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Abstract: Enzyme activity plays a pivotal role in leaf litter decomposition, but the variations have not
been well addressed in the forest canopy with amounts of leaf litter. Therefore, eight enzymes related
to carbon, nitrogen, and phosphorus mineralization were checked during Castanopsis carlesii leaf litter
decomposition in the forest canopy and on the forest floor from April 2021 to February 2022. The
results displayed that most enzyme activities were lower in the forest canopy compared to the forest
floor during litter decomposition, except for acid phosphatase, polyphenol oxidase, and peroxidase
activities. Moreover, enzyme stoichiometry and enzyme vector features indicated that the microbes
in both habitats were limited by carbon and phosphorus during litter decomposition. Much stronger
carbon limitation was detected on the forest floor, while phosphorus limitation was higher in the
forest canopy. Phosphorus limitation was weakened, but carbon limitation was strengthened in the
forest canopy with leaf litter decomposition. Additionally, the redundancy analysis revealed that air
temperature dominated the variations in enzyme activities during litter decomposition in the forest
canopy, and litter mass-loss rate in each period explained much more dynamics on the forest floor
compared with those in the forest canopy. These results provide new insight into a comprehensive
understanding of litter decomposition in subtropical forests.

Keywords: microbial nutrient limitation; enzyme stoichiometry; forest canopy; forest floor; litter
decomposition; enzyme activity

1. Introduction

A large proportion of leaf litter is often retained in the forest canopy, which makes it
an integral part of the material cycling of the forest ecosystem [1,2]. Enzymes can explain
nearly 85%–90% of litter degradation in various ecosystems [3], making them vital in leaf
litter decomposition [4–6]. Though the dynamic patterns of enzyme activity could provide
critical information for litter decomposition in the forest ecosystem [7,8], it is often ignored
in the forest canopy.

The forest canopy experiences a colossal temperature change, frequent wet and dry
cycles [9], and lower humidity [10] than the forest floor. These harsh conditions could
suppress microbial metabolic activity and affect enzyme activities. Moreover, unlike the
forest floor, the forest canopy represents arid habitats [11], in which fungi and bacteria differ
in density, diversity, and structure, and invertebrate decomposers can be lower [12–14].
Moreover, the nutrient and carbon released from the litter significantly differed in the
forest canopy and floor [15,16]. Due to the comprehensive effect of harsh conditions, low
nutrition sources [17], and diverse decomposer communities [18], enzyme activities are
expected to differ between the forest floor and canopy during leaf litter decomposition.
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However, the related processes are unclear, which dramatically limits the understanding of
the decomposition process of forest litter.

The enzyme vector model [19,20] and enzyme stoichiometry [21,22] could estimate
microbial resource limitations. Environmental facets such as temperature [22], rainfall [23]
and moisture, substrate organic matter and nutrient content, and pH [7,24] have been docu-
mented to be vital in regulating resource availability during the growth of microorganisms
and thus affect microbial resource limitation [25]. The spatial and temporal fluctuations in
different forest microenvironments may significantly modulate microbial availability of
resources through litter decomposition rates and fluxes of nutrients. For instance, the forest
floor is often characterized by frequent microbial–plant interactions and active nutrient
flows. On the contrary, the forest canopy generally has relatively oligotrophic conditions,
with low nutrient transformation [2,26] and microbial activities [18]. In addition, the micro-
bial community structures differ between the forest canopy and forest floor due to habitat
differences, which may affect microbial metabolic patterns. These differences indicated
significant differences in the metabolism of microbial communities between the forest
canopy and forest floor. Herein, we hypothesized that carbon and nutrient limitation of
forest canopy microbial community during litter decomposition was higher than those on
the forest floor.

