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Abstract: The occurrence and spread of forest fires are the result of the interaction of many factors.
In cross-border areas, different fire management systems may lead to different forest fire driving
factors. A comparative analysis of the forest fire driving factors in different countries can help to
provide ideas for fire prevention and control. In this study, based on the logistic regression (LR)
model and standardized coefficients, we determined the relative impact of forest fire driving factors
in different countries, in the cross-border area between China, North Korea and Russia from 2001 to
2020, and established a forest fire probability and fire risk level division using a Kriging interpolation.
The results show that the climate is the most important factor affecting the probability of forest
fires in the cross-border area, followed by the topography and vegetation factors; human activities
have the least influence. From a country-by-country perspective, the forest fires on the Chinese side
were more affected by humans than on the North Korean and Russian sides and they were mainly
concentrated in areas with a low altitude and high population density. The forest fires on the North
Korean side and the Russian side were more affected by nature than on the Chinese side and were
mainly concentrated in areas with a low altitude, high temperature and little rainfall. The high-risk
areas for forest fires were mostly concentrated near the border between China, North Korea and
Russia, where transboundary fires pose a great threat to forest resources and rare animals. This study
shows that there is a significant difference between the impact of different forest fire management
systems on fire conditions, and that active forest fire control policies can effectively reduce the damage
caused by forest fires. Due to the complexity of the geopolitics in cross-border areas, transboundary
firefighting faces certain difficulties. In the future, it will be necessary to strengthen the cooperation
between countries and establish transboundary joint defenses against forest fires in order to protect
the declining forest resources and the habitats of rare animals.

Keywords: forest fire occurrence drivers; logistic regression; forest fire prediction model; fire risk
zones; cross-border area

1. Introduction

Fire is an important ecological factor in forest ecosystems and appropriate forest fire
has a positive impact on the regeneration and succession of tree species [1]; however, large-
scale forest fires can destroy the forest structure and environment [2,3], damage wildlife
and their habitats [4,5], reduce the biodiversity of forest ecosystems [6], and threaten the
safety of human life and property [7,8]. In recent years, factors such as an increase in
extreme climate conditions and population growth have led to an increase in the incidence
of forest fires in different parts of the world to varying degrees [9,10], and the threat of
fire to forest ecosystems has become more serious [11,12]. Therefore, exploring the driving
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factors of forest fires and establishing effective forest fire prediction models can provide
beneficial assistance for forest fire management.

Previous studies have shown that the occurrence and spread of forest fires is a re-
sult of the interaction of many factors [13,14], which can be roughly divided into the
following categories: climate, vegetation, topography and human activities [15–18]. In
high-temperature, dry and windy weather, the moisture content of combustibles is low, and
their own temperature is high, so that little energy is required to reach an ignition point,
which greatly increases the risk of forest fires [19]. Therefore, various weather indicators
are often used to infer the risk index of forest fires, such as Canada’s forest weather index
(FWI) and Australia’s forest fire danger index (FFDI), which are widely used around the
world to measure the risk of forest fires [20,21]. The topography affects the local climate
and the composition and spatial distribution of combustibles, resulting in different fire
environments [22], while combustible vegetation provides the material basis for the oc-
currence of forest fire [23]. The state and load of the combustibles directly affect whether
forest fires can occur and the speed of spread after they occur [24,25]. Moreover, human
activities may cause fires to ignite. In most parts of the world, forest fires are mainly caused
by human-made sources of ignition [26]. At the same time, human activity plays a major
role in firefighting; for example, man-made roads may hinder the spread of fire and act as
channels for firefighting [27].

In order to increase the adaptability of forest ecosystems and humans against forest
fires, many researchers have conducted studies on the driving factors of forest fires around
the world [15,18,23,28,29]. However, most studies have been conducted independently
within a single country or region, and there has been a lack of comparability among
these studies due to inconsistencies in the data sources, analytical methods and study
scales. The effects of forest fire drivers in different regions may be diametrically opposed,
due to the complexity of forest ecosystems and the widespread spatial heterogeneity of
various geographical elements [30]. Particularly in transboundary regions, different fire
management systems lead to different fire paths. For example, due to the different fire
control policies and residents’ lifestyles in different countries, different fire regimes are in
place where there are similar forest tree species and climatic conditions [31]. Therefore, it
is crucial to use a unified data source and statistical method to compare the differences in
the forest fire drivers in different countries in cross-border regions, as this can help us to
understand the impact of different fire management regimes and how fire drivers affect the
fire occurrence in different political and socio-economic contexts.

According to previous studies, wildfires are common natural disturbances in the
Northeast Asia forest region [32,33]. Due to the particularity of the geopolitics in cross-
border areas, once a forest fire occurs, it is difficult for countries to implement cross-border
cooperation in terms of their fire management, and it is difficult to control the fire in a timely
and effective manner, which makes the fire more likely to threaten the local forest resources
and residents. Since the catastrophic forest fire in the Greater Khingan Mountains in China
in 1987, which resulted in serious losses of natural resources and human security [34],
China has strengthened the control of forest fires in various ways, including through the
prevention of border fires. However, with the increase in forest fire incidents worldwide
and the complexity that exists within the cross-border areas [9,10], it is more urgent for us
to explore the driving mechanisms of forest fires in those cross-border areas, and to classify
the forest fire risks in these areas, so as to provide assistance for the next steps of forest fire
prevention and control.

Taking the above factors into consideration, we selected the cross-border area between
China, North Korea and Russia as the study area, and established a forest fire probability
prediction model, aiming to analyze the relative impact of forest fire drivers on different
countries in order to facilitate the development of forest fire risk-assessment and manage-
ment strategies in the region. The specific goals were as follows: (1) to select different
climatic conditions, terrains, vegetation and human activity driving-factors based on the
logistic regression (LR) model to establish a forest fire probability prediction model, and to
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explore the applicability of the model in Northeast Asia; (2) to analyze and compare the
relative influence of different national forest fire driving-factors on forest fire occurrence;
(3) to establish the forest fire occurrence probability and fire risk level in the cross-border
areas, and provide suggestions for forest fire management in these areas.

