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Abstract: The artificial young forest is an important component of ecosystems, and biomass models
are important for estimating the carbon storage of ecosystems. However, research on biomass models
of the young forest is lacking. In this study, biomass data of 96 saplings of three tree species from
the southern foot of the Qilian Mountains were collected. These data, coupled with allometric
growth equations and the nonlinear joint estimation method, were used to establish independent,
component-additive, and total-control compatible models to estimate the biomass of artificial young
wood of Picea crassifolia (Picea crassifolia Kom.), Sabina przewalskii (Sabina przewalskii Kom.), and Pinus
tabulaeformis (Pinus tabuliformis Carr.). The distribution characteristics of the biomass components
(branch, leaf, trunk, and root biomass) and the goodness of fit of the models were also analyzed. The
results showed that (1) the multiple regression models with two independent variables (MRWTIV)
were superior to the univariate models for all three tree species. Base diameter was the best-fitting
variable of the univariate model for Picea crassifolia and Pinus tabulaeformis, and the addition of base
diameter and crown diameter as variables to the MRWTIV can significantly improve model accuracy.
Tree height was the best-fitting variable of the univariate model of Sabina przewalskii, and the addition
of tree height and crown diameter to the MRWTIV can significantly improve model accuracy; (2) the
two independent variable component-additive compatible model was the best-fitting biomass model.
The compatible models constructed by the nonlinear joint estimation method were less accurate
than the independent models. However, they maintained good compatibility among the biomass
components and enabled more robust estimates of regional biomass; and (3) for the young wood of
Picea crassifolia, Sabina przewalskii, and Pinus tabulaeformis, the aboveground biomass ratio of each
component to total biomass was highest for leaf biomass (26%–68%), followed by branch (10%–46%)
and trunk (11%–55%) biomass, and the aboveground biomass was higher than the underground
biomass. In conclusion, the optimal biomass model of artificial young forest at the sampling site is
a multivariate component-additive compatible biomass model. It can well estimate the biomass of
young forest and provide a basis for future research.

Keywords: northwest alpine zone; young plantation forest; biomass model; allocation characteristics
of component biomass

1. Introduction

Forest is the largest carbon stock of terrestrial ecosystems, accounting for approxi-
mately 80% of aboveground biomass carbon and 40% of belowground biomass carbon
in terrestrial ecosystems [1]. Forest, thus, plays a vital role in maintaining the global
carbon balance and mitigating climate changes, and research on the forest carbon stock
has received increased attention [1,2]. Forest biomass, one of the most important features
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of ecosystems, is an important factor underlying ecosystem productivity [3,4]. Accurate
estimation of biomass in different ecosystems is important for estimating carbon stocks in
terrestrial ecosystems [5]; however, young trees are often neglected in forest inventories
and carbon stock estimations.

According to the report of the ninth forest resource inventory (2014–2018), the forest
area of China is 220 million hm2. The area of plantation forest is 80 million km2, which
accounts for 36% of the total forest area [6]. Moreover, plantation forests in China are mainly
middle-aged forests and young forests, which have high carbon sequestration potential [1,7].
Young plantations are an important component of ecosystems, and biomass models of such
plantations provide the basis for estimating the carbon storage of ecosystems. However,
research on biomass models of young plantations with diameter at breast height (DBH)
less than 5 cm is lacking, and the carbon-neutralizing capacity of forest ecosystems is often
underestimated [7]. Biomass models can be used to establish the relationships between
easily measurable plant factors (e.g., tree height and crown diameter) and biomass through
regression analysis [8]. This method can provide relatively simple and accurate biomass
estimates with fewer labor requirements; it is, thus, the most commonly used method for
estimating the biomass of vegetation [8–12]. However, all biomass models established in
previous studies are for trees with DBH larger than 5 cm; few studies on the biomass models
of trees with DBH less than 5 cm have been conducted by comparison, and this has resulted
in the underestimation of the carbon stock capacity of China’s forest ecosystems [7].

To quantitatively study the distribution characteristics and growth patterns of trees,
trees have been divided into different biomass components (branches, leaves, trunks,
and roots), and independent biomass models have been established for each of these
components [13–16]. Traditional independent biomass models typically establish separate
regressions between biomass components and tree factors (such as DBH and tree height),
which makes the models incompatible. The nonlinear simultaneous equation method has
been proposed to overcome this problem [17], wherein the biomass of each component is
calculated using total-control and hierarchical-combined-control methods. This approach of
overcoming the incompatibility of biomass models has been widely used [12,18]. However,
many biomass regression models that have been developed to date have been based on
trees with DBH greater than 5 cm [8–23]; biomass models for young trees from which DBH
cannot be collected have not been developed.

In this study, saplings of the three main tree species in the southern foot of Qilian
Mountains in the alpine region of northwestern China (Picea crassifolia, Pinus tabulaeformis,
and Sabina przewalskii) were sampled [24,25]. Parameters such as base diameter, tree height,
and crown diameter of trees were measured, and biomass models of the young wood of the
different tree species were established. Our findings fill a research gap in the development
of biomass models of artificial young forest in the northwestern alpine region of China.
Our results also have implications for climate change studies and for enhancing carbon
dioxide neutralization in the northwestern alpine region of China.

2. Study Area

Our study site was located in the transition zone between the western Loess Plateau
and the Qinghai–Tibet Plateau (Figure 1). Because it occurs on an arid plateau, variation in
altitude, temperature, and moisture are substantial. The solar radiation in this region is
strong, and the average temperature is low (3–6 °C). The average annual precipitation is
450–592 mm, and the distribution of precipitation throughout the year is uneven [24]. The
forest coverage rate is relatively high (the alpine vegetation and shrub area of Qinghai–Tibet
Plateau is over 250,000 km2) [1,25], and the vegetation types are mainly cold-temperate
evergreen coniferous forest and deciduous broad-leaved forest [25]. The soil types include
mainly cinnamon soil, chestnut soil, chernozem soil, gray cinnamon soil, and meadow
soil [24,25].
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3. Methods
3.1. Data Collection

The DBH of young trees less than 5 cm cannot be measured. Therefore, base diameter
is measured to characterize the growth of such trees [26]. Theoretically, the base diameter
of a tree refers to the diameter at the boundary between the trunk and the root system of
the tree. However, in actual forestry work, the diameter at the surface is often measured
because part of the trunk is buried in the soil [27].