The subtropical region of China, known as “oases” in desert areas of the same latitude
on the Earth, covers a large forest area with rich biodiversity [27]. In such ecosystems, litter-
trapping litter in the canopy can capture nearly 50% of total litterfall [28] and usually play
a disproportionately important role in nutrient cycling [29]. The complex vertical structure
of the forest canopy changes the community diversity and affects the environment through
biological and nonbiological processes. Enzyme activities may exhibit various patterns
due to the sensitivity of different environmental conditions, subsequently regulating litter
decomposition and material cycling. Hence, leaf litter was collected from the dominant
tree species Castanopsis carlesii. The litterbags method was used to investigate the activities
of eight enzymes related to nutrition degradation during litter decomposition in the forest
canopy and forest floor over one year. We aim to not only elucidate the dynamics of
enzyme activities during the decomposition of Castanopsis carlesii leaf litter in the forest
canopy and forest floor but also to reveal the variations of microbial resource limitation.
The results would provide in-depth insight into material cycling and energy flow of the
forest ecosystem.

2. Materials and Methods
2.1. Study Region

The experiments were carried out at Sanming Forest Ecosystem National Observa-
tion and Research Station (Fujian Province, China, 26◦19’ N, 117◦36’ E). Low mountains
and hills are the primary landscape, with a slope of 25–45◦ and an average elevation of
300 m. The dominant natural vegetation in this area is subtropical evergreen broadleaved
forest. The study area belongs to the maritime subtropical monsoon climate, with annual
mean precipitation of 1610 mm and an annual average temperature of 19.3 ◦C [30]. The
rainfall mainly occurs between February and June (Figure 1). The soils were developed
from granite and can be classified as Hapludults under the Ultisols order according to
the United States Department of Agriculture Soil Taxonomy, with a pH of 4.38 [31,32].
Epiphytes include Araceae, Asclepiadaceae, and Rubiaceae, among which the common
species are Dischidia chinensis, Poths chinensis, and Microsorium fortune [33].
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Figure 1. Dynamics of rainfall and temperature in the sampling site from April 2021 to February 
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leaf litter was placed in a 20 × 20 cm nylon bag with 1 mm mesh. In each of the three 
Castanopsis carlesii plantation forest plots (about 100 m apart), three 3 m × 3 m homogene-
ous quadrats were set as repeated plots. On 28 March 2021, litterbags were placed on the 
forest floor and canopy following standard rules. Firstly, each litterbag should be placed 
at least a 2 cm interval to avoid mutual disturbance during collection. Secondly, three 
sampling sites with uniform tree height and diameter at breast height and similar growth 
states were chosen. Thirdly, litterbags were laid 2–3 m above the ground, which is right 
in the forest canopy. As a result, a total of 72 litterbags (2 plots × 12 sampling dates (a 
whole year) × 3 replicates) were prepared in each habitat.  

From April 2021 to February 2022, three individual litterbags in each plot were ran-
domly retrieved per month. After retrieval, litter leaves were mixed, placed in plastic ice 
bags, and transported to the laboratory. The leaf sample was divided into two parts: par-
tially dry at 70 °C for 48 h to measure leaf mass loss and analyze chemical properties; the 
other part was used to investigate the enzyme activities. At the beginning of the experi-
ment, we set up rainfall buckets and thermohygrometers in the sample plots to measure 
rainfall and temperature. 
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In this paper, the enzyme activities related to carbon, nitrogen, and phosphorus cycle 
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biosidase (CBH), peroxidase (PER), and polyphenol oxidase (PHO) were evaluated; for 
the N cycle, the enzyme activities of L-leucine aminopeptidase (LAP), β-1,4-N-acetylglu-
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Figure 1. Dynamics of rainfall and temperature in the sampling site from April 2021 to February 2022.
The numbers on the x-axis indicate the decomposition time in days after litterbag placement at each
sampling time.

2.2. Experimental Design and Field Sampling

In January 2021, freshly senesced Castanopsis carlesii leaf litter was collected with litter
boxes and then air-dried in the laboratory. Before experimenting, we first surveyed the
yearly cumulative amount of litter per unit area and then loaded the required litter leaves
weight according to the area of litterbags. According to the calculation, 10 g of air-dried leaf
litter was placed in a 20 × 20 cm nylon bag with 1 mm mesh. In each of the three Castanopsis
carlesii plantation forest plots (about 100 m apart), three 3 m × 3 m homogeneous quadrats
were set as repeated plots. On 28 March 2021, litterbags were placed on the forest floor and
canopy following standard rules. Firstly, each litterbag should be placed at least a 2 cm
interval to avoid mutual disturbance during collection. Secondly, three sampling sites with
uniform tree height and diameter at breast height and similar growth states were chosen.
Thirdly, litterbags were laid 2–3 m above the ground, which is right in the forest canopy. As
a result, a total of 72 litterbags (2 plots × 12 sampling dates (a whole year) × 3 replicates)
were prepared in each habitat.