2. Materials and Methods
2.1. Study Area

The cross-border areas between China, North Korea and Russia include northeastern
China, northern North Korea and the Russian Far East, at 40◦01′ N–51◦26′ N, 125◦16′

E–140◦41′ E, with a total area of 540,000 square kilometers (Figure 1). The central part of
this region contains the Sanjiang Plain and the Muling–Xingkai Plain, with a lower terrain;
the Sikhote-Alin Mountains are on the eastern side and the Changbai Mountains are on
the southern side, with a higher terrain. The whole region is in a temperate monsoon
climate zone, with the same periods of rain and heat. The eastern water vapor from the
Sea of Japan is blocked by the mountains; therefore, the precipitation shows longitudinal
zonal differences on the eastern and western sides, and the temperature shows latitudinal
zonal differences on the northern and southern sides (Table 1). The population is unevenly
distributed, and is mainly concentrated on the Chinese and North Korean sides (Table 1).
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The study area is rich in forest resources, with a forest coverage rate of nearly 70%, of
mostly coniferous forest and mixed coniferous–broadleaved forest. The main tree species
include larch (Larix gmelinii Rupr. Kuzen.), Korean pine (Pinus koraiensis Sieb. et Zucc.), fish
scale spruce (Picea jezoensis var. microsperma), birch (Betula platyphylla Suk.) and Mongolian
oak (Quercus mongolica Fisch. ex Ledeb.). The area is also the habitat of many rare animals
and endangered animals such as the Amur tiger (Panthera tigris ssp. altaica) and Amur
leopard (Panthera pardus orientalis). In recent years, with climate change and intensified
human activities, forest fires have occurred frequently in the region [35]. In terms of
the spatial distribution of forest fires, there are obvious differences between the different
countries. According to the MOD14A1 monitoring results, the fire rate on the Russian side
is much higher than that in China and North Korea. This is partly due to Russia’s more
passive forest fire management [36], and partly due to the fact that Russia is so sparsely
populated that many fires occur in unpopulated areas [33].

Table 1. Basic conditions of different countries in the study area.

Area Natural Conditions Human Conditions and Forest Fire
Management System Fire Regime

Chinese side

The total area is 150,000 square
kilometers, and the forest coverage rate
is 55%. The terrain is low in the north
and high in the south, with an average

elevation of 450 m. The area has a
temperate humid and semi-humid
continental monsoon climate. The
average temperature in January is

between −21 ◦C and −18 ◦C, and the
average temperature in July is between

21 ◦C and 22 ◦C. The annual
precipitation is 500–650 mm.

The total population is approximately
4.7 million. When fighting large-scale

forest fires, China generally uses
firefighting aircraft to create artificial
rain or to spray chemical agents, and
cooperate with ground-based forest

firefighting forces to carry out
ground–air integrated firefighting [37].
For high-risk areas of fire, manpower is

deployed in advance, and protective
forest belts are built to prevent the

spread of wildfires.

According to the
monitoring results of

MOD14A1, a total of 4001
forest fires occurred in the

fire season
(March–November) from

2001 to 2020.

North Korean
side

The total area is 48,500 square
kilometers, and the forest coverage rate
is 78%. The overall terrain is high, with
an average elevation of 920 m. The area
has a temperate monsoon climate. The
annual average temperature is between
2 ◦C and 5 ◦C. The annual precipitation

is 650–700 mm.

The total population is approximately
4.3 million. To date, most of North
Korea’s firefighting has been with

manpower. Under the mobilization of
the government, the general public
actively participate in firefighting;

however, due to the lack of modern
firefighting facilities, this often requires

significant manpower [38].

According to the
monitoring results of

MOD14A1, a total of 8143
forest fires occurred in the

fire season
(March–November) from

2001 to 2020.

Russian side

The total area is 348,000 square
kilometers, and the forest coverage rate

is 72%. The terrain is high in the east
and low in the west, with an average

elevation of 420 m. The area has a
temperate oceanic monsoon climate.

The average temperature in January is
between −30 ◦C and −12 ◦C, and the

average temperature in July is between
14 ◦C and 21 ◦C. The annual
precipitation is 600–900 mm.

The total population is approximately
2.5 million. Russia abolished the

national forest protection system after
introducing a new Forest Code in 2007,

and also takes a negative attitude
towards wildfires in forest areas where
people are scarce and difficult to reach

[36].

According to the
monitoring results of
MOD14A1, a total of

87,543 forest fires occurred
in the fire season

(March–November) from
2001 to 2020.

2.2. Overarching Study Design

First, we used satellite monitoring data and land use data to extract fire points in the
forest area within the study area, and we used ArcGIS 10.8 to randomly create a corre-
sponding number of non-fire points in the unburned area, extract the climatic, topographic,
vegetation and human activity factors at the corresponding time and place, and establish a
forest fire and fire environment database in the study area (all data sources are detailed
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in Section 2.3.). Secondly, LR was performed on the three different countries in the study
area to establish the forest fire probability prediction model, and to ensure that the sample
size and data sources of the different countries participating in the model fitting were
consistent. Thirdly, according to the partially standardized logistic regression coefficients,
we compared and analyzed the relative importance of the driving factors of forest fires in
the different countries. Finally, according to the prediction value of the forest fire probabil-
ity prediction model, we constructed the spatial distribution of the forest fire occurrence
probability and the division of the fire danger level, and we put forward the key points of
forest fire prevention and control for the future. The overall technology roadmap is shown
in Figure 2.
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2.3. Data Source and Processing
2.3.1. Fire Point Data Extraction and the Creation of Random Points

The fire point data were based on the 1 km resolution MODIS vegetation fire data
product, MOD14A1, from 2001 to 2020 (https://ladsweb.nascom.nasa.gov/, accessed on
22 September 2022), combined with the 30 m resolution land use data provided by the
GlobeLand30: Global Geo-information Public Product (http://www.globallandcover.com/,
accessed on 22 September 2022), to extract the fire point information for the fire season
(March–November) within the forest range of the study area. A total of 99,687 fire points
were extracted, including 4001 on the Chinese side, 8143 on the North Korean side, and
87,543 on the Russian side.

