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Abstract: Particleboards (PB) and oriented strand boards (OSB) are commonly used materials in
building structures or building interiors. The surface of boards may hence become directly exposed
to fire or radiant heat. The aim of this paper is to evaluate the behaviour of uncoated particleboards
and OSB exposed to radiant heat. The following ignition parameters were used to observe the
process of particleboard and OSB ignition: heat flux intensity (from 43 to 50 kW.m-2) and ignition
temperature. The time-to-ignition and mass loss of particleboards and OSB with thicknesses of 12, 15
and 18 mm were monitored and compared. The experiments were conducted on a modified device in
accordance with ISO 5657: 1997. Results confirmed thermal degradation of samples. Heat flux had a
significant effect on mass loss (burning rate) and time-to-ignition. OSB had higher ignition time than
particleboards and the thermal degradation of OSB started later, i.e., at a higher temperature than
that of particleboards, but OSB also had higher mass loss than particleboards. The samples yielded
the same results above 47 kW.m−2. Thermal analysis also confirmed a higher thermal decomposition
temperature of OSB (179 ◦C) compared to particleboards (146 ◦C). The difference in mass loss in both
stages did not exceed 1%.

Keywords: particleboard; OSB; heat release; time-to-ignition; mass loss

1. Introduction

The production of wood-based boards encompasses the utilization of wood of lower
quality classes [1–4] and obtaining suitable materials with improved physical and mechani-
cal properties [5–10]. Properties of particleboards (PB) are described in detail in the work
of [11,12]. The oriented strand boards (OSB) belong to this product group, but they are
also considered an input material in the furniture and construction industries [9,13–15].
A description of OSB in terms of their preparation and properties is defined in the work
of [16,17]. These materials are also analysed within the scope of insulation materials [18–21].
They are a part of sandwich panels in low-energy houses [22–25]. They are typically used
as an interior sheathing material [26] or furniture [27–30]. Research on the fire resistance of
the mentioned materials is also rich [31–35].

Large-size wood-based materials form the largest percentage of wood material in
timber houses [36–38]. These materials can be directly exposed to fire [39–41] or the effect
of radiant heat [42,43]. Thermal degradation and potentially even ignition of wood-based
boards are caused by the action of the ignition source [41–48]. These processes are affected
by both the combustible material and the environment in which it is located [49,50]. The
ignition process cannot be characterized by a single property [51]. Rantuch et al. [52] used
ignition parameters to define the term ignition. Two of these ignition parameters (critical
heat flux and ignition temperature) are used here to compare OSB and PB with thicknesses
of 12, 15 and 18 mm. This article presents the differences in the results of the research
between PB and OSB due to the influence of external heat flux.

Ignition is the ability of a sample to ignite under the action of an external thermal
initiator and under defined test conditions, according to [53]. According to ISO 3261 [54],
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it is the ability of a material to ignite. The process of ignition is characterized by the time-
to-ignition of a sample, which depends on the ignition temperature, thermal properties
of materials, sample conditions (size, humidity, orientation) and critical heat flux [55].
Definition of “ignition temperature” can be interpreted as the minimum temperature to
which the air must be heated so that the sample placed in the heated air environment
ignites, or the surface temperature of the sample just before the ignition point [56–58].

Separate attention is paid to the issue of simulating the ignition of wood under external
heat flux from calculations of ignition parameters [59,60]. A prediction model presented
in Chen et al.’s paper [61] studies the pyrolysis and ignition time of wood under external
heat flux. The solution of the model provides the temperature at each point of the solid
and the local solid conversion, and the time-to-ignition of the wood is predicted with the
solution of surface temperature [62]. Chen et al. [61] obtained good agreement between
experimental and theoretical results.

The aim of this paper is to evaluate the behaviour of uncoated particleboards and
OSB exposed to radiant heat. The significant influence of board density and thickness on
time-to-ignition and mass loss of PB and OSB samples is monitored and observed. At the
same time, the difference in the thermal degradation of PB and OSB samples is sought by
comparing the results between time-to ignition and mass loss of PB and OSB samples.