From April 2021 to February 2022, three individual litterbags in each plot were ran-
domly retrieved per month. After retrieval, litter leaves were mixed, placed in plastic
ice bags, and transported to the laboratory. The leaf sample was divided into two parts:
partially dry at 70 ◦C for 48 h to measure leaf mass loss and analyze chemical properties; the
other part was used to investigate the enzyme activities. At the beginning of the experiment,
we set up rainfall buckets and thermohygrometers in the sample plots to measure rainfall
and temperature.

2.3. Measurements of Enzyme Activities

In this paper, the enzyme activities related to carbon, nitrogen, and phosphorus
cycle were studied. For the C cycle, the enzyme activities of β-1,4-glucosidase (βG),
β-D-cellobiosidase (CBH), peroxidase (PER), and polyphenol oxidase (PHO) were evalu-
ated; for the N cycle, the enzyme activities of L-leucine aminopeptidase (LAP), β-1,4-N-
acetylglucosaminidase (NAG), and urease (URE) were measured, and acid phosphatase
(AP) activity was assessed for the P cycle [34,35]. Briefly, litter samples were chopped
into smaller pieces and passed through a 2 mm screen. Phenoloxidase and peroxidase
were measured spectrophotometrically using L-dihydroxyphenylalanine (DOPA) as the
substrate. For phenoloxidase assays, 0.1 g of litter and 5 mM L-DOPA solution (1.2 mL
of acetate buffer for control groups) were mixed in 2 mL centrifuge tubes. For peroxi-
dase activity, samples and controls were prepared similarly, with the addition of 0.6 mL
of 0.3% hydrogen peroxide. All reaction mixtures were incubated at 37 ◦C for 1 h and
centrifuged for 2 min at 5000 rpm. Absorbance was measured at 460 nm using a spec-
trophotometer [36]. Urease activity assays were based on the NH4

+ released when the
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litter homogenization was incubated with 0.5 mL of 10 % urea solution and 1 mL of cit-
ric acid buffer (pH 6.7) at 37 ◦C for 24 h. The released NH4

+ was determined using the
indophenol blue method [37]. Activities of β-D-cellobiosidase, β-1,4-glucosidase, β-1,4-N-
acetylglucosaminidase, and acid phosphatase were determined based on p-nitrophenol
concentration released when the buffer solution was co-cultured with the corresponding
substrate (p-Nitrophenyl-β-D-cellobioside, p-nitrophenyl-N-acetyl-β-D-glucosaminide,
p-nitrophenyl-β-D-glucopyranoside, and p-nitrophenol-phosphate, respectively). A total
of 0.1 g of litter leaf with buffer solution (pH = 5.5) and substrate was incubated for 1 h at
37 ◦C; then, 0.5 M CaCl2 solution and 0.5 M NaOH were added into the mixed incubation
liquids, followed by being thoroughly shaken and filtered; finally, the paranitrophenol
concentration was measured at 410 nm with a spectrophotometer [38–41]. LAP was evalu-
ated by using L-leucine-4-nitroanilide as substrate. The reaction mixture containing 60 µL
L-leucine-p-nitroanilide, and 0.1 g leaf litter was incubated at 30 ◦C for 10 min to measure
at 405 nm [42].

2.4. Analytical Methods and Calculations

Here, we used three methods to study microbial resource limitations. The first was
based on the method of Hill, ln(LAP + NAG):lnAP as the x-axis and lnβG:ln(LAP + NAG)
as the y-axis [43]. This picture can show four different sets of resource limitation, which
is based on the deviation from the expected enzyme ratio of C:N (1:1) or N:P (1:1) [44]. In
the second approach, an lnβG:ln(NAG + LAP) higher than lnβG:lnAP points toward P
limitation or characterizes nitrogen limitation [45]. Vector analysis of enzyme stoichiometry
is the third method [46]. The relatively long vector length represents a stronger carbon
limitation; the angles <45◦ and >45◦ represent the relative degrees of N and P limitation,
respectively [44,45]. The vector length and angle were calculated as follows:

Vector length =

√
[

lnβG
ln(NAG + lAP)

]
2
+

(
lnβG
lnAP

)2
(1)

Vector angle (◦) = Degrees(Atan2(
lnβG
lnAP

), (
lnβG

ln(NAG + LAP)
)) (2)

2.5. Data Analysis

All data were analyzed by software SPSS 26.0 (SPSS Inc., Chicago, IL, USA). Loga-
rithmic transformation of non-normal data to obtain a normal distribution for analysis.
The significant difference in enzyme activity in different habitats at the same sampling
time was examined by the independent-sample t-test. A two-tailed Pearson correlation
test was used to analyze the correlation between enzyme activity, vector length and angle,
enzyme stoichiometry, environmental factors, and mass-loss rate in each period. In order to
further quantify the relative contribution of environmental factors and mass-loss rate on the
enzyme activity, vector length, and angle and enzyme stoichiometry, a redundancy analysis
(RDA) was used for this purpose. The RDA was measured using CANOCO software
(version 5.0, Microcomputer Power, Inc., Ithaca, NY, USA). All the charts were drawn using
OriginPro2021 (Origin Lab Corporation) and GraphPad Prism software version 8.

3. Results
3.1. Dynamics of Enzyme Activities during Litter Decomposition

There were significant differences in enzyme activities between the forest canopy and
forest floor. Compared with the forest floor, the AP activity was significantly higher in
the forest canopy at 119 d and 329 d incubation. AP activities reached a maximum at
155 d incubation at both the forest canopy and forest floor. The activities of βG and NAG
in the forest canopy were significantly lower compared with the forest floor. βG activities
reached a minimum at 28 d incubation, while NAG activities reached a maximum at
252 d incubation. During the incubation of 62 d and 119 d, the activity of URE in the forest
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canopy was significantly higher than those on the forest floor. LAP activities in the forest
canopy were markedly higher than that on the forest floor at 119, 294, and 329 days of
incubation. The activity of PHO and PER at 252 d and 329 d incubation in the forest canopy
was significantly higher compared to the forest floor (Figure 2).
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Figure 2. Dynamics of enzyme activities during leaf litter decomposition in the forest canopy
and forest floor. (a) acid phosphatase activity, (b) β-1,4-glucosidase activity, (c) β-1,4-N-
acetylglucosaminidase activity, (d) β-D-cellobiosidase activity, (e) urease activity, (f) L-leucine
aminopeptidase activity, (g) polyphenol oxidase activity, (h) peroxidase activity. Notes: * indi-
cate significant differences in enzyme activities at each sampling time in different habitats. (p < 0.05 *,
p < 0.01 **, p < 0.001 ***).

3.2. Indicators of Microbial Resource Limitation during Litter Decomposition

The lnβG:ln (NAG + LAP), lnβG:ln AP, and ln(NAG + LAP):lnAP ratios deviated
significantly from 1, indicating microbial investments in C, N, and P are different between
the forest canopy and forest floor. Both forest canopy and forest floor of lnβG:ln(NAG
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+ LAP) ratio reached a maximum at 62 d incubation, but the lnβG:lnAP and ln(NAG +
LAP):lnAP ratio reached a maximum at 184 d incubation (Figure 3). The lnβG:ln(NAG +
LAP) ratio was significantly higher at both the forest canopy and forest floor compared
with lnβG:lnAP, which denoted that microbes at the forest canopy and forest floor were
limited by phosphorus during litter decomposition. Microbes in the forest canopy and
forest floor were limited by phosphorus and carbon during litter decomposition (Figure 4).
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Figure 3. Dynamics of enzyme stoichiometry during the decomposition of leaf litter in the forest
canopy and floor. These were the enzyme C:N, C:P and N:P ratios obtained by calculating ln βG/ln
LAP + NAG (a), ln βG/ln AP (b) and ln(LAP + NAG)/ln AP (c) activity ratios, respectively. Notes:
* indicate significant differences in enzyme stoichiometry at each sampling time in different habitats.
(p < 0.05 *, p < 0.01 **, p < 0.001 ***).
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Figure 4. Carbon and nutrient limitation characterized by enzyme stoichiometry of litter leaves in the
forest canopy and floor. (a,b): by using ln(LAP + NAG): lnAP as the x-axis and lnβG:ln(LAP + NAG)
as the y-axis four different groups of microbial resource limitations (N limitation, P limitation, C and P
limitation and N and P limitation) were categorized;(c,d): when lnβG:ln(LAP + NAG) is higher than
lnβG /lnAP, it denotes P limitation, when smaller it denotes N limitation of microbes; (e,f):changes of
vector length and vector angle were calculated acording to the ratios of the log transformed βG, AP,
NAG and LAP. The relatively long vector length represents a stronger carbon limitation; the angles
<45◦ and >45◦ represent the relative degrees of N and P limitation, respectively.
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According to the indicator vector angle concept, microbes were limited by phosphorus
in two habitats during litter decomposition; microbes in the forest canopy were more
limited by phosphorus than those on the forest floor. Based on the indicators derived from
the vector length, microbes were limited by carbon availability in the forest canopy, and
the limitation was lower than that on the forest floor.