Young trees in this study were defined as trees with DBH less than 6 cm. Because
the height of some young trees was less than 1.3 m, the DBH for these trees could not be
measured. Therefore, the base diameter was measured instead of DBH. Sampling was
conducted in the forest at the southern foot of the Qilian Mountains in the alpine region of
northwestern China, which runs through Datong County, Huangyuan County, and Huzhu
County in Qinghai Province. From July to October 2021, a total of 10 sample plots with
an area of 30 m × 30 m were established at the sampling site, and terrain factors such
as altitude, slope gradient, and slope position were measured. Growth factors of each of
the trees sampled such as height and base diameter were also measured [28]. Trees in the
sample plot were graded according to their diameters and heights. The whole plants of
41 Picea crassifolia, 28 Sabina przewalskii, and 27 Pinus tabulaeformis trees were harvested. The
different components (trunk, branches, leaves, and roots) were numbered and stored for
later analysis and processing. A total of 96 whole plant samples were collected (Table 1).

Table 1. Statistical characteristics of the sample data.

Variable Name
Picea crassifolia Pinus tabuliformis Sabina przewalskii

AVG Range SD AVG Range SD AVG Range SD

Base Diameter (D)/cm 4.71 0.82–10.5 2.66 4.33 0.87–9.0 2.26 4.62 0.62–10.9 3.09
Crown Diameter (C)/m 1.07 0.16–2.67 0.66 0.95 0.29–2.88 0.66 3.90 1.55–7.75 1.66

Tree Height (H)/m 1.70 0.30–4.45 1.04 1.62 0.46–3.48 0.81 1.38 0.39–3.47 0.81
Leaf Biomass/kg 1.57 0.008–6.0 1.76 0.62 0.026–3.2 0.83 0.60 0.005–2.3 0.67

Branch Biomass/kg 1.20 0.004–6.4 1.46 0.47 0.01–2.8 0.69 0.37 0.002–2.2 0.51
Trunk Biomass/kg 0.85 0.005–4.2 1.08 0.68 0.013–3.6 1.02 0.36 0.003–2.4 0.51
Root Biomass/kg 0.88 0.006–3.9 0.98 0.59 0.02–3.04 0.86 0.57 0.004–2.8 0.71
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All plants sampled were well grown; samples were not taken from trees in areas that
were severely disturbed or in special habitats to ensure consistency among samples. Before
sampling, the base diameter (D, cm), tree height (H, m), and crown diameter (C, m) of the
samples (east–west and north–south directions) were measured. Biomass was obtained by
the whole plant harvesting method, and the total amount of trunk, branch, leaf, and root
biomass was determined. After all the roots were excavated, all non-root impurities were
removed, and the fresh weights were taken. After weighing, the samples were stored in a
cloth bag, and information such as the location, tree species, weight, and date was taken. In
the laboratory, samples were subjected to a de-enzyming treatment at 105 ◦C for two hours.
Finally, the samples were dried at a constant temperature of 85 ◦C until a constant weight
was achieved, and the oven-dried weight of the sample was measured.

3.2. Biomass Model Establishment

The structure of the allometric growth equations is relatively simple, and the pa-
rameters are relatively stable. In this study, the allometric growth equations of LY/T
2258-2014 were used to establish the biomass models [29]. The general structure is shown
in Equation (1)

y = β0 × 1
β1 x2

β2 . . . xj
βj + ε (1)

where y is the stand-level total biomass or biomass of each component; xj is the independent
variable (e.g., D, H, and C); βj is the model parameter; and ε is the error. Based on the
multivariate nonlinear joint estimation method, compatible models of Picea crassifolia, Pinus
tabulaeformis, and Sabina przewalskii were established using the component-additive method
and total-control method, and the fitting accuracy of each model was determined.

In addition to the tree factors measured in the sample plot, the interaction between
crown diameter and tree height was also taken into account when selecting independent
variables. The parameters with strong correlations with the biomass of each component and
showing significant differences according to correlation analysis (IBM SPSS 19, Armonk,
NY, USA) and double-screening stepwise regression (ForStat 3.0, China) were used as
independent variables in the models. Independent and compatible models of the branches,
leaves, trunk, roots, and total biomass were established.

3.2.1. Independent Models

Models of each component and total biomass were established, and univariate and
multivariate models were fitted. The common structure of the univariate and multivariate
nonlinear biomass models is shown in Equations (2) and (3):

M = a0Da1 + ε (2)

M = a0Da1Ha2 + ε (3)

where M is the biomass; D is the base diameter; H is the tree height; a0, a1, and a2 are model
parameters; and ε is the error.

3.2.2. Compatible Models

Compatible models satisfy the requirement that the total biomass of a single tree is
equal to the sum of the biomass of each component, which requires the compatibility of
the equations of each component and the total biomass. The multivariate nonlinear joint
estimation is based on ordinary least squares regression, and the parameters of the equation
set were fitted through joint estimation. The total biomass models and biomass models of
each component were established by the component-additive method and total-control
method, respectively.

Component-Additive Method

The component-additive method is based on the independent model of each com-
ponent, which combines the biomass of each component and the total biomass into an
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equation set. The regression equation of each component includes its own independent
variables, and the total biomass is a function of all independent variables, which ensures
that the sum of each component is equal to the total amount. The expression of the model
system is as follows: 

W1 = f1(x1) + ε1
W2 = f2(x2) + ε2
W3 = f3(x3) + ε3
W4 = f4(x4) + ε4

W5 = f4(x4) + f3(x3) + f2(x2) + f1(x1) + ε5

(4)

where W1, W2, W3, W4, and W5 are the estimated values of the trunk, branch, leaf, root,
and total biomass, respectively; f1(x1), f2(x2), f3(x3), and f4(x4) are the independent
models of the trunk, branch, leaf, and root biomass, respectively; the general structure of
the independent model is shown in equation (1): fi(xi) = aixi

bi xj
mi · · · xk

ni + εi, where X is
the independent variable; and ε1, ε2, ε3, ε4, and ε5 are the errors in the equations of trunk,
branch, leaf, root, and total biomass, respectively.