2. Materials and Methods
2.1. Experimental Samples

Particleboards (PB) and OSB with thicknesses of 12, 15 and 18 mm (Figure 1a) were
used as samples. Selected thicknesses correspond to those typically used in the construc-
tion and insulation of houses, in the construction of ceilings, soffits, partitions, etc. The
samples were sourced from the company BUČINA DDD, Zvolen, under the product name
Particleboard raw unsanded (Table 1). These particleboards contain softwood strands,
mainly spruce, and a urea–formaldehyde adhesive mixture [63].

The samples of oriented strand boards were obtained from the company Kronospan-
Jihlava, under product name OSB/3 SUPERFINISH ECO (Figure 1b), without surface
treatment. These OSB are multi-layered boards made of flat wood chips of a specific shape
and thickness. The chips in the outer layers are oriented parallel to the length or width of
the board, the chips in the middle layers may be oriented randomly or generally perpen-
dicular to the lamellae of the outer layers. They are bonded with melamine formaldehyde
resin and PMDI, and they are flat-pressed. The boards contain mainly a mixture of different
softwood species [64].
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board (PB); (b) OSB.

The samples of OSB were cut to specific dimensions (165 × 165 mm) according to
ISO 5657: 1997 [65]. Selected sheet board materials were stored at a specific temperature
(23 ◦C ± 2 ◦C) and relative humidity (50 ± 5%).

There were tested air-conditioned samples, because the change in moisture will affect
the thermal parameters of the samples and subsequently the thermal processes [16,66]. The
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density of samples (Table 1) was determined according to EN 323: 1996 [67]. The remaining
parameters were obtained from the safety data sheets (Table 2).

Table 1. The density of PB and OSB samples according to EN 323: 1996 [67].

Samples Designation Density (kg.m−3) for Thickness (mm)

12 15 18

Particleboard (PB) PB 690 ± 9.8 713 ± 9.7 644 ± 10.1
Oriented Strand Boards (OSB) OSB 562 ± 7.9 570 ± 12.1 569 ± 12.8

Table 2. Physical and chemical properties and fire-technical characteristics of particleboards and OSB
with thicknesses of 10–18 mm.

Parameters PB [64] OSB [63]

Density (kg.m−3) 665 630
Moisture (%) 5 5
Swelling (%) 3.5 15

Thermal conductivity (W.m−2.K−1) 0.10–0.14 0.13
Specific heat (J.kg−1.K−1) [67] - 1460–1470

Formaldehyde content (mg.100 g−1) 6.5 8
Flame spread rating (mm.min−1) - 83.8

Reaction to fire D-s1, d0

2.2. Methodology
2.2.1. Determination of Mass Loss and Time-to-Ignition

The measuring instrument was calibrated, and heat flux values used for selected
samples were logged in Tureková et al. [68,69].

Time-to-ignition and mass loss were determined for the selected level of heat flux
density and thickness of the sheet board materials according to a modified procedure based
on ISO 5657: 1997 [65]. This modification included a change of the igniter. The ignition was
caused only by heat flux, without the use of an open flame (Figure 2).
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Figure 2. Scheme of the equipment for determination of flammability of materials at radiant heat flux
of 10–50 kW.m−2 according to ISO 5657: 1997 [65]. (a) Real test equipment and equipment scheme.
(b) Scheme of the used equipment with description of components: 1—heating cone, 2—board for
sample, 3—movable arm, 4—connection point for recording experimental data. (c) Detailed look at
the burning of the particleboard sample with 18 mm thickness in 100 s.

The samples were placed horizontally and exposed to a heat flux of 43 to 50 kW.m−2 by
an electrically heated cone calorimeter. Orientation experiments determined the minimum
heat flux required to maintain flame combustion. Time-to-ignition and mass loss were
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monitored in the interval of 43 to 50 kW.m−2 at each thickness of the sheet board material
in a series of five repetitions.