3.3. Driving Factors for Enzyme Activities during the Decomposition of Leaf Litter

Air temperature strongly affects enzyme activities, enzyme stoichiometry, and enzyme
vector features in the forest canopy. Forest floor temperature and litter mass-loss rate
in each period significantly affect enzyme activities, enzyme stoichiometry, and enzyme
vector features on the forest floor (Figure 5). In the forest canopy, the enzyme activities
of LAP were significantly negatively correlated with air temperature, litter mass-loss rate
in each period, and litter nitrogen content; AP, URE, LAP, and PHO enzyme activities
were significantly negatively correlated with air temperature and litter nitrogen content.
We found a significantly negative relationship between the activities of AP and NAG on
the forest floor and air temperature, forest floor temperature, and litter mass-loss rate in
each period. βG enzyme activities were negatively related to litter carbon, nitrogen, and
phosphorus content (Figure 6).
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Figure 5. The redundancy analysis (RDA) for enzyme activity, enzyme stoichiometry, enzyme
vector features, environmental factors, and litter mass-loss rate in each period in the forest
canopy and forest floor. (a) Forest floor, (b) Forest canopy. βG: β-1,4-glucosidase, CBH: β-D-
cellobiosidase, PER: peroxidase, PHO: polyphenol oxidase, LAP: L-leucine aminopeptidase, NAG:
β-1,4-N-acetylglucosaminidase, URE: urease, AP: acid phosphatase; Enzyme C:N, lnβG:ln(NAG +
LAP); Enzyme C:P, lnβG:ln AP; Enzyme N:P, ln(NAG + LAP):ln AP; C: litter carbon content, N: litter
nitrogen content; P: litter phosphorus content.
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4. Discussion

Microbes in the forest canopy have a higher phosphorus limit compared with the
forest floor as our hypothesis. However, microbes on the forest floor are more limited
by carbon than forest canopy, which is contrary to our hypothesis. Enzyme activities in
different habitats showed different responses to environmental factors (Figure 6), which
may lead to further energy and nutrient limits of microbes in different habitats.
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Not all enzyme activities in the forest canopy during leaf litter decomposition are
lower than the forest floor, and exceptions exist. For example, AP, CBH, URE, and LAP in
the forest canopy were higher than those on the forest floor at 119 d incubation. The possible
reason may be less rainfall and relatively higher temperature occurred at 119 d incubation.
Additionally, the climate condition in the forest canopy is more extreme, and is more
vulnerable to wind, sun, and more frequent wet/dry cycles [2]. These harsh conditions may
cause microbial death and enzyme release. Meanwhile, AP, LAP, and PHO in the forest
canopy were higher than the forest floor at 329 d incubation. Compared with the forest
floor, poor nutrient conditions, low nutrient conversion rate, and low microbial activity are
the main characteristics of the forest canopy [2,15,17]. At the same time, the study showed
that the activity of the tested enzymes was significantly negatively correlated with the litter
leaf carbon and nutrient content (Figure 6). With the litter leaf decomposition process, the
nutrients and energy in the litter gradually decrease. When the content of nutrients and
carbon is low, microorganisms should prioritize spending resources to synthesize related
enzymes. Therefore, the enzyme activities of AP, LAP, and PHO in the forest canopy at
329 d incubation were higher than the forest floor.