Total-Control Method

In the total-control method, the total biomass is directly divided into four components
(trunk, branches, leaves, and roots) to ensure that the sum of each component is equal to
the total biomass. Assuming that the relative proportion of the trunk to total biomass is 1,
the functions of branch, leaf, and root biomass to total biomass are g1(x), g2(x), and g3(x),
respectively, and the total biomass model is f0(x). The expression of the model system is
as follows: 

y1 = 1
1+g1(x)+g2(x)+g3(x) × f0(x)

y2 = g1(x)
1+g1(x)+g2(x)+g3(x) × f0(x)

y3 = g2(x)
1+g1(x)+g2(x)+g3(x) × f0(x)

y4 = g3(x)
1+g1(x)+g2(x)+g3(x) × f0(x)

(5)

where y1, y2, y3, and y4 are the trunk, branch, leaf, and root biomass, respectively. To es-
tablish the univariate and multivariate total-control model system, g1(x), g2(x), and g2(x)
need to be determined according to the biomass data. The general structure is shown in
Equation (1), and the estimated value of each parameter was determined. On the basis
of these estimated values, the parameter values of the model system (equation 5) were
obtained by calculating the error-in-variable simultaneous equations. The aboveground
biomass model f0(x) was obtained based on the independent model.

Nonlinear seemingly unrelated regression is considered the most reliable method for
estimating the parameters of a compatible biomass model system [30], as it not only takes
into account the correlation between the sub-equations but also ensures the compatibility
between the models and the validity of the parameter estimates. The biomass model is
a heteroscedastic model, and eliminating heteroscedasticity for both independent fitting
and nonlinear simultaneous equation fitting is essential. The commonly used methods
are logarithmic regression or weighted regression [31,32]. Weighted regression makes use
of the residual squared error to obtain a weight function by ordinary regression fitting.
Its fitting effect is comparable to that of a specific general weight function W = 1/ f 2(x).
Some researchers have adjusted the general weight function to W = 1/ f n(x) to improve
the adaptability of the model to different biomass data [31]. In this study, 1/

√
f (x) was

used as the weight function to perform weighted regression on the biomass equation, and
the model parameters were fitted and evaluated using ForStat 3.0.

3.3. Model Evaluation and Accuracy Tests

The coefficient of determination (R2), standard deviation of estimated values (SEE),
total relative error (TRE), average systematic error (ASE), average prediction error (MPE),



Forests 2022, 13, 1828 6 of 16

average percentile standard error (MPSE), and six other parameters were used to evaluate
the accuracy of the model [33]:

R2 = 1−∑(yi − ŷi)
2/ ∑(yi − y)2 (6)

SEE =
√

∑(yi − ŷi)
2/(n− p) (7)

TRE = ∑(yi − ŷi)/ ∑ ŷi × 100% (8)

ASE = ∑(yi − ŷi)/ŷi/n× 100% (9)

MPE = ta.(SEE/y)/n× 100 (10)

MPSE = ∑|(yi − ŷi)/ŷi|/n× 100% (11)

where yi is the actual observed value; ŷi is the model-estimated value; y is the average
value of the samples; n is the number of samples; p is the number of parameters; and tα
is the t-value at the confidence level α. The model simulation and accuracy tests were
conducted in SPSS 19 and ForStat 3.0, and the photos were processed in Origin 2019b.

4. Results
4.1. Correlation Analysis between Modeling Variables and The Biomass of Each Component

All samples of the three species (Picea crassifolia, Sabina przewalskii, and Pinus tabulae-
formis) were used to establish the models, and single factors or interaction factors with
good fit were identified. There were highly significant differences among the variables
(Table 2). For Pinus tabulaeformis and Picea crassifolia, base diameter (correlations greater
than 0.85) and the interaction between tree height and base diameter (correlations greater
than 0.9) had a significant effect on the biomass of each component. For Sabina przewalskii,
base diameter had no significant effect on the biomass of each component, and tree height
had a significant effect on the biomass of each component. According to the results of
stepwise regression analysis, base diameter and the interaction between base diameter and
other forest factors were the modeling variables used for Picea crassifolia; tree height and
the interaction between tree height and other forest factors were the modeling variables
used for Sabina przewalskii.

Table 2. Correlation analysis between modeling variables and the biomass of each component.