The dependent variable required for the modeling of the LR was a binary variable.
Since this study was a comparative study of the driving factors of forest fires in different
countries, 4000 fire points were taken as the total fire point sample from each country
randomly. Using ArcGIS 10.8, we randomly selected points within the study area as non-

https://ladsweb.nascom.nasa.gov/
http://www.globallandcover.com/
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fire points. Since the resolution of the MODIS vegetation fire data is 1 km, we used the land
use data and a buffer 1 km away from a fire point to remove the non-fire points outside of
the forest range and less than 1 km away from the fire point [17]. We randomly selected
6000 non-fire points that were 1.5 times the size of the fire point in each country as the total
non-fire point samples [15], and then used the “RANDBETWEEN” function of Microsoft
Excel 2019 to assign random dates within the fire season to the non-fire points, to ensure a
randomness in both time and space.

2.3.2. Driving Factors

In this study, a total of 12 variables, including climate, topography, vegetation, and
human activities, were selected as the driving factors affecting the occurrence of forest fires.
The specific description of each variable and the data source are shown in Table 2.

Table 2. Overview of independent variables used in the construction of forest fire prediction models.

Variable
Type Variable Name Code Resolution

/Scale Source

Climatic

Mean daily air
temperature at sigma level

995
Temp 2.5◦/◦C

NCEP-NCAR Reanalysis 1 data and CPC Global Unified
Gauge-Based Analysis of Daily Precipitation data were
provided by the NOAA Physical Sciences Laboratory,

Boulder, CO, USA
(https://psl.noaa.gov/,

accessed on 22 September 2022).

Mean daily relative
humidity at sigma level

995
Rhum 2.5◦/%

Mean daily wind velocity
at sigma level 995 Wind 2.5◦/m/s

Daily total of precipitation Pre 0.5◦/mm

Topographic Elevation Elev 30 m/m

ASTER GDEM was provided by the Geospatial Data Cloud
site, Computer Network Information Center, Chinese

Academy of Sciences
(http://www.gscloud.cn/,

accessed on 22 September 2022).Slope Slope 30 m/◦

Vegetation

Monthly Enhanced
Vegetation Index EVI 1 km

MOD13A3—MODIS/Terra Vegetation Indices Monthly L3
Global 1 km SIN Grid dataset was acquired from the Level-1

and Atmosphere Archive & Distribution System (LAADS)
Distributed Active Archive Center (DAAC), located in the

Goddard Space Flight Center in Greenbelt, Maryland
(https://ladsweb.nascom.nasa.gov/,

accessed on 22 September 2022).
Annual Fractional
Vegetation Cover FVC 1 km/%

Human
activity

Distance from the nearest
road Dis_road km

Global road and building dataset was provided by the
OpenStreetMap Foundation

(http://download.geofabrik.de/,
accessed on 22 September 2022).Distance from the nearest

railway Dis_railway km

Distance from the nearest
building Dis_building km

Density of population POP 100 m/number

Global population dataset was provided by the
WorldPOP Hub

(https://hub.worldpop.org/,
accessed on 22 September 2022).

Climatic Factors

The climatic factors include the daily average temperature, daily average relative
humidity, daily average wind speed, and daily cumulative precipitation, and the data
were derived from the gridded climatic dataset provided by the National Oceanic and
Atmospheric Administration Physical Sciences Laboratory (Table 2). The daily average
temperature, daily average relative humidity, and daily average wind speed were derived
from the 2.5◦ × 2.5◦ resolution NCEP/NCAR Reanalysis 1 dataset [39], and the daily
cumulative precipitation was derived from the 0.5◦ × 0.5◦ resolution CPC Global Unified
Gauge-Based Analysis dataset [40].

MATLAB R2021a was used to read each gridded meteorological dataset, and extract
the daily values corresponding to all the sample points in the dataset according to the

https://psl.noaa.gov/
http://www.gscloud.cn/
https://ladsweb.nascom.nasa.gov/
http://download.geofabrik.de/
https://hub.worldpop.org/
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spatial and temporal information of the sample points. The daily average wind speed was
calculated based on the daily average U-wind and daily average V-wind.

Topographic Factors

Topographic factors include the elevation and slope. The elevation data were taken
from the ASTER GDEM 30 M resolution digital elevation data provided by the Geospatial
Data Cloud (Table 2), using the 3D analysis tool of ArcGIS 10.8 to generate the slope raster
data, and then using the extraction tools to extract the elevation and slope corresponding
to the sample points.

Vegetation Factors

In this study, the enhanced vegetation index (EVI) and fractional vegetation cover
(FVC) were selected as the initial vegetation variables affecting the occurrence of forest
fires. EVI is an important index used to characterize forest vegetation coverage, which
addresses the problem of an easy saturation of the normalized difference vegetation index
(NDVI), and effectively reduces atmospheric and soil background noise [41]. The FVC is
the percentage of the vertical projected area of the canopy or branch area of the vegetation
in the unit area, and is used to characterize the total amount of live and dead combustibles
above the surface [42]. We estimated the FVC based on the EVI using a pixel dichotomy
model [43]; the formula is as follows:

FVC =
EVI− EVIsoil

EVIveg− EVIsoil
(1)

where EVIsoil is the EVI value of pure soil pixels and EVIveg is the EVI value of pure
vegetation pixels. Affected by the vegetation growth conditions and vegetation types, the
EVI values of remote sensing images in different periods will vary over time and space;
therefore, it is not advisable to use uniform EVIsoil and EVIveg in the pixel dichotomous
model [42]. Usually, the minimum and maximum values within the confidence interval are
used to assign values [44]. In this study, a 2%–98% confidence interval was used to estimate
the FVC in this area.

The EVI data were taken from the MOD13A3 product, which provides a monthly
sinusoidal projection grid product with a resolution of 1 km (Table 2). Using the MODIS
Reprojection Tool (MRT) to extract and reproject the EVI bands in MOD13A3, a monthly
EVI raster map was obtained. Using the maximum value composite tool in ENVI 5.3, the
maximum EVI value of each year was obtained. We used the compute statistics tool to
determine the confidence interval and obtain the values of the EVIsoil and EVIveg; then, we
used the band math tool to calculate the interannual FVC. Finally, we used ArcGIS 10.8 to
extract the monthly EVI and annual FVC corresponding to the sample points.

Human Activity Factors

Human activity factors include the distance from the nearest railway, distance from
the nearest road, distance from the nearest buildings and the population density. Among
these, the railway, road and building vector data were obtained from Open Street Map
(Table 2). The population data were obtained from the annual population counts provided
by World POP (Table 2), with a precision of 100 m.

