. Urban Plan. 1994, 30, 71-81. [CrossRef]
Palmer, J.E Stability of landscape perceptions in the face of landscape change. Landsc. Urban Plan. 1997, 37, 109-113. [CrossRef]
Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, U. Landscape metrics and indices: An overview of their use in landscape
research. Living Rev. Landsc. Res. 2009, 3, 1. [CrossRef]

Frances, R. Psychologie de L'art et de L'esthétique; Presses Universitaires de France: Paris, France, 1968.

Wohlwill, J.E. Environmental Aesthetics: The Environment as a Source of Affect. In Human Behavior and Environment; Altman, 1.,
Wohlwill, J.E,, Eds.; Plenum Press: New York, USA, 1976; p. 3786.

Hanyu, K. Visual properties and affective appraisals in residential areas after dark. ]J. Environ. Psychol. 1997, 17, 301-315.
[CrossRef]

Stamps, A.E. A paradigm for distinguishing significant from nonsignificant visual impacts: Theory, implementation, case histories.
Environ. Impact. Asses. 1997, 17, 249-293. [CrossRef]

Herzog, T.R.; Shier, R.L. Complexity, age, and building preference. Environ. Behav. 2000, 32, 557-575. [CrossRef]

Kaplan, S.; Kaplan, R. Cognition and Environment: Functioning in An Uncertain World; Preager: New York, NY, USA, 1982.
Herzog, T.R.; Leverich, O.L. Searching for legibility. Environ. Behav. 2003, 35, 459-477. [CrossRef]

Hunziker, M.; Kienast, F. Potential impacts of changing agricultural activities on scenic beauty—A prototypical technique for
automated rapid assessment. Landsc. Ecol. 1999, 14, 161-176. [CrossRef]

Franco, D.; Franco, D.; Mannino, I.; Zanetto, G. The impact of agroforestry networks on scenic beauty estimation: The role of a
landscape ecological network on a socio-cultural process. Landsc. Urban Plan. 2003, 62, 119-138. [CrossRef]

Palmer, J.F. Using spatial metrics to predict scenic perception in a changing landscape: Dennis, Massachusetts. Landsc. Urban Plan.
2004, 69, 201-218. [CrossRef]

Berlyne, D.E. Conflict, Arousal, and Curiosity; McGraw-Hill Book Company: New York, NY, USA, 1960.

Schutte, N.S.; Malouff, ].M. Preference for complexity in natural landscape scenes. Percept. Motor Skill. 1986, 63, 109-110.
[CrossRef]

Scott, A. Assessing public perception of landscape: The LANDMAP experience. Landsc. Res. 2002, 27, 271-295. [CrossRef]
Birkhoff, G.D. Aesthetic Measure; Harvard University Press: Cambridge, UK, 1933.


http://doi.org/10.1016/0169-2046(94)90068-X
http://doi.org/10.1016/S0169-2046(96)00375-1
http://doi.org/10.12942/lrlr-2009-1
http://doi.org/10.1006/jevp.1997.0067
http://doi.org/10.1016/S0195-9255(97)00008-5
http://doi.org/10.1177/00139160021972667
http://doi.org/10.1177/0013916503035004001
http://doi.org/10.1023/A:1008079715913
http://doi.org/10.1016/S0169-2046(02)00127-5
http://doi.org/10.1016/j.landurbplan.2003.08.010
http://doi.org/10.2466/pms.1986.63.1.109
http://doi.org/10.1080/01426390220149520

	Introduction 
	Materials and Methods 
	Study Area 
	Photograph Acquisition 
	Assessment of Visual Quality 
	Color Pattern of Forest Landscape and Metrics Selection 
	Color Quantization and Color Pattern Calculation 
	Mechanisms of Color Patterns on Visual Quality 

	Results 
	Color Patterns of Cotinus coggygria Forest 
	Multiple Correlations between Visual Quality and Color Spatial Pattern Metrics 
	Impacts of Color Patterns on Visual Quality 
	Comprehensive Effects of Spatial Color Pattern on Visual Quality 

	Discussion 
	Pattern Metrics and Visual Attributes 
	Relationship between Pattern Metric and Visual Quality 
	Influence Intensity of Visual Attributes and Optimal Color Pattern 

	Conclusions 
	Appendix A
	Appendix B
	References