Relevance D C H CH DH D2H C2H D2C

Picea
crassifolia

Leaves 0.893 ** 0.887 ** 0.913 ** 0.910 ** 0.944 ** 0.928 ** 0.842 ** 0.888 **

Branches 0.888 ** 0.903 ** 0.828 ** 0.885 ** 0.904 ** 0.931 ** 0.856 ** 0.968 **

Trunk 0.891 ** 0.904 ** 0.900 ** 0.945 ** 0.965 ** 0.984 ** 0.911 ** 0.972 **

Root 0.877 ** 0.860 ** 0.825 ** 0.829 ** 0.877 ** 0.884 ** 0.762 ** 0.889 **

Sum 0.934 ** 0.935 ** 0.915 ** 0.941 ** 0.972 ** 0.980 ** 0.888 ** 0.975 **

Pinus
tabuliformis

Leaves 0.866 ** 0.918 ** 0.813 ** 0.929 ** 0.902 ** 0.925 ** 0.907 ** 0.960 **

Branches 0.847 ** 0.936 ** 0.808 ** 0.953 ** 0.895 ** 0.919 ** 0.950 ** 0.966 **

Trunk 0.888 ** 0.904 ** 0.850 ** 0.943 ** 0.952 ** 0.988 ** 0.908 ** 0.980 **

Root 0.806 ** 0.905 ** 0.770 ** 0.890 ** 0.838 ** 0.853 ** 0.866 ** 0.896 **

Sum 0.883 ** 0.946 ** 0.840 ** 0.960 ** 0.930 ** 0.956 ** 0.937 ** 0.984 **

Sabina
przewalskii

Leaves 0.859 ** 0.908 ** 0.938 ** 0.950 ** 0.924 ** 0.865 ** 0.916 ** 0.874 **

Branches 0.789 ** 0.860 ** 0.917 ** 0.963 ** 0.922 ** 0.876 ** 0.965 ** 0.903 **

Trunk 0.737 ** 0.840 ** 0.884 ** 0.949 ** 0.888 ** 0.845 ** 0.970 ** 0.877 **

Root 0.803 ** 0.825 ** 0.896 ** 0.916 ** 0.904 ** 0.845 ** 0.904 ** 0.886 **

Sum 0.837 ** 0.896 ** 0.949 ** 0.984 ** 0.950 ** 0.923 ** 0.975 ** 0.895 **

** Significant correlations at the 0.01 level (two-sided). Bold indicates the highest correlation per line.



Forests 2022, 13, 1828 7 of 16

4.2. Establishment of an Independent Biomass Model for Young Trees

Table 3 shows the estimated parameter values and evaluation indicators of the unary-
weighted independent regression model, which can be used to estimate the biomass of
each component and the aboveground biomass of Picea crassifolia, Sabina przewalskii, and
Pinus tabulaeformis.

Base diameter was used as the independent variable of the univariate independent
model of Picea crassifolia and Pinus tabulaeformis, and tree height was used as the inde-
pendent variable of the univariate independent model of Pinus tabulaeformis. When tree
height was added to the univariate model of Picea crassifolia as an independent variable,
or when crown diameter was added to the univariate model of Pinus tabulaeformis and
Sabina przewalskii as an independent variable, the R2 of each component increased by vary-
ing degrees. The other evaluation indicators decreased by varying degrees when these
variables were added, and the goodness of fit and accuracy of the models were higher than
those of the univariate models.

For the trunks of Picea crassifolia and Pinus tabulaeformis, independent models with tree
height as an independent variable were generally better than the independent models with
crown diameter as independent variables; for the leaves and branches of Picea crassifolia and
Pinus tabulaeformis, independent models with crown diameter as an independent variable
were generally better than independent models with tree height as an independent variable.
When crown diameter was added as an independent variable for Pinus tabulaeformis, the R2

of the leaves and branches increased from 0.867 and 0.842 to 0.925 and 0.954, respectively,
and the SEE of the estimated values decreased by 0.007 kg and 0.14 kg, respectively.
The other indicators also decreased by varying degrees, and the model accuracy was
significantly improved. However, model accuracy only slightly improved after tree height
was added as an independent variable. For each biomass component of Sabina przewalskii,
the independent model with crown diameter as an independent variable was significantly
improved compared with the independent model with base diameter as an independent
variable. The R2 was significantly higher, and the MPE and the standard deviation of the
estimated value were lower, especially for branch and trunk biomass.

The R2 values of the independent models for the total biomass of the three tree
species were above 0.9, the SEE of the estimated value was below 1 kg, and the MPE was
less than 15%. Overall, the bestfitting independent model for Picea crassifolia was a two
independent variable model with base diameter and tree height as independent variables;
the best-fitting independent model for Pinus tabulaeformis was a two independent variable
model with base diameter and crown diameter as independent variables; and the best-
fitting independent model for Sabina przewalskii was a two independent variable model
with tree height and crown diameter as independent variables. Therefore, the best-fitting
independent biomass models of the three tree species were as follows: Picea crassifolia:
M total = 0.098 × D2.048 × H0.403; Pinus tabulaeformis: M total = 0.213×D1.369 × C1.067; and
Sabina przewalskii: M total = 00.484 × C0.261 × H1.923. The fitting accuracy of independent
biomass models for each component was highest for total biomass, followed by trunk,
branch, leaf, and root biomass.

4.3. Establishment of Compatible Biomass Models for Young Trees

On the basis of the model systems (4) and (5), multiple regression with two indepen-
dent variables (MRWTIV) model and univariate models were established by the component-
additive method and total-control method (Tables 4 and 5). For all three tree species, the
MRWTIV were generally a better fit than the univariate models, and the best-fitting factors
for each component of the univariate and MRWTIV model were consistent with the inde-
pendent models. Specifically, the goodness of fit of the MRWTIV with crown diameter as
an independent variable was generally better for Sabina przewalskii and Pinus tabulaeformis;
for Picea crassifolia, the goodness of fit and prediction accuracy of the MRWTIV with tree
height as an independent variable were generally better than the MRWTIV with crown
diameter as an independent variable. The R2 was increased by 0.031 and 0.032 for the
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component-additive models and total-control models, respectively, when crown diameter
was added as an independent variable, and this increase was particularly pronounced
for the trunk biomass of Sabina przewalskii; the SEE of the estimated value decreased by
0.033 kg and 0.034 kg, respectively. The MPE was also reduced by 3.57% and 3.62% in the
component-additive and total-control models, respectively. For the three tree species, the
goodness of fit was higher for both of the compatible biomass models, with R2 higher than
0.9 (for Picea crassifolia and juniper, R2 was higher than 0.95), and the SEE of the estimated
values was less than 1.18 kg for all models.

Both compatible biomass models have high fitting accuracy. The goodness of fit of the
two compatible biomass models for Picea crassifolia and Sabina przewalskii using the same
variable estimation algorithm was highest for total biomass, followed by trunk, branch,
leaf, and root biomass; the goodness of fit of the two compatible biomass models of the
Pinus tabulaeformis component was highest for trunk biomass, followed by total, branch,
leaf, and root biomass.