Using the ArcGIS 10.8 proximity toolset, the distance from a railway, distance from a
road and distance from buildings were calculated for each sample point, and the extraction
tools were used to extract the population density corresponding to the sample point.

2.4. Methodology
2.4.1. Logistic Regression Model

LR models are commonly used to describe the relationship between a binary depen-
dent variable (0 or 1) and one or more independent variables. As a forest fire probability
prediction model, LR has been widely used internationally to analyze the driving factors
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of forest fires [15–17,28,29]. In this study, the probability of the occurrence of a forest fire
(y = 1) was set as P, and the probability of no occurrence of a forest fire (y = 0) was set
as (1 − P); then, the LR between the probability of the occurrence of a forest fire and the
respective variables could be established:

logit(P) = ln
(

P
1 − P

)
= α0+α1x1+α2x2+ . . . + αnxn (2)

where P is the probability of an occurrence of a forest fire, (x1, x2, . . . , xn) denotes the inde-
pendent variable that affects the occurrence of a forest fire, n is the number of independent
variables and (α1, α2, . . . , αn) is the LR correlation coefficient of each independent variable.

2.4.2. Model Variable Selection

Multicollinearity refers to the precise correlation or a high correlation between different
independent variables in the linear regression model, which leads to a distortion of the
model prediction and a loss in significance of the variable significance tests [45]. In this
study, the variance inflation factor (VIF) was used to test the independent variables in the
model to exclude those variables with a significant collinearity. Most studies assume that
when VIF > 10, there is significant collinearity between the independent variables [46], and
the variables with a significant collinearity were excluded based on this standard.

In this study, 80% of the total sample dataset of the three countries (i.e., 10,000 sample
points in each country) were used as the modeling samples of the country, and 20% were
used as the independent test samples. A total of 70% of the modeling samples of each
country were used as the training samples, and 30% were used as the validation samples.
In order to reduce the influence of the randomness in the sample partitioning on the model
parameter selection, this process was repeated five times. A total of 15 subsample datasets
from the 3 countries were obtained, and each subsample dataset included a training sample
dataset and a validation sample dataset. The LR model was fitted to each training sample
of the three countries by a stepwise regression, and the validation samples were used for
verification. The variables with at least 3 significant correlations (α < 0.05) were selected
from the 5 intermediate models in each country to perform an optimal model fitting on their
modeling data. Finally, the optimal model was independently verified using independent
test samples from each country.

2.4.3. Prediction Accuracy of the Models

In this study, the value of the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve was used to verify the accuracy of the model fitting. In recent
years, many studies at home and abroad have used this method to judge the goodness-of-fit
of the binary classification model [47]. Typically, AUC values range from 0.5 to 1.0, with a
larger AUC representing a better performance, and an AUC > 0.8 indicating that the model
has a good predictive ability.

Many previous studies have used the system default of 0.5 as the cut-off value for the
binary classification model, so as to classify the predicted probability of the model [48].
However, an increasing number of studies have suggested that, in a binary model with
an uneven number of positive and negative samples, such as in a forest fire probability
prediction model, the sample size without fire must be larger than the sample size with fire
to conform to the reality, and using a default value of 0.5 will greatly reduce the prediction
accuracy of fire events [49]. In order to solve this problem, in recent years, most scholars
have calculated the Youden index (i.e., sensitivity coefficient + specificity coefficient − 1)
based on the sensitivity and specificity index in the ROC curve to determine the optimal
cut-off value of the LR model [50]. If the predicted value of the model is higher than the
cut-off value, it is judged that a forest fire will occur, and if it is lower than the cut-off value,
it is judged that no forest fire will occur. At the same time, the prediction accuracy of each
training sample, validation sample, modeling sample and independent test sample dataset
is calculated according to the actual value of each sample point.
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2.4.4. Evaluating the Relative Importance of the Driving Factors

The standardized regression coefficient refers to the regression coefficient obtained
after standardizing the independent variable and dependent variable at the same time. It is
used to compare the effect of different independent variables on the dependent variable
after eliminating the influence of differences in the dimension and magnitude of the
data. We used partially-standardized logistic regression coefficients to assess the relative
importance of each variable to the forest fire occurrence. The greater the absolute value
of the partially-standardized logistic regression coefficient, the greater the change in the
predicted probability of a forest fire when the independent variable changes by one standard
deviation and the other independent variables remain unchanged [51]. The calculation
method of the partially-standardized logistic regression coefficient proposed by Menard
was used [52]:

b∗SAS = (b)(s X)/(π/
√

3) = (b)(s X)/1.8138 (3)

where b is the unstandardized logistic regression coefficient and sX is the sample standard
deviation of the independent variable X.

2.4.5. Generation of a Forest Fire Occurrence Probability Map and Fire Risk Classification

The LR model was used to calculate the fire occurrence probability of the fire points
and the non-fire points in the study area, the Kriging interpolation method was used to
interpolate the spatial distribution of the forest fire occurrence probability in the study
area, and a spatial distribution map of the forest fire occurrence probability was obtained.
According to the current status of domestic and international research, the fire risk level of
the study area was divided by the optimal cut-off value of the LR model and 0.5 [15]. The
area with the probability of a forest fire occurrence less than the cut-off value was classified
as a low-fire-risk area, the area with the probability of a forest fire occurrence between the
cut-off value and 0.5 was classified as a medium-fire-risk area, and the area with a forest
fire probability greater than 0.5 was classified as a high-fire-risk area, demonstrating the
forest fire risk level division of the study area.

3. Results
3.1. Fitting Results of the Forest Fire Occurrence Probability Prediction Model
3.1.1. Multicollinearity Test Results

After the multicollinearity test, the VIF values of all of the initial variables in the
three countries were less than 10, and there was no multicollinearity among the variables;
therefore, the next step of the model fitting could be performed. The multicollinearity test
results are shown in Table 3.

Table 3. The results of multicollinearity diagnosis.