The factors which affect time-to-ignition and mass loss are type of sample, board thick-
ness and heat flux density. The obtained results of the ignition and mass loss temperatures
were statistically evaluated by statistics. The following factors were used: mixture samples,
board thickness (12, 15 and 18 mm) and heat flux density (from 43 to 50 kW.m−2).

2.2.2. Thermal Analysis (Thermogravimetry TGA) of PB and OSB

This analytical method was chosen as the weight of the analysed samples in milligrams.
These methods are used in observations and comparison of thermal decomposition of
samples, and in the research of the changes and conditions of the chemical reaction course.
Thermogravimetry (TGA) studies the course of both thermolysis and polymer burning
and records the changes in the weight of the heated sample. The sample was stabilized for
24 h under standard conditions; the test was conducted on a Mettler TA 3000 with a TC
10A processor and TG 50 thermogravimetric weights module in the air and flow rate of
200 mL.min−1. The heat increased at a rate of 10 ◦C.min−1. The test was carried out up to a
temperature of 700 ◦C. The samples for TGA were specifically prepared by disintegration,
and the weight of the OSB sample was 10.225 mg and PB was 10.543 mg.

3. Results and Discussion

The minimum value of radiant heat flux for particleboards and OSB was approximately
43 kW.m−2. This value represented the critical heat flux for the selected samples. The
maximum value of the radiant heat flux, to which the selected sheet board materials were
exposed, was 50 kW.m−2. The heat flux was gradually increased by 1 kW.m−2 (Table 3).

Table 3. Time-to-ignition and mass loss of samples with different thicknesses using heat fluxes from
43 to 50 kW.m−2 at a distance of 20 mm.

Radiant Heat
Flux (kW.m−2) Thickness (mm)

PB OSB

Time-to-Ignition (s) Mass Loss∆m (%) Time-to-Ignition (s) Mass Loss ∆m(%)

43
12 89.0 ± 5.215 17.108 ± 0.520 107.4 ± 32.920 19.018 ± 0.742
15 92.6 ± 3.441 14.604 ± 0.375 172.8 ± 68.271 16.528 ± 1.103
18 117.0 ± 5.513 13.198 ± 0.173 170.0 ± 19.279 12.436 ± 0.402

44
12 80.0 ± 5.366 17.594 ± 0.409 80.80 ± 14.372 20.188 ± 1.210
15 86.4 ± 4.882 15.452 ± 0.355 108.0 ± 31.093 16.092 ± 0.885
18 102.8 ± 4.308 13.754 ± 0.239 140.0 ± 31.698 13.256 ± 0.745

45
12 78.2 ± 0.748 17.96 ± 0.301 100.2 ± 21.673 20.870 ± 0.889
15 84.4 ± 2.057 15.27 ± 0.294 86.4 ± 10.442 17.026 ± 0.541
18 92.2 ± 2.481 13.87 ± 0.286 111.2 ± 24.235 13.716 ± 0.303

46
12 71.6 ± 1.624 18.406 ± 0.522 84.4 ± 9.002 21.868 ± 0.879
15 76.0 ± 2.280 15.714 ± 0.290 93.4 ± 21.767 17.272 ± 0.647
18 89.0 ± 7.974 13.776 ± 0.565 98.8 ± 12.592 13.504 ± 0.228

47
12 66.4 ± 2.870 18.91 ± 0.288 71.0 ± 8.671 22.026 ± 0.908
15 73.8 ± 0.797 16.23 ± 0.363 67.08 ± 5.403 17.500 ± 0.455
18 75.6 ± 3.720 14.48 ± 0.339 103.6 ± 18.391 13.818 ± 0.266

48
12 64.0 ± 1.490 19.11 ± 0.338 58.60 ± 5.953 23.206 ± 0.505
15 69.4 ± 1.959 16.27 ± 0.373 63.40 ± 7.116 18.366 ± 0.910
18 75.0 ± 2.000 14.65 ± 0.225 77.60 ± 25.881 14.222 ± 0.826