There were no significant differences in the biomass of each component and the total
biomass calculated by the component-additive models and total-control models for the
three tree species, and R2 was less than 0.03 for all models. Overall, the component-additive
models were slightly better than the total-control models, and the performance of each
component of the three tree species differed. For the branch, trunk, and total biomass of
Picea crassifolia, the component-additive models were slightly better than the total-control
models; for the leaf and root biomass of Picea crassifolia, the total-control models were
slightly better than the component-additive models. For Pinus tabulaeformis, the component-
additive models of leaf, root, branch, trunk, and total biomass were slightly better than the
total-control model, with the exception of the MRWTIV of leaf and root biomass; for the
trunk and root biomass of Sabina przewalskii, the component-additive models were slightly
better than the total-control model; for the leaf and total biomass of Sabina przewalskii, the
total-control models were slightly better than the component-additive models. The R2 and
SEE of the estimated values and the MPE of the total-control models of Picea crassifolia total
biomass with tree height and base diameter as independent variables were reduced by
0.0009, 0.015, and 0.108%, respectively. Therefore, the best-fitting multivariate component-
additive models with the best-fitting parameters of each component of the three tree species
were as follows:

Piceacrassifolia :



ML = 0.088D1.292 × H0.957

MB = 0.043D1.762 × C0.882

MT = 0.0087D2.15 × H0.944

MR = 0.036D1.866 × C0.235

MS = 0.088D1.292 × H0.957 + 0.043D1.762 × C0.882

+0.0087D2.15 × H0.944 + 0.036D1.866 × C0.235

Pinustabulaeformis :



ML = 0.076D1.172 × C1.158

MB = 0.146D0.549 × C1.723

MT = 0.0032D3.041 × H0.268

MR = 0.378D0.193 × C1.665

MS = 0.076D1.172 × C1.158 + 0.146D0.549 × C1.723

+0.0032D3.041 × H0.268 + 0.378D0.193 × C1.665

Sabinaprzewalskii :



ML = 0.0932C1.017 × H0.99

MB = 0.0298C1.204 × H1.449

MT = 0.0102C1.877 × H1.255

MR = 0.145D0.373 × H1.643

MS = 0.0932C1.017 × H0.99 + 0.0298C1.204 × H1.449

+0.0102C1.877 × H1.255 + 0.145D0.373 × H1.643
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Table 3. Independent biomass models of the young wood of three tree species.

Tree Species Component Models

Evaluation Indicators

R2 SEE
(kg)

MPE
(%)

TRE
(%)

ASE
(%)

MPSE
(%)

Picea crassifolia
n = 41

Leaves
M = 0.0292D2.3167 0.832 0.73 14.7 −0.03 −7.8 27.8

M = 0.0736D1.4174 × H0.8874 0.888 0.6 12.18 −0.02 −5.97 26.68
M = 0.0566D1.8808 × C0.400 0.838 0.73 14.66 −0.04 −8.25 27.66

Branches
M = 0.0133D2.5840 0.911 0.44 11.55 0.00 −3.41 27.39

M = 0.0105D2.8034 × H−0.2157 0.913 0.44 11.55 0.00 −3.39 27.58
M = 0.0488D1.7228 × C0.7957 0.936 0.38 9.9 0.00 −3.16 27.44

Trunk
M = 0.0056D2.8441 0.929 0.29 10.79 0.00 10.29 23.51

M = 0.0101D2.0347 × H1.0277 0.969 0.2 7.23 2.16 17.19 25.93
M = 0.0172D2.1072 × C0.6717 0.948 0.25 9.36 0.00 0.68 20.43

Root
M = 0.021D2.198 0.827 0.41 14.78 0.00 −6.7 38.92

M = 0.021D2.18 × H0.018 0.827 0.42 14.98 0.00 −6.70 38.93
M = 0.035D1.8491 × C0.322 0.828 0.42 14.95 0.00 −6.60 38.80

Sum
M = 0.064D2.458 0.960 1.02 7.14 0.00 −3.95 18.42

M = 0.098D2.048 × H0.403 0.972 0.86 6.02 0.00 −3.63 17.89
M = 0.159D1.853 × C0.557 0.972 0.86 6.06 0.00 −4.12 18.07

Pinus
tabuliformis

n = 27

Leaves
M = 0.0106D2.5002 0.867 0.31 19.64 0.03 8.52 32.13

M = 0.0131D2.2799 × H0.2271 0.868 0.32 20.3 0.07 6.47 29.11
M = 0.0572D1.4129 × C0.8408 0.925 0.24 15.08 0.01 1.13 23.47

Branches
M = 0.0045D2.8083 0.835 0.29 23.88 0.00 7.52 41.17

M = 0.0068D2.3661 × H0.4915 0.842 0.29 23.93 0.00 5.19 36.55
M = 0.0668D1.0731 × C1.3120 0.954 0.15 12.85 −0.01 −3.92 27.14

Trunk
M = 0.0038D3.0850 0.974 0.17 9.79 0.04 −9.83 33.66

M = 0.0072D2.3241 × H0.9052 0.982 0.14 8.36 0.01 −0.21 28.35
M = 0.0112D2.3979 × C0.5109 0.977 0.16 9.36 0.05 14.78 35.53

Root
M = 0.007D2.663 0.733 0.45 30.63 0.00 7.9 66.38

M = 0.015D1.896 × H0.814 0.729 0.47 31.56 0.03 −0.69 52.53
M = 0.239D0.405 × C0.1.72 0.83 0.37 24.74 −0.07 −10.90 39.30

Sum
M = 0.024D2.766 0.92 0.97 16.36 0.01 13.35 39.88

M = 0.043D2.161 × H0.653 0.92 0.99 16.72 0.04 7.62 31.23
M = 0.213D1.369 × C1.067 0.97 0.54 9.15 0.00 −0.35 24.13

Sabina
przewalskii

n = 28

Leaves
M = 0.2467H1.9446 0.866 0.25 16.1 −0.13 −15.36 39.1

M = 0.1432D0.4502 × H1.5075 0.878 0.24 15.74 −0.14 −15.97 36.92
M = 0.0635C1.1437 × H1.1830 0.881 0.24 15.51 −0.16 −14.83 37.7

