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Abstract: Nitrogen is an important indicator of vegetation health, but the relationship between
changes in the leaf nitrogen content of Moso bamboo leaves under Pantana phyllostachysae Chao (PPC)
stress and leaf spectra remains unclear. We analyzed the relationship between the leaf nitrogen content
and leaf spectra of Moso bamboo leaves under PPC stress to investigate whether the relationship
could be used to detect pests and prevent their spread. We measured the nitrogen content and leaf
spectra of Moso bamboo leaves under different damage levels, identified spectral indicators that
were correlated with leaf nitrogen content (by removing the envelope and first-order differentiation
of the raw spectra), and estimated leaf nitrogen content from the spectral data using regression
models. Leaf nitrogen content decreased with increasing pest damage, and the leaf spectral curves
changed, with the “green peak” and “red valley” in the visible range disappearing and the slope
of the spectral curve decreasing. The wavelength region with the strongest correlation between the
nitrogen content and spectral characteristics changed significantly with increasing pest damage, and
the correlation in the red-edge region gradually decreased. The fits of nitrogen-content estimation
models tended to decrease and then increase with increasing pest damage and were worst among
leaves in the moderate damage state (Mo). A disordered relationship between nitrogen content and
spectral characteristics indicated possible PPC damage. The degree of disorder was greatest in the
Mo state. This study provides theoretical support for remote sensing monitoring of PPC hazards.

Keywords: Pantana phyllostachysae Chao; Moso bamboo; nitrogen content; spectral characteristics;
pest damage; regression model

1. Introduction

Bamboo forest is crucial in forest ecosystems and the forest carbon sink, fostering eco-
logical security and socio-economic development. China’s ninth forest resources inventory
(2014–2018) shows that the area of bamboo forest is approximately 6,411,600 ha. Among
many bamboo species, Moso bamboo accounts for 72.96% of the total area. It is the largest,
most widely distributed, and most economically valuable bamboo species in China. Pests
are important limits to healthy growth of bamboo forests. Pantana phyllostachysae Chao
(PPC; Lepidoptera: Lymantriidae) causes huge ecological and economic losses to bamboo
forests annually in China, and the negative impact cannot be ignored. PPC exhibits the
characteristics of swarming and periodicity and causes severe damage [1,2]. During severe
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PPC outbreaks, Moso bamboo leaves are eaten, causing the death of patches of Moso bam-
boo forests. Traditionally, forest monitoring for pests is achieved through manual ground
surveys. However, it is difficult to obtain a timely and detailed understanding of pest occur-
rence using this approach. The emergence of remote sensing technology has substantially
improved the efficiency of forest pest surveys [3–6]. Advances in hyperspectral technology
have further improved the accuracy and efficiency of forest pest monitoring [7–9].

The physiological state of leaves can be effectively used to characterize the health
status of the vegetation [10,11]. Under pest stress, the external morphology of leaves
changes, as well as the internal biochemical components [12–16]. Spectral information is
affected by physiological changes in the vegetation [17]. Remote sensing has been widely
used in agricultural and forestry management to obtain information on the biochemical
components of leaves. Liu et al. used spectral indices to establish an inverse model of the
chlorophyll content of soybean leaves, and the results provided a reference for large-scale
monitoring of soybean growth status [18]. Minaei et al. estimated the nitrogen content of
sugarcane leaves using Sentinel-2 data combined with a machine learning model to provide
a reference for assessing the growing season quality of the crop [19]. Rubio-Delgado et al.
found the best model for estimating the leaf nitrogen content of olive trees by adopting
various pre-processing methods for raw spectra which provided a reference for fertilization
management [20]. The inversion model of biochemical components of vegetation under
pest stress based on spectral information has great practical value for understanding the
response mechanism and monitoring of pests. Lian et al. estimated the canopy water
content of Ziziphus jujuba under Tetranychus truncatus stress using multiple regression
models [21]. Bai et al. constructed a model for monitoring the hazard level of Dendrolimus
tabulaeformis by screening hyperspectral indices that are sensitive to biochemical component
parameters [22]. Nitrogen is a crucial nutrient element for plant growth and plays an
important role in the growth and development of vegetation and photosynthesis [23,24].