49
12 60.6 ± 2.241 19.75 ± 0.439 65.0 ± 11.436 23.578 ± 0.858
15 66.0 ± 2.283 16.59 ± 0.333 62.20 ± 3.2497 18.764 ± 0.571
18 67.2 ± 1.166 15.17 ± 0.131 63.20 ± 3.187 14.678 ± 0.899

50
12 59.8 ± 2.638 19.91 ± 0.415 56.80 ± 2.039 24.302 ± 0.814
15 64.4 ± 2.497 16.5 ± 0.335 59.40 ± 5.607 19.402 ± 0.586
18 66.8 ± 2.093 15.94 ± 0.945 60.20 ± 5.741 14.846 ± 1.033
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The sample was placed horizontally under the cone calorimeter and exposed to
selected heat fluxes which led to gradual thermal degradation and generation of flammable
gases. Thermal degradation (Figure 3) is manifested by mass loss (Table 3). Ignition
occurs when the critical temperature is reached [69]. Time-to-ignition was recorded, while
considering only the permanent ignition of the surface of the analysed sample when
exposed to a selected level of heat flux density. The carbonized residue (Figure 4) remained
on the surface which has been exposed to radiant heat [70–73], which proves the thermal
insulation properties of the particleboard and OSB [25].
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Time-to-ignition of particleboard and OSB samples of the same thickness (Figure 4)
differed in experiments with lower heat flux values, i.e., at 43 to 46 kW.m−2. Particleboards
and OSB with thicknesses of 12 and 15 mm had the same time-to-ignition values starting
from 47 kW.m−2 (Figure 4 and Table 1). Samples of particleboard and OSB with a thickness
of 18 mm showed the same time stamps starting from 48 kW.m−2 (Figure 5).
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In comparison with OSB, particleboards generally showed lower time-to-ignition
values. The cause can be found in the board structure. OSB consist of larger wood chips
compared to particleboards.

The box plot graph for time-to-ignition OSB and PB samples shows the dispersion
of the obtained data (Figure 5c). PB samples, in all thicknesses, have comparable results
(in Figure 5c), marked with the numbers 2 as PB 12, 4 as PB 15 and 6 as PB 18. The above
matrix presents the data obtained from heat flux 43 to 50 kW.m−2. It confirms the fact that
the thickness of the sample does not have a significant influence on time-to-ignition for PB
samples. OSB samples show a significant dispersion of the obtained data and confirm the
ratio with increasing heat flux; the ignition time is shortened (see also in Figure 5a).
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for PB and OSB samples. Legends: PB 12—PB samples with 12 mm thickness, PB 15—PB samples
with 15 mm thickness, PB 18—PB samples with 18 mm thickness, OSB 12—OSB samples with 12 mm
thickness, OSB 15—OSB samples with 15 mm thickness, OSB 18—OSB samples with 18 mm thickness.
Box graphs have X Axis marks as 2—43 kW.m−2; 3—44 kW.m−2; 4—45 kW.m−2; 5—46 kW.m−2;
6—47 kW.m−2; 7—48 kW.m−2; 8—49 kW.m−2; and 9—50 kW.m−2. Confidential interval 95%.

The values of time-to-ignition and mass loss of OSB have a greater dispersion of
results, as evidenced by the created box graphs (Figure 5). The variability results from
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the nature of the board, which is composed of large-area wood particles from pressed flat
chips that are pressed under the influence of high pressure and temperature (Figure 6). The
binder is a formaldehyde-based resin [74]. Osvald et al. [75] do not assume the influence of
the bonding material (glue as well as other additives) on the thermal degradation of the
OSB surface.
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When comparing the mass loss of particleboards and OSB, lower mass loss values
are observed in particleboards of all thicknesses. This difference decreases with increasing
sample thickness. Mass loss values of particleboard and OSB samples with a thickness of
18 mm are the same (Figure 5b). A detailed analysis of time-to-ignition and mass loss results
for individual sample thicknesses exposed to selected heat flux values is shown in Figure 6.
The comparison of time-to-ignition values of particleboards and OSB showed interesting
results, apart from the results with the heat flux of 43 kW.m−2 (Figure 6a). Figure 6 shows
the linear dependences of time-to-ignition increase on the sample thickness. At the same
time, the graphs are supplemented with quantitative analysis through box graphs. The
presented graphs confirm the description of the behaviour of OSB and PB due to the action
of radiant heat. Particleboards record lower time-to-ignition values than OSB up to the heat
flux of 47 kW.m−2 (Figure 6b–e). Subsequently, the particleboard and OSB time stamps
become identical (Figure 6f–h). All linear dependences maintain an increasing tendency
(Figure 6a–h), i.e., the time-to-ignition increases with increasing sample thickness. The
given increasing tendency was, however, no longer found at heat flux of 49 and 50 kW.m−2