Branches
M = 0.1040H2.4482 0.918 0.15 15.52 −0.03 −15.14 39.93

M = 0.0867D0.1533 × H2.2986 0.919 0.15 15.81 −0.04 −15.62 39.4
M = 0.0348C0.9302 × H1.8203 0.932 0.14 14.46 −0.05 −14.78 38.82

Trunk
M = 0.1081H2.3846 0.909 0.16 16.8 −0.01 −7.78 −38.42

M = 0.1030D0.0495 × H2.3212 0.907 0.16 17.32 0.06 −8.55 39.08
M = 0.0225C1.3266 × H1.4931 0.94 0.13 13.95 0.03 −6.34 37.66

Root
M = 0.036H1.666 0.682 0.41 27.85 −0.02 −8.33 64.59

M = 0.148D0.274 × H1.856 0.846 0.29 19.81 −0.02 −15.51 46.46
M = 0.195C0.059 × H2.067 0.84 0.29 20.18 −0.05 −15.88 47.57

Sum
M = 0.113H1.698 0.73 1.21 24.71 0.00 −8.96 56.44

M = 0.030D0.548 × H2.157 0.90 0.75 15.33 0.07 −13.59 40.48
M = 0.484C0.261 × H1.923 0.95 0.52 10.63 −0.03 −14.32 32.94

Roughening represents the best model for each biomass component.
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Table 4. Parameter values of the two compatible models estimating the total biomass and biomass of
each component of three tree species.

Tree
Species Models Variables Evaluation Indicators

a1 b1 m1 a2 b2 m3 a3 b3 m3 a4 b4 m4

Picea
crassifolia

(4)
D 0.042 2.139 0.009 2.749 0.005 2.935 0.021 2.187

D,H 0.092 1.244 1.005 0.008 2.918 −0.20 0.009 2.123 0.969 0.023 2.136 0.014
D,C 0.102 1.548 0.540 0.044 1.759 0.858 0.021 1.945 0.881 0.029 1.990 0.160

(5)
D 0.068 2.425 1.466 −0.03 8.089 −0.75 3.265 −0.59

D,H 0.093 2.023 0.490 0.943 0.747 −1.10 10.25 −0.86 0.007 2.673 −0.04 −0.89
D,C 0.183 1.764 0.625 2.197 −0.21 −0.03 4.853 −0.40 −0.34 1.479 0.010 −0.72

Pinus tabu-
liformis

(4)
D 0.007 2.693 0.004 2.847 0.002 3.359 0.007 2.665

D,H 0.005 2.744 0.228 0.004 2.269 1.139 0.003 2.782 0.762 0.006 2.474 0.589
H,C 1.151 −1.70 2.996 0.848 −1.84 3.328 0.300 0.933 1.331 1.760 −2.51 3.545

(5)
D 0.017 2.932 1.764 −0.47 3.097 −0.63 3.019 −0.65

D,H 0.015 2.655 0.715 0.948 −0.42 0.472 1.247 0.039 −0.48 1.352 −0.21 −0.10
H,C 2.123 −0.27 2.099 2.788 −2.37 1.485 3.464 −2.10 1.103 10.48 −4.30 2.605

Sabina
przewalskii

(4)
H 0.299 1.710 0.118 2.308 0.085 2.624 0.232 1.977

D,H 0.206 0.306 1.420 0.107 0.080 2.232 0.100 −0.13 2.736 0.162 0.287 1.718
H,C 0.094 0.993 1.012 0.029 1.438 1.220 0.010 1.251 1.886 0.129 1.616 0.513

(5)
H 0.713 2.080 1.409 −0.33 3.651 −0.95 2.805 −0.67

D,H 0.575 0.172 1.924 1.104 0.199 −0.52 2.208 0.409 −1.33 1.727 0.387 −1.02
H,C 0.209 1.309 1.078 2.952 0.177 −0.67 9.498 −0.31 −0.86 13.02 0.353 −1.38

In sum, the fitting accuracy of the compatible models for estimating total biomass
and the biomass of each component for all three tree species was high, especially for
the MRWTIV. The component-additive models were slightly better than the total-control
models. The most appropriate models can be selected based on one’s needs to accurately
estimate regional biomass.

4.4. Biomass Distribution Characteristics of Each Component of Young Trees

Figure 2 shows the proportion of biomass of each component relative to the total
biomass. When the base diameter was 0–11 cm, the proportion of leaf biomass (26%–62%)
was highest for young Pinus tabulaeformis, followed by trunk (15%–55%) and branch (15%–
38%) biomass. As the base diameter increased, the proportion of leaf biomass decreased
significantly, and the proportion of trunk biomass increased. The proportion of above-
ground biomass was much higher than that of root (belowground) biomass. The proportion
of root (belowground) biomass was approximately 22%, and changes in root biomass were
small. The proportion of leaf biomass (33%–67%) was highest for Picea crassifolia, followed
by branch (14%–47%) and trunk (11%–39%) biomass. As the base diameter increased,
the proportion of leaf biomass decreased, the proportion of branch and trunk biomass
increased, the proportion of root (belowground) biomass decreased significantly, and the
proportion of aboveground biomass increased significantly. When the base diameter was
6–11 cm, the proportion of aboveground biomass was 80%–81%. The proportion of the
biomass of leaves (33%–0.68%) was highest for Sabina przewalskii, followed by trunk (13%–
43%) and branch (10%–42%) biomass. In Sabina przewalskii, the proportion of leaf biomass
decreased significantly, and the proportion of branch biomass increased significantly as
the base diameter increased; changes in the biomass of different components as the base
diameter were similar in Sabina przewalskii and Pinus tabulaeformis, and the proportion of
aboveground biomass was approximately 70%.