The nitrogen content of vegetative leaves changes significantly under pest stress,
and nitrogen has become an important indicator for monitoring vegetation pests [25,26].
Nitrogen in leaves is mainly found in proteins and chlorophyll, and nitrogen-containing
chemical bonds of leaves vibrate under a certain intensity of spectral radiation, triggering
the absorption and reflection of specific spectral bands. The intensity of spectral absorption
is closely related to the content of these chemical bonds [27]. At present, remote sensing
inversion of the nitrogen content of vegetation is most commonly achieved by physical
and empirical models, with good results [28–32]. Among these, empirical models are
most widely used to determine the nitrogen content by modeling the relationship between
the nitrogen content and spectral characteristics. Therefore, for studying pest monitoring
mechanisms, it is important to clarify the relationship between the changing nitrogen
content and spectra of leaves under pest stress.

Most published studies have focused on using spectral information and improving
algorithms to estimate the nitrogen content of vegetation, but few studies have investigated
the relationships between the changing nitrogen content and spectral characteristics of
vegetation under pest stress. To address these problems, this study classified Moso bamboo
leaves with different damage levels and investigated the relationship between them as pest
damage stress increased. The objectives of this study were: (1) to clarify changes in the
nitrogen content and spectral information of Moso bamboo leaves under different levels
of damage; (2) to screen and analyze the spectral characteristics that are sensitive to the
nitrogen content of Moso bamboo leaves under different levels of damage and establish
a model for estimating the nitrogen content; and (3) to analyze the resultant estimates of
the nitrogen content of Moso bamboo leaves under different damage levels and provide a
fundamental basis for accurate identification of pests in large areas.
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2. Materials and Methods
2.1. Study Area

The study area is located in Shunchang County of Fujian Province, southeastern China
(117◦29′–118◦14′ E, 26◦38′–27◦12′ N; Figure 1a,b). Shunchang County has a subtropical
monsoon climate—a mild climate with abundant rainfall. The terrain of the county is
mainly mountainous and hilly, with large undulating terrain. It is a key forest area in
the south of China and the first single bamboo forest carbon sink trading site in China.
The county’s forest land area covers 167,000 ha, of which the bamboo forest area covers
44,000 ha, with 110 million standing Moso bamboo. In 2021, the area of PPC occurrence
in Shunchang County was 964 ha. Three generations of PPC occur in Fujian Province in a
year, with the first generation (from late June to late August) causing the greatest harm.
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Figure 1. Study site: (a) location of the study area in Shunchang County; (b) remote sensing images
and locations of sampling sites in Shunchang County.

2.2. Sample Collection

Healthy and damaged leaves were randomly selected from Moso bamboo canopies at
different altitudes on 20 August 2019 (Figure 2a,b). The degree of Moso bamboo leaf damage
was classified according to the leaf damage rate as described by LY/T2011 (2012): 0% to 5%
= Healthy (H), 5% to 25% = Mildly damaged (Mi), 25% to 50% = Moderately damaged (Mo),
and ≥50% = Severely damaged (S). Moso bamboo produces a large number of shoots and
long bamboo annually, and an annual whip for leaf replacement the following year. This
phenomenon is known as Moso bamboo on- and off-years, and there are significant differences
in the biochemical parameters of Moso bamboo leaves between on- and off-years. The N,
P, and K contents of Moso bamboo leaves in on-years are significantly higher than those in
off-years (O) [33]. To avoid the effects of off-years of Moso bamboo, the off-year Moso bamboo
leaves were grouped separately. The off-year Moso bamboo leaves were predominantly in a
healthy condition. A total of 169 Moso bamboo leaf samples were collected. The numbers of
leaves of each hazard class were H: 37, Mi: 29, Mo: 35, S: 28, and O: 40.
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Figure 2. Sample collection and analysis: (a) Pantana phyllostachysae Chao larvae; (b) leaf samples of
Moso bamboo in different states of damage; (c) ASD FieldSpec3 spectrometer used in the study. 0%
to 5% = Healthy (H), 5% to 25% = Mildly damaged (Mi), 25% to 50% = Moderately damaged (Mo),
≥50% = Severely damaged (S), and Off-years (O).