(Figure 6g,h).
Naturally, mass loss (∆m) results show the opposite tendency: ∆m decreases with

increasing sample thickness (Figure 6i–p), while the ∆m of OSB is generally greater than the
∆m of particleboards. Interesting results can be seen at the heat fluxes of 43 (Figure 6i), 44
(Figure 6j) and 46 (Figure 6l) kW.m−2, where there is a change in ∆m occurring in samples
with a thickness of 18 mm. These cases show higher ∆m values of particleboard samples
compared to OSB.

The results confirm relatively similar behaviour of particleboard and OSB samples.
OSB have generally higher time-to-ignition values, i.e., they withstand the effect of radiant
heat longer than particleboards. On the other hand, OSB have a higher ∆m value compared
to particleboards during thermal degradation and subsequent combustion.

Our results show that as the thickness of samples increases, the differences in the
behaviour of the samples disappear under action radiant heat, which can be seen in Figure 6.
Practice should take into account the importance of thickness when applying these materials
in building structures or elements.

For the purpose of this analysis, another parameter evaluating the behaviour of solids
in the event of a fire was calculated, namely the burning rate of OSB (Figure 7a) and
particleboards (Figure 7b). The process of thermal degradation of wood-based materials
is associated with the charring of the surface, hence some authors [49] call this parameter
the charring rate. Once again, dependence between the increase in the rate of burning and
the increase in heat flux was confirmed. The burning rate (g.m−2.s−1) is calculated as the
ratio of mass loss ∆m to the time of thermal degradation. The results show a decrease in
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the rate of burning with increasing thickness of the sample (Figure 8), which is also stated
by Richter et al. [49]. This fact confirms that particleboards act as thermal insulators.
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Figure 8. Comparison of thermogravimetric records showing the decomposition of selected board
materials at a heating rate of 10 ◦C.min−1 in an atmosphere of air.

The box plots added to Figure 7 show the same tendency for the burning rate to
increase. The values of 43,44, 45 and 46 kW.m−2 have exactly the same burning rate values,
and significant changes occur at heat flows of 48-50 kW.m−2.

Despite the previous linear dependences, it is not possible to draw a clear conclusion.
This fact is also confirmed in Figure 7. The results show a relationship between the thickness
of the samples and the burning rate, which is again linear, but the lines differ (Figure 7).
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Richter et al. [49] addressed the effect of oxygen concentration and heat flux on the
ignition and burning of particleboards. The experiments were performed on samples of
particleboards with different oxygen concentrations (0%–21%), heat fluxes (10–70 kW.m−2),
sample densities (600–800 kg.m−2) and sample thicknesses (6–25 mm). The results of
Richter et al. [49] showed the effect of heat flux and oxygen concentration on the rate of
burning, ignition time and combustion type (pyrolysis, smouldering, combustion).

Maciulaitis et al. [70] watched, among other things, the influence of 30, 35, 40, 45 and
50 kW.m−2 heat flows in accordance with LST ISO 5657: 1999 [65] with 6 mm, 10 mm,
15 mm and 18 mm thick oriented strand boards (OSBs).

Statistical evaluation of measurement data
The assessment of the impact of the kind samples (PB, OSB) and the impact of thickness

(12,15 and 18 mm) on time-to-ignition and mass loss was carried out by statistical analysis.
We used the multifactor analysis of variance (ANOVA) using LSD (95% level of provability)
of the test (software Statistica 10).