In sum, the biomass of the leaves in the three species was highest (26%–68%), followed
by branch (10%–46%) and trunk (11%–55%) biomass. As the diameter of the ground
increased, the proportion of leaf biomass decreased significantly, and the proportion of
branch and trunk biomass increased significantly; this pattern was especially pronounced
for Pinus tabulaeformis trunk biomass, which was as high as 55%.
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Table 5. Evaluation indicators of two compatible models estimating the total biomass and biomass of each component of three tree species.

Tree
Species Models Variables

R2 SEE MPE TRE

Leaves Branches Trunk Root Sum Leaves Branches Trunk Root Sum Leaves Branches Trunk Root Sum Leaves Branches Trunk Root Sum

Picea
crassifo-

lia

(4)
D 0.838 0.913 0.928 0.827 0.960 0.72 0.45 0.31 0.45 1.14 14.46 11.75 11.49 16.16 8.10 −1.34 1.55 1.05 0.11 0.16

D,H 0.891 0.915 0.969 0.827 0.974 0.59 0.44 0.20 0.45 0.93 11.88 11.64 7.58 16.17 6.56 0.24 1.30 2.24 −0.5 0.75
D,C 0.844 0.938 0.948 0.829 0.972 0.70 0.38 0.26 0.45 0.95 14.19 9.94 9.73 16.10 6.75 −1.17 0.93 0.98 −0.3 0.0

(5)
D 0.840 0.912 0.929 0.827 0.960 0.71 0.45 0.31 0.45 1.14 14.37 11.79 11.39 16.19 8.05 −2.31 2.11 −0.42 0.99 −0.1

D,H 0.891 0.912 0.968 0.828 0.973 0.59 0.45 0.21 0.45 0.94 11.85 11.82 7.69 16.14 6.67 0.16 1.72 2.25 0.09 0.97
D,C 0.844 0.937 0.948 0.829 0.972 0.70 0.38 0.26 0.45 0.95 14.17 9.97 9.75 16.10 6.73 −0.43 1.01 1.42 −0.2 0.35

Pinus
tabuli-
formis

(4)
D 0.870 0.836 0.977 0.733 0.917 0.30 0.30 0.17 0.52 1.17 19.38 24.99 10.10 35.71 20.14 1.66 0.31 2.38 0.55 1.32

D,H 0.867 0.842 0.987 0.729 0.918 0.31 0.29 0.13 0.52 1.16 19.64 24.50 7.73 35.96 20.01 6.51 7.10 3.26 6.66 5.73
H,C 0.860 0.932 0.877 0.864 0.961 0.32 0.19 0.40 0.37 0.80 20.09 16.12 23.42 25.47 13.73 9.41 8.58 3.78 1.99 0.83

(5)
D 0.870 0.836 0.977 0.732 0.916 0.30 0.30 0.17 0.52 1.17 19.39 24.99 10.13 35.73 20.17 2.38 1.08 2.40 1.54 1.92

D,H 0.863 0.838 0.987 0.724 0.915 0.31 0.30 0.13 0.53 1.18 19.94 24.83 7.74 36.28 20.32 8.95 9.86 3.40 9.50 7.67
H,C 0.883 0.947 0.888 0.864 0.932 0.29 0.17 0.38 0.37 1.06 18.40 14.16 22.30 25.44 18.19 2.49 1.78 1.73 0.42 1.61

Sabina
prze-

walskii

(4)
H 0.880 0.922 0.911 0.842 0.953 0.23 0.15 0.17 0.33 0.61 15.22 15.86 18.18 22.69 12.72 −3.30 −1.43 4.72 −1.5 −0.9

D,H 0.891 0.922 0.913 0.848 0.956 0.22 0.15 0.17 0.32 0.59 14.54 15.83 18.05 22.24 12.33 −3.26 −1.43 4.56 −1.2 −0.8
H,C 0.899 0.938 0.944 0.846 0.968 0.22 0.13 0.13 0.32 0.50 13.99 14.13 14.49 22.44 10.43 −4.47 −2.50 2.62 −1.9 −2.0

(5)
H 0.883 0.922 0.910 0.842 0.953 0.23 0.15 0.17 0.33 0.61 15.04 15.83 18.34 22.70 12.67 −3.05 −0.97 5.39 −1.1 −0.5

D,H 0.893 0.922 0.911 0.848 0.956 0.22 0.15 0.17 0.32 0.59 14.42 15.82 18.23 22.27 12.36 −2.87 −0.90 5.40 −0.7 −0.3
H,C 0.903 0.938 0.943 0.845 0.969 0.21 0.13 0.14 0.32 0.49 13.73 14.09 14.61 22.45 10.32 −4.54 −2.06 3.31 −1.2 −1.6
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5. Discussion

For Pinus tabulaeformis and Picea crassifolia, the fitting accuracy and prediction accuracy
of the MRWTIV model with tree height and crown diameter as independent variables to
the independent model and the compatible models of each component were better than
those of the univariate model with base diameter as an independent variable. Moreover,
the univariate model with base diameter as the independent variable had the best fitting
effect; when tree height and crown diameter were added to make it a MRWTIV, the fitting
effect of each component did not significantly change, which is consistent with the results
of previous studies [18,19,34,35]. Cai Huide et al. showed that the accuracy of the binary
biomass model was better than that of the monobasic biomass model for Horsetail pine
plantations in the construction of a standing wood biomass model for the major tree species
in Guangxi [34]; Li Yufeng et al. found that the best general model for each organ was the
binary model, and its goodness of fit and prediction accuracy were both higher and better
suited to the sample sites studied [35]. When tree height was used as the best-fitting variable
in the univariate models for Sabina przewalskii, and tree height and crown diameter were
used as the best-fitting variables, model accuracy was significantly improved. This might
be related to the biological characteristics of Sabina przewalskii (Figure 3). The tendency of
young Sabina przewalskii to have more than one trunk might have resulted in errors in the
collection of base diameter data.
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The compatible models built using the nonlinear joint estimation method were less
accurate compared with the independent models. However, they maintained good compat-
ibility among the components and enable estimations of regional biomass. The R2 values
of the compatible models were slightly smaller than those of the independent model, and
the TRE, MPE, and root-mean-square error of the compatible models were slightly larger
than those of the independent models.