2.3. Determination of Leaf Spectra and Nitrogen Content

Leaf spectra were obtained by coupling the ASD FieldSpec3 spectrometer (Figure 2c)
with the ASD Plant Spectrum Probe (Analytical Spectral Devices, Longmont, CO, USA) in
the field immediately after they were removed. The spectrometer has 2151 bands, which
are essential to detecting spectral information over the full range of the solar irradiation
spectrum (350–2500 nm) with sampling intervals of 1.4 nm (350–1000 nm) and 2 nm
(1001–2500 nm), and 1 nm after resampling. Dark current correction was applied before
each measurement. For each leaf the spectral reflectance was obtained from the mean value
of the results of five leaf scans. Different parts of the leaf (tip, veins, lamina) and damaged
parts were considered when selecting the scanning area. The Savitzky-Golay smoothing
algorithm with a polynomial order of 3 and a window width of 11 was used to preprocess
all raw spectral data to reduce effects from particle size, scattering, and covariance [34].

After the leaf spectra were measured, leaves were put into sealed bags and temporarily
stored in liquid nitrogen tanks. After being returned to the laboratory, leaves were dried
in a drying oven at 105 ◦C for 30 min and then dried to a constant weight at 80 ◦C.
The dried leaves were put into centrifuge tubes and ground into powder using a DHS
v4800 grinder, while a Vario MICRO cube elemental analyzer (Elementar, Langenselbold,
Hessen, Germany) was used to determine the nitrogen content of each leaf.

2.4. Spectral Data Processing

Original spectrum (OS) data have low sensitivity to the parameters of biochemical
components of vegetation, the detection of which requires further processing of the spectral
data. Continuum removal (CR) is a spectral analysis method that is crucial to effectively
improve the absorption and reflection characteristics of the spectral profile [35,36]. The
formulae for calculation are as follows:

K = (Re − Rs)/(λe − λs) (1)

CRj = Rj/(Rs + K× (λj − λs)) (2)

where Re and Rs are the original spectral reflectances of the start and end points, respectively.
λe and λs are the wavelengths of the start and end points, respectively; K is the slope
between the start and end point bands. λj is the central wavelength of the j band. Rj is
the original spectral reflectance of band j, and CRj is the envelope removal value of band j.
Derivative processing of spectral data eliminates baseline drift, moderates the effects of
background interference, and amplifies subtle changes in the spectral profile. This means
that it provides a higher-resolution and higher-definition spectral profile than the OS [37].
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First derivative spectra provide a better representation of the rate of change and extreme
value points of the raw spectral data and are calculated as follows:

FDRλi = (Rλi+1 − Rλi )/∆λ (3)

where FDRλi is the first derivative spectral value between band i and band i + 1. λi is
the wavelength value of band i. Rλi+1 and Rλi represent the original spectral reflectance
at bands λi+1 and λi, respectively, and ∆λ represents the wavelength difference between
bands λi+1 to λi.

2.5. Relationship Model Construction

Partial least squares (PLS) provides a method of many-to-many linear regression mod-
eling. It differs from ordinary least squares regression by employing data dimensionality
reduction, information synthesis, and screening techniques in the regression modeling
process [38,39]. For analyses involving many variables with multiple correlations and a
small number of observations, models built with PLS regression offer advantages that
are not offered by traditional methods such as classical regression analysis. The main
parameter to be adjusted in the PLS model is n-components.

Support vector regression (SVR) is a nonparametric modeling technique for pattern
recognition and classification that does not require a priori assumptions about the distribu-
tion of the data and ensures maximum generalizability of the model from the perspective of
structural risk minimization [40]. It allows nonlinear regression modeling by adjusting the
kernel function and has many advantages for pattern recognition in small sample datasets.
Both PLS and SVR models were implemented using the scikit-learn packages in Python
and the parameters were tuned using five-fold cross-validation [41].