Scatter plots of enzyme stoichiometry indicated that microbes on the forest floor
and forest canopy were limited mainly by phosphorus or carbon, but rarely by nitrogen
(Figure 3). In this study, the higher vector length on the forest floor indicates that microbes
on the forest floor are subject to greater carbon limitation. When microbes are limited by
carbon or the carbon utilization rate is low, it is essential to produce more enzymes to
maintain a stoichiometric balance [47]. As a result, the activities of βG, CBH, PER, and
PHO on the forest floor are higher than on the forest floor. Compared to the forest floor,
phosphorus limitation on microbes is more significant in the forest canopy. This could be
attributed to lower phosphorus concentrations in the forest canopy. Compared with the
forest floor, the source of phosphorus in the forest canopy is relatively small, mainly from
the decomposition of litter leaves and throughfall, while a large part of the phosphorus
source on the forest floor comes from rock. A previous study proved that rock contributes
45% of the new phosphorus [48], which is inaccessible in the forest canopy. Additionally,
phosphorus usually exists in the organic form in the subtropical regions, and is easily fixed
by iron and aluminum substances into complexes, which are difficult to use.

The influencing factors of enzyme stoichiometry in various habitats are different.
Previous studies have shown that enzyme stoichiometry is greatly affected by the environ-
ment and litter leaf nutrient status [49–51]. This study revealed that soil moisture content
strongly affected microbial phosphorus limitation on the forest floor. The result shows
that high soil water content can promote microbial metabolism, thereby increasing the
microbes’ demand for phosphorus sources. In addition, soil moisture changes will affect
the transportation and availability of nutrients [52], which will intensify or mitigate the
competition for nutrients between plants and microbes in the microenvironment. Litter
leaf nitrogen and carbon contents might largely impact enzyme C:N. Our results were
consistent with the stoichiometry study of enzyme activity in northern China [53]. Data
showed that the microbial carbon limitation of the forest canopy was altered with the
change in litter phosphorus content and litter mass-loss rate in each period (Figure 6). This
indicated that litter phosphorus content and mass-loss rate in each period are the main
factors for microbial nutrient and carbon limitation. Similar results have been found in
the enzymatic chemometrics of vegetation restoration in China [54]. The nutrient release
of litter in the forest canopy is significantly slower than that in the forest floor [2], which
may be one of the reasons why nutrients and energy limit canopy microbes. In addition,
water availability in the forest canopy may be another critical factor for microbial carbon
and nutrient limitation. The canopy litter is more directly exposed to the sun, and the
frequent drying events lower the forest canopy water availability [10]. Water availability
would affect the microbial activities in litter leaf, thus affecting the acquisition of microbial
carbon and nutrients [55]. Our results stated that the microbial phosphorus limitation
was negatively correlated with the microbial carbon limitation, which indicates microbial
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communities can maintain stable internal nutrient balance during carbon and nutrient
metabolism and is consistent with previous studies [56].

Enzymes are the basic driving force for decomposition [57]. The present study found
that enzyme activities and litter mass-loss rate in each period were not well correlated in
the forest canopy. However, this result is not entirely surprising. Soluble compounds in
litter by leaching can increase mass-loss rate rather than enzyme activity [58]. Many factors,
such as litter soluble compounds and polyphenols, can change enzyme activities after the
enzymes are produced [59,60]. For example, polyphenols in litter can combine with protein
and reduce enzyme activity [61]. Another consideration is that the chemical and physical
properties of the litter may have a more significant impact on leaf litter mass loss than
enzyme activity [57].

5. Conclusions

In conclusion, the enzyme activity in the decomposition process of the subtropical
forest canopy is relatively low compared with the forest floor. According to enzyme
stoichiometry, carbon and phosphorus both limited microbial nutrients in two habitats.
Furthermore, phosphorus limitation was more robust in the forest canopy, while carbon
limitation was lower. Air temperature dominated the changes in enzyme activities. The
observations here will provide a new in-depth understanding of litter decomposition and
enzyme activities in subtropical forest ecosystems.
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