Table 4 confirms significant differences for thickness. The OSB 18 mm has the highest
time-to-ignition value.

Table 4. The impact of samples (PB, OSB) and impact of thickness (12.15 and 18 mm) on the time-to-
ignition through the 1-factor analysis of variance (ANOVA) (α= 0.05).

Samples
Thickness

(mm)
Heat Flux (kW.m−1) Average Hd α0.5

43 44 45 46 47 48 49 50

OSB 12 107.40 80.00 100.2 84.4 71.0 58.6 65.00 56.8 77.9a

OSB 15 152.80 108.00 86.40 87.2 67.0 63.4 62.2 59.4 85.8b

OSB 18 170.00 140.00 105.20 98.8 103.6 77.6 63.2 60.2 102.3c

PB 12 89.00 80.00 78.2 71.6 66.4 67.0 60.6 59.8 71.6a

PB 15 92.60 86.00 84.4 76.0 73.8 69.4 66.0 64.4 76.6ab

PB 18 117.00 102.00 92.2 89.0 75.6 75.0 67.2 66.8 85.6b

Average 121.4e 99.6d 91.1d 84.5c 75.4b 68.5ab 64.0a 61.2a 4.47

ANOVA–LSD test (α = 0.5): a, b, c, d, e—statistically significant difference.

The mass loss for all samples was 15% of the original weight of the samples. The
obtained statistical data did not confirm the significance of the influence of the kind of
sample and its thickness on mass loss (Table 5).

Table 5. The impact of samples (PB, OSB) and impact of thickness (12.15 and 18 mm) on the time-to-
ignition through the 1-factor analysis of variance (ANOVA) (α = 0.05).

Samples
Heat Flux (kW.m−1) Average Hd α0.5

43 44 45 46 47 48 49 50

OSB 15.6 16.5 17.2 17.5 17.7 18.5 19.0 19.5 17.1a

PB 14.5 15.6 15.7 15.9 16.6 16.7 17.2 17.3 16.1a

Average 15.2b 16.1a 16.5a 16.8a 17.2a 17.6a 18.1c 18.4c 3.45

ANOVA–LSD test (α = 0.5): a, b, c—statistically significant difference.

Thermal analysis is another method which uses constant heating to analyse the sample.
The results confirm thermal decomposition of samples in two stages [49], as is the case
with other cellulosic materials (Table 6). Individual stages of thermal decomposition of
particleboard and OSB samples were defined with the use of thermogravimetric analysis in
an atmosphere of air.
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Table 6. Thermogravimetric analysis of OSB and particleboard samples.

Sample
Drying Processes

Thermal Degradation Processes

I. Stage II. Stage

Temperature
Range (◦C) Tp (◦C) ∆m (%) Temperature

Range (◦C) Tp (◦C) ∆m (%) Temperature
Range (◦C) Tp (◦C) ∆m (%) Crezist

(%)

OSB 42–136 72.3 4.86 179–381 325.7 65.07 381–524 443.0 29.34 0.61

Particleboard 42–136 72.3 5.32 146–378 320.3 64.65 378–525 445.7 29.53 0.64

Thermal decomposition of the OSB sample (Figure 8) took place in two stages. The
first stage of thermal decomposition, the main decomposition of the sample, occurred at
a temperature of 179 ◦C. The highest mass loss (65.07%) was recorded at 325.7 ◦C within
the first stage of decomposition, which ranged between the temperature of 179 ◦C and
381 ◦C. The second stage of thermal decomposition began at 381 ◦C. At this stage, the
second maximum rate of mass loss was recorded at 443 ◦C, with a mass loss of 39.34% and
a resistant residue of 0.61% after decomposition.

A similar course of thermal degradation was observed in particleboards. The main
decomposition of the particleboard sample occurred at a temperature of 146 ◦C within the
temperature range of up to 378 ◦C. At the same time, the highest mass loss of 64.65% was
recorded at the temperature of 320.3 ◦C. In the second stage of thermal decomposition,
which took place at the temperature range of 378 ◦C to 525 ◦C, the second maximum rate
of mass loss was recorded at 445.7 ◦C. At this stage, there was a mass loss of 29.53% and
the resistant residue after decomposition amounted to 0.64%.