The pattern of change in the relationship between Moso bamboo leaf nitrogen con-
tent and the spectra of leaves under different damage conditions is complex. Correla-
tions between the nitrogen content and spectral reflectance data processed by continuum
removal-first derivative (CR-FD) were determined. Wavelengths with high correlations
were screened and labeled as the characteristic spectra. The relationships between the
nitrogen content and the characteristic spectra were constructed using multiple regression
models, and patterns in the relationships under different degrees of damage to the leaves
were analyzed. The PLS and SVR methods model linear and nonlinear relationships, re-
spectively, and results indicate the complexity of the relationship between the nitrogen
content and leaf spectra. The model was constructed using 70% of the data as training
samples and 30% of the data as test samples. Models were evaluated using the regression
model evaluation index coefficient (R2) and root mean square error (RMSE). If the PLS
model is better, it means that the relationship between the nitrogen content and leaf spectra
is relatively simple, while if the SVR model is better, it means that the relationship is in a
relatively complex state.

2.6. Study Workflow

The workflow for this study (Figure 3) included the collection and processing of data
and an analysis of changes in the relationship between the nitrogen content and leaf spectra
under PPC stress.
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3. Results
3.1. Analysis of Changes in Nitrogen Content

The nitrogen content of Moso bamboo leaves with the same damage exhibited a wide
range of values, and the damage level could not be effectively distinguished by the nitrogen
content (Figure 4). The nitrogen content gradually decreased with the increasing damage.
The decrease was most pronounced in leaves in the H to Mi state, which provides a reference
for the early monitoring of insect pests. The nitrogen content of off-year leaves was much
lower than that of on-year leaves. After being eaten by pests, the cell structure of Moso
bamboo leaves was damaged and a large number of nutrients were lost, which led to a
gradual decrease in the overall nitrogen content of the leaves with increasing pest damage.
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3.2. Analysis of Variation in Leaf Spectral Characteristics

The spectra of Moso bamboo leaf have characteristics of evident undulating changes,
and the overall spectral characteristics are similar to those of other green plant leaves.
Under PPC stress, Moso bamboo leaves lost their green color and experienced water
deficiency and other diseases, resulting in pronounced changes in the spectral reflectance
curve (Figure 5). (1) The healthy leaf spectral reflectance curve between 490 and 600 nm
had a wave-shaped peak, called the “green peak”, which was the green strong-reflectance
area corresponding to chlorophyll. (2) The healthy leaf spectral reflectance curve between
600 and 700 nm had the form of a trough, called the “red valley”, where 610–660 nm was
the main absorption band for phycocyanin, and 650–700 nm was the strong absorption
band for chlorophyll. (3) The “green peak” and “red valley” gradually disappeared as the
degree of pest damage increased, and the slope of the spectral curve in the red-edge range
(670–760 nm) gradually decreased. (4) The spectral reflectance curves of off-year Moso
bamboo leaves were the same as those of on-year Moso bamboo leaves, except that the
overall spectral reflectance of off-year leaves was slightly higher than that of on-year leaves.
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3.3. Model Construction and Change Analysis
3.3.1. Model Construction and Analysis of Whole Leaf Sample

Analyses of the correlation between the nitrogen content and spectral data of Moso
bamboo leaves after OS, CR, and CR-FD treatments are shown in Figure 6. CR and CR-FD
treatments significantly improved the correlation between the spectral information and
nitrogen content. The regions with a higher correlation were around 540, 687, 740, 1690,
1733, 1784, 1840, 2071, and 2251 nm. The red-edge regions (680–760 nm) had a higher
correlation, and comparative analysis revealed that most of the high correlation regions
were sensitive ranges for chlorophyll and protein [42,43]. The highest correlation was
located at 740 nm with a correlation coefficient of 0.823 (p < 0.01).
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Figure 6. Correlation analysis of spectral data for whole leaf samples with nitrogen content. The
number is the area with high correlation, and the scope of the area is predominantly determined
according to whether the correlation trend has significantly changed. Original spectrum (OS);
continuum removal (CR); continuum removal-first derivative (CR-FD).