Initial Variable
VIF

China North Korea Russia

Temp 2.265 1.929 1.827
Rhum 1.181 1.383 1.358
Wind 1.053 1.167 1.059
Pre 1.213 1.146 1.146
Elev 1.187 1.286 2.449
Slope 1.113 1.039 1.428
EVI 2.513 2.188 1.964
FVC 1.170 1.150 1.869

Dis_road 1.243 1.364 1.645
Dis_railway 1.224 1.108 1.776
Dis_building 1.375 1.309 2.471

POP 1.034 1.147 1.039
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3.1.2. Model Parameter Fitting Results

The LR model fitting was performed using SPSS 25.0 software for the training samples
in five subsamples for each country. Stepwise regression was used to remove the insignifi-
cant variables, and five intermediate models were obtained. Variables with three or more
significant correlations (α < 0.05) in the five intermediate models were chosen to enter the
final fitting of the modeling samples. The fitting results are shown in Table 4.

Table 4. The fitting results of the final model parameters of LR in different countries.

Variable Country Significant
Correlation Times

Parameter Estimation

Coefficient Standard Error Wald Chi-Squared
Value Significance

Temp
China 5 0.0795 0.0053 223.4483 <0.0001

North Korea 5 0.1338 0.0061 475.5498 <0.0001
Russia 5 0.0961 0.0052 342.3678 <0.0001

Rhum
China 5 −4.3544 0.2788 243.9326 <0.0001

North Korea 5 −8.0400 0.2708 881.2861 <0.0001
Russia 5 −7.2572 0.3468 438.0091 <0.0001

Wind
China 0 / / / /

North Korea 5 0.0648 0.0145 19.9621 <0.0001
Russia 3 0.0328 0.0151 4.7469 0.0294

Pre
China 5 −0.3008 0.0312 93.2182 <0.0001

North Korea 5 −0.5385 0.0546 97.2522 <0.0001
Russia 5 −1.0631 0.0890 142.7199 <0.0001

Elev
China 5 −0.0055 0.0002 1310.0693 <0.0001

North Korea 5 −0.0014 <0.0001 308.1419 <0.0001
Russia 5 −0.0039 0.0002 446.3535 <0.0001

Slope
China 5 −0.0501 0.0049 105.7375 <0.0001

North Korea 0 / / / /
Russia 1 / / / /

EVI
China 5 −0.0005 <0.0001 384.4244 <0.0001

North Korea 5 −0.0008 <0.0001 727.9396 <0.0001
Russia 5 −0.0007 <0.0001 537.2400 <0.0001

FVC
China 3 −0.5526 0.2285 5.8515 0.0156

North Korea 3 0.4519 0.1873 5.8202 0.0158
Russia 5 −0.7643 0.1749 19.1006 <0.0001

Dis_road
China 0 / / / /

North Korea 4 −0.0996 0.0227 19.2222 <0.0001
Russia 4 0.0229 0.0063 13.2112 0.0003

Dis_railway
China 0 / / / /

North Korea 0 / / / /
Russia 5 −0.0063 0.0008 64.2092 <0.0001

Dis_building
China 4 −0.0098 0.0034 8.5992 0.0034

North Korea 3 0.0398 0.0122 10.6846 0.0011
Russia 3 −0.0082 0.0038 4.5439 0.0330

POP
China 5 0.2011 0.0495 16.5201 <0.0001

North Korea 5 −0.4052 0.0783 26.7928 <0.0001
Russia 2 / / / /

Constant
China / 7.4033 0.2974 619.5687 <0.0001

North Korea / 6.8816 0.2683 657.8327 <0.0001
Russia / 8.9320 0.3580 622.3646 <0.0001

Note: The number of significant correlation times refers to the number of times the variable is significantly
correlated across the five intermediate models. Variables with significant correlation times less than 3 did not
enter the final model fit; therefore, there is no parameter estimate for the final model.
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The results show that, with the exception of the three variables of the daily average
wind speed, distance from a road, and distance from a railway on the Chinese side, all
the other variables entered the final model fitting. The daily average temperature and
population density were positively correlated with the probability of a forest fire; the daily
average relative humidity, daily cumulative precipitation, elevation, slope, EVI, FVC and
distance from buildings were negatively correlated with the probability of a forest fire.
With the exception of the two variables of the slope and distance from a railway on the
North Korean side, all the other variables entered the final model fitting. The daily average
temperature, daily average wind speed, FVC and distance from buildings were positively
correlated with the probability of a forest fire; the daily average relative humidity, daily
cumulative precipitation, elevation, EVI, distance from a highway, and population density
were negatively correlated with the probability of a forest fire. With the exception of the two
variables of the slope and population density on the Russian side, all the other variables
entered the final model fitting. The daily average temperature, daily average wind speed
and distance from a highway were positively correlated with the probability of a forest fire;
the daily average relative humidity, daily cumulative precipitation, elevation, EVI, FVC,
distance from a railway and distance from buildings were negatively correlated with the
probability of a forest fire.

3.1.3. Model Prediction Accuracy Results

The sensitivity and specificity indices of each intermediate model and the final model
were obtained using the ROC curve, and the optimal cut-off value for each model was
calculated. The goodness-of-fit for each model was evaluated according to the AUC, and
the prediction accuracy of each intermediate model was calculated using the validation
samples in each subsample, as shown in Table 5. The AUC values of each intermediate
model on the Chinese side were between 0.9136 and 0.9166, the model prediction accuracy
was between 83.44% and 85.79%, and the AUC value of the final model was 0.9132. The
AUC values of the intermediate models on the North Korean side were between 0.8956 and
0.9006, the model prediction accuracy was between 79.88% and 82.08%, and the AUC value
of the final model was 0.8973. The AUC values of the intermediate models on the Russian
side were between 0.9092 and 0.9217, the model prediction accuracy was between 83.85%
and 85.79%, and the AUC value of the final model was 0.9153. The independent test results
of the final model of the independent test samples from the different countries are shown
in Table 6.

Table 5. Comparison of goodness-of-fit and prediction accuracy of LR models in different countries.

Sample Country Cut-Off AUC Value
Prediction Accuracy (%)

Training Validation

Sample 1
China 0.4885 0.9141 85.79 84.81

North Korea 0.4116 0.9003 82.08 80.19
Russia 0.4567 0.9092 83.85 85.59

Sample 2
China 0.4414 0.9155 85.44 84.06

North Korea 0.3675 0.9001 81.31 79.88
Russia 0.4726 0.9217 85.79 83.91

Sample 3
China 0.3734 0.9166 84.48 83.44

North Korea 0.4030 0.8956 81.21 81.59
Russia 0.4835 0.9106 84.71 85.47
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Table 5. Cont.