Given values show the behaviour of boards subjected to thermal stress, where the OSB
with a thickness of 12 mm begins to thermally degrade at 179 ◦C and its ignition time is
107 s at a heat flux of 43 kW.m−2.

Particleboard with the thickness of 12 mm begins to degrade at 146 ◦C and its igni-
tion time is 89 s. The reported results are consistent in all sample thicknesses and heat
flux values.

Sinha et al. [76] studied the effect of exposure time on the flexural strength of OSB and
plywood at elevated temperatures. They reached a critical temperature of 190 ◦C at which
the strength decreased and thermal degradation occurred. Very interesting research on
time-to-ignition on Ancient Wood was conducted by Wang et al. [77].

4. Conclusions

Based on the performed experiments, it is possible to draw the following conclusions:

1. The heat flux and thickness had a significant effect only on time-to-ignition.
2. OSB had a higher time-to-ignition than particleboards and the thermal degradation

of OSB started later, i.e., at a higher temperature than that of particleboards. Above
47 kW.m−2, the samples yielded the same results, but OSB had a higher mass loss
value than particleboards.

3. Thermal analysis also confirmed a higher thermal decomposition temperature of OSB
(179 ◦C) compared to particleboards (146 ◦C). The difference in mass loss in both
stages did not exceed 1%, and other parameters did not show a significant difference
in the behaviour of the samples.

4. Our results show that as the thickness samples increases, the differences in the be-
haviour of the samples disappear under action radiant heat, which can be seen in
Figure 6. Practice should take into account the importance of thickness when applying
these materials in building structures or elements.

Author Contributions: Conceptualization, I.T. and M.I.; methodology, I.T.; software, I.M.; validation,
I.T., M.I. and J.H.; formal analysis, I.T. and L.M.O.; investigation, I.T. and M.I.; resources, I.T., J.H. and
M.I.; data curation, M.I.; writing—original draft preparation, I.T.; writing—review and editing, I.M.
and I.T.; project administration, L.M.O.; funding acquisition, I.T. All authors have read and agreed to
the published version of the manuscript.



Forests 2022, 13, 1738 16 of 18

Funding: This article was supported by Institute Grant of University of Žilina No. 12716 and the
Cultural and Educational Grant Agency of the Ministry of Education, Science, Research and Sport
of the Slovak Republic on the basis of the project KEGA 0014UKF-4/2020 Innovative Learning
e-modules for Safety in Dual education.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable for studies not involving humans or animals.

Acknowledgments: This article was supported by the Institute Grant of University of Žilina No.
12716 and Project KEGA 0014UKF-4/2020 Innovative Learning e-modules for Safety in Dual Education.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mantanis, G.I.; Athanassiadou, E.T.; Barbu, M.C.; Wijnendaele, K. Adhesive systems used in the European particleboard, MDF

and OSB industries. Wood Mater. Sci. Eng. 2007, 13, 104–116. [CrossRef]
2. Pedzik, M.; Auriga, R.; Rogozinski, T. Physical and Mechanical Properties of Particleboard Produced with Addition of Walnut

(Juglansregia L.) Wood Residues. Materials 2022, 15, 1280. [CrossRef] [PubMed]
3. Ligne, L.D.; Van Acker, J.; Baetens, J.M.; Omar, S.; De Baets, B.; Thygesen, L.G.; Van Den Bulcke, J.; Thybring, E.E. Moisture

dynamics of wood-based panels and wood fibre insulation materials. Front. Plant Sci. Sec. Plant Biophys. Model. 2022, 13, 951175.
[CrossRef] [PubMed]
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OSB/3; Bučina DDD: Zvolen, Slovakia, 2019.

64. Safety data sheet Particleboard. In Raw Un-Sanded; Bučina DDD: Zvolen, Slovak republic, 2019.
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