3.3.2. Model Construction and Analysis for Leaves in Different Damage States

To investigate variation in the pattern of the relationship between the spectral infor-
mation and nitrogen content of Moso bamboo leaves in different damage states, leaves
were divided into different damage classes and off-year groups, and correlations of their
spectral information with the nitrogen content were assessed (Figure 7). Wavelengths
with the highest correlation between the nitrogen content and leaf spectral data of Moso
bamboo leaves in different damage states were H: 751 nm, Mi: 524 nm, Mo: 2252 nm,
S: 2252 nm, and O: 534 nm, and their correlation coefficients were H: 0.860, Mi: −0.796,
Mo: 0.643, S: 0.788, and O: −0.851. The wavelength region with the strongest correlation
between the nitrogen content and spectral information changed significantly as the degree
of pest damage increased, and the absolute value of the correlation coefficients tended to
decrease and then increase. The mean of the absolute value of the two correlation coefficients
in the red-edge range tended to gradually decrease with increasing pest damage. In the
400–2500 nm wavelength range, the number of wavelengths with a strong correlation (abso-
lute value of correlation coefficient > 0.6) with a nitrogen content of Moso bamboo leaves
increased and then decreased with increasing pest damage. The number of wavelengths
with strong correlations with a nitrogen content of Moso bamboo leaves was the highest for
the Mi state, followed by the O and H states. The lowest number was observed for the S and
Mo states.

The model was constructed by selecting wavelength spectral reflectance information
with the highest absolute value of correlation with the nitrogen content, from the area with
high correlations between the nitrogen content and leaf spectral data of Moso bamboo
leaves with different damage levels. Table 1 shows the three best one-dimensional models
of the relationship between the leaf spectra and the nitrogen content of Moso bamboo
leaves in different damage states. The fit of the models shows a general trend of decreasing
and then increasing with rising pest damage levels. Estimation of the model in the Mo
state was poor, and the estimation model constructed from the 751 nm wavelength spectral
information in the H state was the best.
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Table 1. Construction of relationship models for Moso bamboo leaves in different damage states.

State Index Best Estimate Model Equation R2 RMSE

H
CR-FD696 y = −1.882lnx− 4.761 0.674 0.127
CR-FD751 y = 0.952lnx + 8.927 0.805 0.098
CR-FD2049 y = 8.467e−477.187x 0.541 0.151

Mi
CR-FD524 y = −118.638x + 2.912 0.551 0.145
CR-FD637 y = 2.772e71.364x 0.533 0.148

CR-FD2143
y =

−91865.999x2 + 219.435x + 2.475 0.659 0.127

Mo
CR-FD534

y =
−76054.291x2 − 74.496x + 2.397 0.097 0.163

CR-FD735
y =

−9163.851x2 + 191.572x + 1.368 −0.146 0.184

CR-FD2252 y = 2.629e160.511x 0.275 0.157
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Table 1. Cont.

State Index Best Estimate Model Equation R2 RMSE

S
CR-FD1103

y =
2344354.231x2 − 1797.199x + 2.080 0.312 0.206

CR-FD1731
y = −1904836.384x2 − 1147.347x +

2.069
0.530 0.170

CR-FD2252
y =

78149.816x2 + 718.358x + 2.868 0.604 0.156

O
CR-FD534

y =
19972.230x2 − 256.702x + 2.404 0.690 0.126

CR-FD689 y = 1360.659x2 − 87.458x + 2.829 0.487 0.162
CR-FD739 y = 136.485x + 1.489 0.604 0.142