There were no significant differences in the fitting accuracy of the compatible models
constructed by the component-additive and total-control methods, but the component-
additive models were slightly superior in general, especially the MRWTIV, which had
the best fitting effect, and root biomass, which had poor fitting accuracy. The component-
additive method first establishes independent equations of each component and then
integrates the independent equations of each component to form an equation set for
joint estimation. The total-control method is based on the independent models of total
biomass. The proportional function of each component was first calculated, and then the
equation set was formed by adjusting the total biomass for joint estimation. Therefore, the
component-additive model involves controlling the total amount while ensuring that the
estimation of each component is accurate. The estimation accuracy of each component
was higher with the component-additive models compared with the total-control models.
Because the total is the sum of the components, the total estimation was also more accurate.
Therefore, for tree roots with poor fitting accuracy, the fitting effect of the component-
additive models was better. For the MRWTIV with the best fitting effect, the R2 values of
the total aboveground amount were generally above 0.9, which highlights the advantage of
the component-additive models for accurately estimating each component.

In their study, Kim et al. emphasized that the site-specific allometric models are more
accurate in predicting the forest biomass estimates on the local level, as they take into
account the site effects [36]. The study found that there was no significant difference in
the explanatory power of diameter at different heights on volume and biomass changes,
but in terms of the biomass model, 0.5 m diameter (base diameter) may be more suitable
than DBH [12]. However, most biomass models are based on DBH variables [8–13]. In this
study, three young tree biomass models were developed based on field sampling data in
the Qinghai alpine region, and the best model fit accuracy and prediction accuracy were
good. Few studies have been conducted on young forest biomass models. The biomass
model for samples below 6 cm obtained in this study was compared with the standing tree
biomass model (Picea crassifolia and Pinus tabulaeformis) published by the National Forestry
Industry Standard of China Forestry and Grassland Administration [37,38]. It was found
that the biomass model of forestry standard mainly used the DBH and tree height variables
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and did not add the model results of variables such as crown width. The accuracy of forest
standard biomass model is applicable to the whole country, slightly lower than that of the
northwest alpine region model obtained in this study, especially the leaf components. The
relatively low coefficient of determination of leaf biomass is consistent with the findings
of existing studies [39], likely due to the fact that leaves are more influenced by biotic and
abiotic factors and, thus, show some variation [40], while leaf and branch biomass sizes are
uncertain due to a combination of factors such as depression and stand conditions [39].

In conclusion, the optimal biomass model of artificial young forest at the sampling
site is a multivariate component-additive compatible biomass model. When calculating the
amount of biomass of individual trees, the independent biomass model has high accuracy;
when calculating the biomass of the sample wood area (whole plant and each component),
the nonlinear joint estimation of the compatibility model is more compatible error than
the independent model error. Although error is slightly large, the model maintains good
compatibility between each component, and it can effectively predict the biomass of the
area. Although there was no significant difference in fitting accuracy of the compatibility
models constructed by the component-additive and total-control methods, the component-
additive models were slightly superior in general, especially the MRWTIV, which had the
best fitting effect, and leaf and root biomass, which had poor fitting accuracy.

6. Conclusions

On the basis of biomass data taken from 96 saplings of Picea crassifolia, Sabina przewalskii,
and Pinus tabulaeformis, independent, component-additive, and total-control compatible
models were established using allometric growth equations and nonlinear joint estimation
method. The goodness of fit and the estimation accuracy of the models were also analyzed.
The main results are detailed below.

(1) Multiple regression with two independent variables was superior to univariate models
for all three tree species. For Pinus tabulaeformis and Picea crassifolia, base diameter
was the best-fitting variable of the univariate model, and when the base diameter
and crown diameter were used as multivariate model variables, model accuracy
was significantly improved. For Sabina przewalskii, tree height was the best-fitting
variable of the univariate model; when tree height and crown diameter were used
as multivariate model variables, model accuracy was significantly improved, which
might be related to the biological characteristics of Sabina przewalskii (namely, their
tendency to have multiple trunks).

(2) The optimal biomass models were those in which the multivariate components were
added to the compatibility models. When calculating the amount of single wood
biomass, the independent biomass model has high accuracy; when calculating the
biomass of the sample wood area (whole plant and each component), the nonlinear
joint estimation of the compatibility model is more compatible with the independent
model error. Although error is slightly large, the model maintains good compatibility
between each component, and it can effectively predict the biomass of the area.
Although there were no significant differences in the fitting accuracy of compatibility
models constructed using the component-additive and total-control methods, the
component-additive models were slightly superior in general, especially the multiple
regression with two independent variables, which had the best fitting effect, and leaf
and root biomass, which had poor fitting accuracy.

(3) The largest biomass component of the three tree species was the leaves (26%–68%),
followed by the branches (10%–46%) and trunks (11%–55%). As the base diameter
increased, the proportion of leaf biomass decreased significantly, and the proportion
of branch and trunk biomass increased significantly, especially for the proportion
of Pinus tabulaeformis trunk, which was as high as 55%. Aboveground biomass was
higher than root (belowground) biomass. As the base diameter increased from 0 to
11 cm, the proportion of aboveground biomass of Picea crassifolia increased, and
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the proportion of aboveground biomass of Pinus tabulaeformis and Sabina przewalskii
decreased slightly.

In this study, biomass models were established for three important young plantations
in the southern foot of the Qilian Mountains. Based on field sampling data and comparison
of multiple models, the model accuracy was high. However, limited to research resources
and time, the author keenly realized that there is still much room for improvement in the
number of plots and the depth of research. In the future, it is necessary to increase the
number of survey plots and sampling sites on the basis of the completed plots, improve
the accuracy of relevant parameters and models, and continually improve the accuracy of
biomass estimation.
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