Sample Country Cut-Off AUC Value
Prediction Accuracy (%)

Training Validation

Sample 4
China 0.4045 0.9163 84.88 83.91

North Korea 0.3911 0.9006 81.63 81.59
Russia 0.5276 0.9183 85.69 84.84

Sample 5
China 0.4267 0.9136 85.21 84.19

North Korea 0.3909 0.9006 81.63 80.50
Russia 0.4098 0.9121 83.85 84.97

Modeling
sample

China 0.4273 0.9132
North Korea 0.3834 0.8973

Russia 0.4867 0.9153
Note: For the accuracy test of the modeling samples, see Table 6.

Table 6. Prediction accuracy results for modeling samples and independent testing samples.

Observed

Predicted

Modeling Independent Test

Non-Fire Fire Correct Rate Non-Fire Fire Correct Rate

China
Non-fire 4052 738 84.59 1025 185 84.71

Fire 480 2730 85.05 96 694 87.85
Overall pct. 84.78 85.95

North Korea
Non-fire 3792 1011 78.95 936 261 78.20

Fire 491 2706 84.64 117 686 85.43
Overall pct. 81.23 81.10

Russia
Non-fire 4197 617 87.18 1051 135 88.62

Fire 577 2609 81.89 160 654 80.34
Overall pct. 85.08 85.25

The results show that the AUC values and model prediction accuracy of each interme-
diate model and the final model were high and similar, indicating that the overall fitting
degree of each model was good. The overall prediction accuracy for the North Korean
side (81.10%–81.23%) was lower than that of the Chinese side and the Russian side, but the
prediction accuracy of the fire point on the North Korean side (84.64%–85.43%) was higher
than that on the Russian side (80.34%–81.89%). On the Chinese side, the prediction accuracy
of the fire point (85.05%–87.85%) and the overall prediction accuracy (84.78%–85.95%) were
relatively high, and the prediction ability for forest fires was better than that of the North
Korean side and the Russian side.

3.2. Comparison of the Relative Importance of Forest Fire Occurrence Drivers in
Different Countries

Figure 3 shows the size of the partially standardized logistic regression coefficient for
each variable in the LR model fitting process. On the whole (Figure 3a), climatic factors
were the most important factors affecting the probability of forest fires, followed by the
topography and vegetation factors, and human activity factors had the least influence.

In terms of the relative importance among the climatic factors (Figure 3b), the daily
accumulated precipitation was the most important, and the influence on the Russian side
was much larger than that on the North Korean side and the Chinese side (|−2.627| >
|−1.857| > |−0.823|, respectively). This was followed by the daily average temperature
and daily average relative humidity; the relative importance of the two was basically the
same, and the influence on the North Korean side was slightly larger than that on the
Russian side and the Chinese side (Temp|0.570| > |0.487| > |0.411|, and Rhum|−0.703|
> |−0.476| > |−0.325|, respectively). The average daily wind speed was not selected as
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a significant variable in China, and had the lowest relative importance in the other two
countries, where the influence on the North Korean side was slightly higher than that on
the Russian side (|0.082| > |0.042|, respectively).
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and (d) human activity factors.

In terms of the relative importance between the topography and vegetation factors
(Figure 3c), the relative importance of elevation and EVI was much greater than that of
the slope and FVC. In China, the relative importance of the elevation (|−0.988|) was the
highest, followed by the EVI (|−0.564|), slope (|−0.210|) and FVC (|−0.048|). In Korea,
the slope was not selected as a significant variable; EVI (|−0.758|) had the highest relative
importance, followed by the elevation (|−0.357|) and FVC (|0.045|). In Russia, the slope
was not selected as a significant variable; the elevation (|−0.634|) had the highest relative
importance, followed by the EVI (|−0.611|) and FVC (|−0.107|).

The relative importance of human activity factors varied greatly in the different
countries (Figure 3d). In China, the distance from a road and distance from a railway were
not selected as significant variables, and the impact of the POP (|0.308|) on the forest
fire occurrence was much higher than that of the distance from buildings (|−0.055|). In
North Korea, the distance from a railway was not selected as a significant variable, and
the other three variables generally had a low impact on the forest fire occurrence, in a
descending order of the POP (|−0.136|), the distance from a road (|−0.090|) and distance
from buildings (|0.064|). In Russia, the POP was not selected as a significant variable;
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the relative importance of the distance from a railway (|−0.215|) was relatively high,
and the distance from a road (|0.093|) and the distance from buildings (|−0.068|) were
relatively low.

3.3. Spatial Distribution of Forest Fire Probability and Fire Risk Division

Based on the predicted value of the forest fire probability model, the Kriging inter-
polation method was used to obtain the spatial distribution of the forest fire probability
in the study area (Figure 4a). According to the optimal cut-off value of each model (i.e.,
0.4273 in China, 0.3834 in North Korea and 0.4867 in Russia) and using 0.5 as the division
criterion, the fire danger level of the study area was divided. Values less than the opti-
mal cut-off value were the low-fire-risk areas, the optimal cut-off value and 0.5 were the
medium-fire-risk areas, and those with a value higher than 0.5 were the high-fire-risk areas
(Figure 4b).
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4. Discussion
4.1. Applicability of the Logistic Regression Model in the Study Area

Judging from the AUC value and prediction accuracy, the LR model had a good
prediction ability in the study area. In previous forest fire prediction studies using the LR
model, the AUC value of the LR model was generally around 0.75–0.87, and the prediction
accuracy was generally 65%–80% [15,16,28,29]. In contrast, the LR model in this study had
a higher applicability. First, this may be due to the comprehensive selection of variables in
this study, taking into account both natural and human factors. Second, from a statistical
point of view, the accuracy of statistical models largely depends on the size of the sample
and the accuracy of the data. The data selected in this study had a long-time span and
a large sample size. In terms of the data accuracy, previous studies have mostly used
monthly, quarterly or annual averages for their climatic data [15,17], but for forest fire
regimes, the cause and spread of a fire mainly depend on the fire environment at the time
of the fire; therefore, it is necessary to improve the accuracy of the climatic data. We used
daily climatic data based on the NCEP/NCAR Reanalysis 1 dataset and the NOAA Climate
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Prediction Center Global Unified Gauge-Based Analysis dataset, which are of great help in
improving the accuracy of forest fire prediction models.