3.3.3. Multivariate Model Construction and Analysis

When individual spectral characteristics were selected for the estimation of nitrogen
content, the spectral information of the individual bands was not sufficiently explanatory
for the nitrogen content. Overall estimation of the model was poor due to a loss of
information on physicochemical parameters carried by other spectral bands. Therefore,
it was necessary to explore multivariate models for the relationship between spectral
characteristics and the nitrogen content of Moso bamboo leaves. Both PLS and SVR models
were implemented to explore their advantages and disadvantages. In the SVR model, after
cross-validation the best kernel function for the model was determined to be the radial
basis kernel function. Figure 9 shows the estimated nitrogen content of Moso bamboo and
the model fits for the whole samples and those in different damage states. The overall
fit of the multiple regression models was significantly improved compared with that of
the one-way regression model. The p-values of the models were all less than 0.001 and
reached a highly significant level. In the Mo and S states, the SVR model outperformed
the PLS model while in the other states the reverse was observed. The fits of both models
showed the same trends for different damage states of Moso bamboo leaves. The model
fits decreased and then increased with the rise in pest damage level, and the model fits in
the Mo state were the worst.
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Figure 9. Estimated nitrogen content of Moso bamboo from two regression models for Moso bamboo
leaves in different damage states: (a) Whole samples PLS model; (b) whole samples SVR model;
(c) H-PLS; (d) H-SVR; (e) Mi-PLS; (f) Mi-SVR; (g) Mo-PLS; (h) Mo-SVR; (i) S-PLS; (j) S-SVR; (k) O-PLS;
(l) O-SVR. partial least squares (PLS); support vector regression (SVR).

To investigate whether the results of the models were statistically different at different
damage levels, paired t-tests were performed using the results of five trials. Table 2 shows
that for the evaluation index R2, the results are not significantly different under the Mi-S
group; for the evaluation index RMSE, the results are not significantly different under the
Mi-S and Mi-O groups of the SVR model. The main reason for the above phenomenon
was that the model results showed a decreasing and then increasing trend as the pest level
rises and the effect was worst in the Mo state, while the difference between the Mi and S
states was not obvious. The results of the experiment further verified the variation pattern
between the nitrogen content and leaf spectrum of Moso bamboo leaves under PPC stress.

Table 2. Paired t-test for evaluation index of PLS and SVR models.

Pest Level
PLS SVR

R2 RMSE R2 RMSE

t p t p t p t p

H-Mi 7.178 0.002 ** 17.920 0.000 ** 5.913 0.004 ** 5.714 0.005 **

H-Mo 91.625 0.000 ** −61.388 0.000 ** 13.460 0.000 ** −8.572 0.001 **

H-S 5.027 0.007 ** −6.802 0.002 ** −10.846 0.000 ** 6.662 0.003 **

H-O −22.823 0.000 ** 12.113 0.000 ** −14.366 0.000 ** 6.152 0.004 **

Mi-Mo 327.916 0.000 ** −72.838 0.000 ** 13.118 0.000 ** −6.906 0.002 **

Mi-S 2.254 0.087 −26.315 0.000 ** −12.159 0.000 ** −2.159 0.097

Mi-O −102.374 0.000 ** −7.791 0.001 ** −20.803 0.000 ** 1.325 0.256

Mo-S −61.473 0.000 ** 32.152 0.000 ** −19.199 0.000 ** 8.056 0.001 **

Mo-O −23.948 0.000 ** 54.194 0.000 ** −27.815 0.000 ** 7.260 0.002 **

S-O −299.605 0.000 ** 24.890 0.000 ** −2.930 0.043 * 3.581 0.023 *

Note: * at the significance level of 0.05; ** at the significance level of 0.01.
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4. Discussion
4.1. Discriminatory Ability of Nitrogen Content-Sensitive Spectra for PPC Stress