4.2. Comparative Analysis of the Relative Impact of Different Variables on the Occurrence of Forest
Fires in Different Countries in the Cross-border Area between China, North Korea and Russia

In general, the occurrence of forest fires in the cross-border area between China, North
Korea and Russia is mainly affected by climatic factors, followed by topographic and
vegetation factors, and finally by human activities. Previous studies have suggested that
natural factors are usually considered to be the main factors affecting the occurrence of forest
fires in large-scale studies [53]. Human activities may become a main factor behind forest
fires in some other countries such as in Brazil, Indonesia, Thailand and other Southeast
Asian countries. As the scale decreases, the degree of influence of human activities becomes
more prominent [26]. This is because a large-scale study area is mainly dominated by the
natural environment, and humans rarely set foot in many areas. What affects the occurrence
of forest fires is the disaster-pregnant environment dominated by natural factors. However,
in small- and medium-scale studies, the proportion of the human transformation of the
natural environment and human activity areas is higher; therefore, more human factors
need to be considered. From the perspective of these different countries, the impact of
climatic factors on forest fires is higher on the Russian side than on the North Korean
and Chinese sides. This is not only because the forest area that has not been affected by
human activities on the Russian side is large and the population is small, but also because
of Russia’s laissez-faire forest fire management policy. This means that humans have a
poor ability to prevent and mitigate forest fires on the Russian side [36], resulting in the
occurrence, spread and extinguishing of forest fires that are more affected by climatic factors.
The impact of human activity factors on forest fires is higher on the Chinese side than on
the North Korean and Russian sides. This may be due to a higher human accessibility on
the Chinese side due to the higher population density in China.

4.2.1. Relative Impact of Climatic Factors

From the perspective of the impact of climatic factors on the occurrence of forest fires,
the daily cumulative precipitation is the most important factor affecting the occurrence
of forest fires in the cross-border area between China, North Korea and Russia. Precip-
itation will directly affect the moisture content of combustibles, thereby reducing their
combustibility. The relative impact of precipitation varies significantly within different
countries. From the perspective of natural conditions, this may be because the Russian side
is controlled by a temperate oceanic monsoon climate, while the Chinese and North Korean
sides have a temperate continental monsoon climate. The eastern water vapor from the Sea
of Japan is blocked by the mountains and mostly forms precipitation on the Russian side,
resulting in much higher precipitation compared with the North Korean and Chinese sides.
From the perspective of a forest fire management policy, due to the relatively passive forest
fire management in Russia [36], human intervention in forest fires is relatively small, and
forest fires are mostly extinguished by natural precipitation, which leads to the influence of
precipitation on the Russian side being much higher than that on the North Korean side or
the Chinese side.

The influence of the daily average temperature, daily average relative humidity and
daily average wind speed on the occurrence of forest fires in the different countries is
similar. A large number of studies have suggested that a high temperature will increase the
temperature of combustibles; thereby, reducing the energy required for those combustibles
to reach the ignition point, resulting in an increase in the probability of forest fires [19].
Relative humidity represents the amount of water vapor in the air, and lower water vapor
levels in the air increase the likelihood of a forest fire burning [54]. Our findings are
consistent with previous studies, but the relative effect of the daily mean wind speed was
small in this study, and was not even selected as a significant variable on the Chinese side.
This may be due to the fact that the wind speed mainly affects the intensity of a forest fire
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and the fire area by increasing the propagation speed of the forest fire [55]; however, it has
less influence on the occurrence of a forest fire.

4.2.2. Relative Impact of Topography and Vegetation Factors

From the perspective of the impact of topography factors on the occurrence of forest
fires, the relative influence of the elevation is much greater than that of the slope. In
previous studies, fires have been found to be more likely to occur in low-altitude areas [17],
but the positive and negative correlations between the slope and forest fires were different
in different studies [15,19]. To a certain extent, elevation affects the composition and
spatial distribution of tree species (i.e., combustibles) by affecting the local air temperature
and relative humidity, and indirectly affecting the occurrence of forest fires [56]. Higher
altitudes, on the one hand, lead to lower air temperatures and a higher relative humidity.
On the other hand, a high altitude reduces human accessibility, and the incidence of forest
fires will also decrease. In this study, the influence of the elevation of the North Korean
side was lower than that of the Chinese side and the Russian side. This may be due to the
generally higher altitude on the North Korean side, which is above the Kaema Highlands
as a whole. A large part of the food production for the local residents is from farming
along the hillsides [57]; therefore, on the North Korean side, human activities in the high-
altitude areas are no less than those in the low-altitude areas, and the high-altitude areas
only suppress forest fires via their local climate. In general, the slope affects the retention
time of precipitation, resulting in an uneven distribution of the fuel moisture content [58].
Furthermore, due to the flame attachment characteristics of forest fires, the steeper the slope,
the faster the fire will spread and the higher the burning intensity will be [59]; however,
in this study, the effect of the slope on forest fires was small, and it was only selected as
a significant variable on the Chinese side. This may be due to the fact that, on the North
Korean side and the Russian side, the terrain is not significantly undulating; therefore, the
effect of the difference in the slope on forest fires is not obvious.

In this study, the FVC was calculated by the annual maximum EVI value, which
represented the optimal vegetation coverage in a year, while the monthly EVI was biased to
characterize the vegetation growth in different growth stages. Some studies have suggested
that the optimal vegetation coverage largely determines the spatial distribution of fuel
loads, because areas with a high vegetation coverage tend to accumulate more litter [60];
however, from these results, the impact of the annual FVC on the forest fire occurrence was
much lower than that of the monthly EVI. This may be due to the fact that fires caused by
poor vegetation growth are more frequent than fires caused by highly combustible loads in
the China–North Korea–Russia border area. This can be demonstrated by the phenomenon
of forest fires mostly occurring in spring and autumn [35]; as the moisture content of the
vegetation itself is lower at the stage when the vegetation has not yet sprouted or withered,
wildfires are more likely to burn and spread during this time.