Bands of spectra differed in their responsiveness to Moso bamboo leaves under differ-
ent damage levels, and a one-way analysis of variance (ANOVA) revealed the responsive-
ness of spectral information to different damage classes [44] (Figure 10). When the spectral
information of a band significantly differed (p < 0.05) among leaves of different damage
classes, the information was used as a reference factor for the PPC damage detection model.
Figure 10 shows that (1) the spectral reflectance of healthy (H) and damaged (Mi, Mo,
S) Moso bamboo leaves differed significantly in most wavelength ranges, and the band
ranges in which the groups significantly differed were similar. (2) The overall differences in
spectral reflectance between Moso bamboo leaves in the affected states were small, but there
were more pronounced differences in spectral reflectance in the green to red wavelength
range. (3) The differences in spectral reflectance of Moso bamboo leaves between the O
and other states were relatively complex. The overall difference between the O and H
states was pronounced. The overall difference between the O and Mi states was relatively
small. There were more significant differences between the O and Mo and S states in some
wavelength ranges. A one-way ANOVA showed that the range of spectral wavelengths
that was sensitive to the nitrogen content was also the range with significant differences
among the leaf states.
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Figure 10. One-way ANOVA of spectral wavelengths among different Moso bamboo leaf states:
(a) one-way ANOVA of the H and damaged (Mi, Mo, S) states; (b) one-way ANOVA of different
damage states; (c) one-way ANOVA of off-year and on-year (H, Mi, Mo, S) states.



Forests 2022, 13, 1752 14 of 18

4.2. Effect of Spectral Feature Index Screening on Model Results

The effectiveness of the model for estimating the nitrogen content of Moso bamboo
leaves was closely related to the selection of leaf spectral characteristics. In this study, the
selection of spectral characteristics was considered in two aspects, namely the correlation
between the spectral information and nitrogen content, and the existence of co-linearity
between the spectral information. The reasons for considering these two aspects were:
(1) when there is a strong correlation between variables, it is meaningful to conduct regres-
sion analysis to obtain the specific relationships between variables. (2) Any covariance
problem in the feature indicators will lead to a lack of stability in the regression model and
affect the generalization error of the model.

Correlation between spectral reflectance data and the nitrogen content was signif-
icantly improved by CR-FD processing of the original spectra. Therefore, the CR-FD-
processed spectral reflectance data were used as a basis for selecting feature indicators.
When the absolute value of the correlation between the spectral information and the ni-
trogen content was >0.6, the wavelength reflectance at the largest absolute value of the
correlation coefficient was selected as the characteristic index. However, in the Mo and S
states, the value was adjusted slightly downward due to the low correlation between the
spectral data and nitrogen content. The range of the region is predominantly determined
according to whether there is a significant change in the correlation between the spectral
information and nitrogen content, to avoid covariance due to the close distance of sensitive
wavelengths. To avoid covariance in the selected feature spectra after this treatment, PLS
was used to model the multivariate linear relationship. This is because doing so can weaken
the effect of covariance between characteristics. The improvement in the models can be
combined with feature selection and principal component analysis in future studies [45].
Screening spectral characteristics sensitive to nitrogen content revealed that the number of
wavelengths with a strong correlation with nitrogen content was highest in the Mi state.
However, constructing the relational model showed that the nitrogen content estimation
model was inferior in the Mi state compared with those in the H and O states. This result
was related to the low correlation between the nitrogen content and feature spectra in the
Mi state. This result also demonstrated the shortcomings of analyzing the relationship
between the two changes using the relational model.