4.2.3. Relative Impact of Human Activity Factors

The impact of human activities on the occurrence of forest fires is quite different
in the different countries. On the Chinese side, the distance from a road and distance
from a railway were not selected as significant variables. This is probably due to the
fact that China actively promotes the importance of forest fire prevention and combats
human arson, resulting in few fires around roads, and the airtight nature of today’s trains
also prevents fires caused by cigarette butts being thrown out during a train’s journey.
China also uses chemical agents with fire-fighting aircraft to put out fires [37], and is less
dependent on roads and railways. The distance from buildings was negatively correlated
with the forest fire occurrence, and the population density was positively correlated with
the forest fire occurrence, indicating that fires mainly occurred near villagers’ houses in
high population areas. From the perspective of fire sources, the Chinese side has a large
population that is concentrated in the low-altitude grain-growing areas. Although the State
Environmental Protection Administration of China issued the “Administrative Measures
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for the Prohibition of Burning and Comprehensive Utilization of Straw” in 1999, and the
burning of straw has been prohibited in the delineated no-burning areas [61], agricultural
fires still lead to some forest fires [62]; therefore, on the Chinese side, the closer to the
densely populated area, the higher the probability of forest fires.

On the North Korean side, the distance from a railway was not selected as a significant
variable, the distance from a road and population density were negatively correlated with
the forest fire occurrence, and the distance from buildings was positively correlated with
the forest fire occurrence. This may be due to the fact that people in North Korea mostly
travel by foot or bicycle, and rarely take the train [63]. As a result, the highways have
become a concentrated area of man-made fire sources, and railways have little impact on
forest fires. In addition, due to the poor fire-fighting conditions in North Korea and the
lack of modern fire-fighting equipment, when a large fire occurs, the government usually
mobilizes nearby people to extinguish the fire, which requires a certain number of human
resources [38]. Therefore, in areas with a high population density and close proximity to
buildings, the probability of forest fires will decrease.

On the Russian side, population density was not selected as a significant variable,
the distance from a road was positively correlated with a forest fire occurrence, and the
distance from a railway and distance from buildings were negatively correlated with the
forest fire occurrence. Due to the high latitude and thick permafrost in the Russian Far East,
railway construction is difficult, and as such, there is only the Trans-Siberian Railway in
the study area connecting Khabarovsk and Vladivostok. This area is lower in elevation and
closer to grain-growing areas, making it more prone to forest fires. On the eastern side of
Russia, the Sikhote-Alin Mountains have higher altitudes and lower temperatures, and the
settlements are connected by roads, which makes the forest more fragmented. These roads
act as a barrier to prevent the spread of forest fires [27].

4.3. Spatial Distribution of High-Risk Areas for Forest Fire and Forest Fire Prevention and Control

It can be seen from the fire risk level zoning map of the China–North Korea–Russia
cross-border area that (Figure 4b), on the Chinese side, the high-risk forest fire areas are
concentrated in the Sanjiang Plain in the northeast, and are scattered around the non-forest
areas in the south. This is mainly due to the fact that most of the forest fires in China
are caused by agricultural fires [62]. As the largest commercial grain production base in
Northeast China, the Sanjiang Plain requires significant straw burning activities before
spring ploughing every year, which greatly increases the risk of forest fires. Since the
Sanjiang Plain was reclaimed as agricultural land, a large amount of the forest resources has
been lost. If the remaining forests are not protected, this will cause incalculable losses to the
natural ecology of the area. Since the promulgation of the ban on burning in Heilongjiang
Province in 2020, the Sanjiang Plain has implemented a “comprehensive ban on burning in
all regions and at all times”, and resolutely prohibits any form of burning straw [64], which
has a great effect on reducing man-made fire sources. At the same time, forest fire-warning
weather stations and protective forest belts, dominated by fire-resistant tree species, should
be established in high-risk areas to facilitate a green belt while preventing the large-scale
spread of forest fires, causing great economic losses.

From the North Korean side, the high-risk forest fire areas are concentrated in Hamgyong-
bukto Province in the northeast. On the Russian side, the high-risk forest fire area runs
southward along the Ussuri River, the Sino–Russian border river, to the Muling–Xingkai
Plain. For China, transboundary fire spread from North Korea and Russia also needs to
be prevented and controlled. In particular, a forest fire in the Northeast Tiger Leopard
National Park, located on the border between China, North Korea and Russia, would
cause great damage to the forest resources and rare animals in the reserve. It is suggested
that a high-resolution digital remote monitoring system be set up near the borderline to
monitor the fire situation in the border area in real time and provide a timely warning.
It is also recommended that inter-country forest firefighting cross-border rescue teams
be formed, relying on the “Belt and Road” cooperation mechanism, to actively carry
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out international emergency rescue cooperation and exchange. Additionally, this would
help with communications and discussions between the neighboring countries to reach
an agreement that firefighting aircraft can be sent across a border to fight fires when
necessary. China, North Korea and Russia should actively strengthen their cooperation in
the management and prevention of transboundary forest fires, and establish a joint and
cooperative defense mechanism for such forest fires, to reduce the subsequent potential
natural resource and economic losses.

5. Conclusions

In this study, based on the LR model, a prediction model for the probability of forest
fire occurrence in different countries in the China–North Korea–Russia cross-border area
was established. The relative influences of the driving factors of forest fire occurrence in
this area were compared via the partially-standardized logistic regression coefficient, while
the Kriging interpolation method was used to establish the forest fire occurrence probability
and fire risk level division in the cross-border area between China, North Korea and Russia.

The results show that the LR model can accurately predict the probability of a forest
fire in the cross-border area between China, North Korea and Russia. The model’s goodness-
of-fit AUC values were between 0.8973 and 0.9153, and the model prediction accuracy was
between 81.23% and 85.08%. From the whole study area, the occurrence of forest fires in
the cross-border areas of China, North Korea and Russia is mainly influenced by climatic
factors, followed by topographic and vegetation factors, and finally, by human activities.
From a country-by-country perspective, the forest fires on the Chinese side have been more
anthropogenic than on the North Korean and Russian sides, and were mainly concentrated
in low-elevation areas with high population densities. The forest fires on the North Korean
side and the Russian side were more naturally affected than on the Chinese side, mainly
occurring in areas with a low altitude, high temperature and little rainfall. The high-risk
areas for forest fires were mostly concentrated near the borderline between China, North
Korea and Russia. Due to the complexity of the geopolitics in the cross-border area between
China, North Korea and Russia, transboundary firefighting has certain difficulties. In the
future, it will be necessary to strengthen the cooperation between the countries, and to
establish a joint prevention and cooperation mechanism for transboundary forest fires to
protect the declining forest resources and the habitats of rare animals.
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