4.3. Relationship between Pests and Leaf Nitrogen Content and Leaf Spectrum

PPC damage occurs when larvae eat bamboo leaves, causing leaves to become notched
and hollow and resulting in a high loss of nutrients, including nitrogen, chlorophyll, and
water [46]. This has a serious impact on Moso bamboo photosynthesis. Reduced pho-
tosynthetic efficiency leads to ineffective decomposition of water in the bamboo body,
triggering a vicious cycle of water accumulation in the bamboo cavity at each node, further
resulting in the death of patches of affected bamboo in the forest. Selection of spectral
characteristics that can reflect these characteristic changes is the key to using leaf spectral
information to determine the degree of pest stress. Asner et al. found that concentra-
tions of chlorophyll, water, and nonstructural carbohydrates were significantly reduced
in 80% of leaves of disease-infested plants, which together led to changes in leaf spectral
reflectance [47]. Xi et al. studied the response mechanisms of larch forests under Jas’s Larch
Inchworm stress using ground-based hyperspectral and biochemical components data
(chlorophyll and water contents) [48]. Some researchers believe that current remote sensing
technology cannot accurately analyze the extent of damage to the host by PPC [49] and
that research should be conducted at the leaf scale. After continuous exploration identified
the pest stage, related research found that leaves with PPC damage are sensitive to wave-
lengths of 703.43–898.56 nm, and the spectral reflectance of the leaf differs for different pest
classes [50]. Pest stress led to changes in vegetation biochemical fractions, which further
influenced changes in vegetation spectra. Exploring the effect of pest damage stress on
the remote sensing inversion of biochemical components of forest trees is of considerable
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importance for accurate identification of pest damage, the study of forest tree resistance
mechanisms, analysis of the spread of pest damage, and traceability work.

Nitrogen is an important component of plant chlorophyll and protein and is a key
factor in regulating the photosynthetic capacity of plant leaves. Nitrogen affects all aspects
of photosynthesis, including leaf chlorophyll content, the photosynthetic rate, dark-reaction
enzyme activity, and photorespiration. Correlation between the nitrogen content and leaf
spectral information and the fit of the nitrogen content model were significantly reduced
after infestation by pests significantly decreased. Therefore, nitrogen content can be used
as a response indicator to monitor the health status of Moso bamboo under PPC stress.
The nitrogen content of Moso bamboo leaves changed significantly during infestation
by the pest, especially in the early stage of infestation. Therefore, measuring nitrogen
content can be key in efficiently and effectively monitoring pests in Moso bamboo forests
through remote sensing. Nevertheless, to improve the precision of pest identification via
remote-sensing pest monitoring, data of other biochemical component parameters, such as
chlorophyll, water content, cellulose, and lignin, should also be analyzed.

5. Conclusions

In this study, we measured the nitrogen content and leaf spectra of Moso bamboo
leaves. Briefly, we selected spectral characteristics that were strongly correlated with the
nitrogen content of leaves by processing original spectral data using CR and FD and then
estimated the nitrogen content of Moso bamboo leaves using spectral data as predictors
through various regression models. The relationship between the nitrogen content and leaf
spectral characteristics, as well as variations in the relationship, were analyzed according
to the indices of fit of estimation models, and the following conclusions were drawn:

(1) The overall nitrogen content of leaves gradually declined with increasing insect
damage, with the fastest rate of decline in the H to Mi damaged states. These results
provide a reference for the early monitoring of insect pests. The overall nitrogen
content of leaves in off-years was lower than that in on-years.

(2) The spectral curve of Moso bamboo leaves changed significantly under PPC damage.
The “green peak” and “red valley” gradually disappeared in the visible range, and
the slope of the spectral curve in the red range gradually decreased.

(3) In the whole leaf samples, the wavelength regions strongly correlated with the ni-
trogen content of leaves were around 540, 687, 740, 1690, 1733, 1784, 1840, 2071, and
2251 nm. The wavelength region with the strongest correlation between the nitrogen
content and spectral characteristics changed significantly in leaves in different damage
states. The mean of the absolute value of the correlation between the nitrogen content
and spectral characteristics in the red-edge range tended to gradually decrease with
an increase in the degree of pest damage. The number of wavelengths with a strong
correlation with the nitrogen content in the wavelength range from 400 to 2500 nm
first increased and then decreased with an increasing degree of pest damage. The
number of wavelengths with a strong correlation between the nitrogen content and
spectral data was highest in the Mi state.

(4) The SVR model outperformed the PLS model in the Mo and S states, and the fits of
both were significantly improved compared with those of the univariate models. For
both the univariate and multivariate models, the model fit followed the same trend,
i.e., the fit of both models decreased and then increased as the pest damage level
increased. The fit of both models in the Mo state was the worst, and that of the models
in the off-year state was better than that in the on-year state.
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